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Detailed Derivations of Noise Contrastive Estimation

As discussed in the Objectives section of the paper, the gradient of objectives 1 and 2 w.r.t. the parameter
θ involves the calculation of
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where the scoring function is implemented as

sθ(i, j, r) = r · wTi wj + bj , (2)

and θ denotes the general representation of parameters (wi, wj , bj).

Unfortunately, the term EPθ(j′|i,r)
[
∂sθ(i,j

′,r)
∂θ

]
in Eq. (1) is of high computational complexity as it needs to

iterate over all artists j′ for every training instance (i, j, r). Noise-contrastive estimation (NCE) [1] addresses
this problem by proposing a new objective with an easily calculated gradient that approximates the gradient
in Eq. (1).

The basic idea of NCE is as follows. Instead of learning a model that maximises the log-likehood of the
observed data, it learns a model that distinguishes the data samples from some artificially generated noise
samples.

Assume each observation (i, j, r) is generated from a mixture of some true data distribution Pd(j|i, r) and
a noise distribution Pn(j). Following [2], the method assumes that the noise samples are k times as frequent
as data samples, so that the observations (i, j, r) come from a mixture 1

k+1Pd(j|i, r) + k
k+1Pn(j). We now

want to use a probabilistic model Pθ(j|i, r) to approximate Pd(j|i, r). Therefore, for every context i with
the desired reward r, given the observed Md true data with Mn noise data, the log-likelihood of correctly
distinguishing the labels of these observations with respect to parameter θ is
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Taking the limit Md,Mn → +∞, we have
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which is just the expected log-likelihood of the policy Pθ(j|i, r) distinguishing the true data samples from
the noise samples given the context i and desired reward r.

Take the derivative of J i(θ) w.r.t. θ:

∂J i(θ)

∂θ
= EPd(j|i,r)

[ kPn(j)

Pθ(j|i, r) + kPn(j)

∂

∂θ
logPθ(j|i, r)

]
− kEPn(j)

[ Pθ(j|i, r)
Pθ(j|i, r) + kPn(j)

∂

∂θ
logPθ(j|i, r)

]
=
∑
j

kPn(j)Pd(j|i, r)
Pθ(j|i, r) + kPn(j)

∂

∂θ
logPθ(j|i, r)−

∑
j

kPθ(j|i, r)Pn(j)

Pθ(j|i, r) + kPn(j)

∂

∂θ
logPθ(j|i, r)

=
∑
j

kPn(j)

Pθ(j|i, r) + kPn(j)
(Pd(j|i, r)− Pθ(j|i, r))

∂

∂θ
logPθ(j|i, r) (6)

When k → +∞, then
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which is the gradient of maximising the log-likelihood of generating the observed data.
Specifically, following [3], we can regard the normalisation factor for (i, r) a parameter ci,r

ci,r =
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. (10)

As such,

Pθ(j|i, r) = esθ(i,j,r) · eci,r . (11)

We can now calculate the gradient of ci,r just like that of other parameters. In fact, from the equivalence
between Eq. (7) and Eq. (8), we can see that directly setting Pθ(j|i, r) = esθ(i,j,r) is no problem (also
implemented in [3]).

In practice, given an observation (i, j, 1) from playlist data or an observation (i, j, r) from radio data,
we generate k artists j1, j2, . . . , jk from a known distribution Pn(j), e.g. by artist popularity, as noise data.
Then we can calculate the gradient
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which corresponds to Eq. (15) in our paper. The resulting method is very efficient if k is not large. In

addition, both kinds of weights, i.e., kPn(j)

esθ(i,j,r)+kPn(j)
and esθ(i,jm,r)
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, on the partial derivatives are

between 0 and 1, which makes NCE very stable.
NCE is a learning framework which can flexibly to incorporate different scoring functions s. The general

update rule is
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where η is the learning rate. With the scoring function as in Eq. (2), the detailed gradients are
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Note that the regularisation terms should be further added into the gradient calculation.

Example Recommended Radio Streams

Here we further show some example radio streams of 15 artist sequentially recommended by our radio policy
trained by collective NCE. To the authors’ music knowledge, these radio streams are satisfactory.

Table 1: Case study of 4 recommended radio streams given specific seed artist.
Seed Queen Blake Shelton Billy Joel Jessie James

1 Status Quo Eric Church Don Henley Lila McCann
2 Uriah Heep James Otto Mr. Mister Sara Evans
3 The Romantics Steve Holy Little River Band Jamie O’Neal
4 David Gilmour Miss Willie Brown Peter Cetera Chely Wright
5 Duane Allman Bobby Pinson Rita Coolidge Lorrie Morgan
6 Ash Wednesday Jason Blaine Janis Ian Tanya Tucker
7 Michael Bolton Chad Brock Karla Bonoff K.T. Oslin
8 Lobo Easton Corbin Bruce Cockburn Briston Latina
9 Nils Lofgren Love And Theft Orleans Beat This Summer
10 David Knopfler John Rich Nils Lofgren The Charlie Daniels Band
11 Orleans Eli Young Band David Knopfler The Statler Brothers
12 Bruce Cockburn Josh Turner Bob Dylan Roger Miller
13 Karla Bonoff Billy Currington Lobo Steve Earle
14 Janis Ian Darius Rucker Gino Vannelli June Carter Cash
15 Marc Cohn Craig Morgan Rick Springfield Charlie Louvin
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