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M ODERN CHESS IS  the culmination of centuries of 
experience, as well as an evolutionary sequence of 
rule adjustments from its inception in the 6th century 
to the modern rules we know today.17 While classical 
chess still captivates the minds of millions of players 
worldwide, the game is anything but static. Many 
variants have been proposed and played over the 
years by enthusiasts and theorists.8,20 They continue 
the evolutionary cycle by altering the board, piece 
placement, or the rules—offering players “something 
subtle, sparkling, or amusing which cannot be done in 
ordinary chess.”1

Technological progress is the new driver of the 
evolutionary cycle. Chess engines increase in strength, 
and players have access to millions of computer games 
and volumes of opening theory. Consequently, the 
number of decisive games in super-tournaments has 
declined, and it takes longer for players to move from 
home preparation to playing original moves on the 
board.14 While classical chess remains a fascinating 

game and is unlikely to ever fall out of 
fashion, alternative variants provide 
an avenue for more creative play. In 
Fischer random chess, the brainchild 
of former world champion Bobby 
Fischer, the initial position is ran-
domized to counter the dominance of 
opening preparation in a game.7 One 
could consider not only entirely new 
ideas, but also reassess some of the 
newer additions to the game. For ex-
ample, the “castling” move was only 
introduced in its current form in the 
17th century. What would chess have 
been like had castling not been in-
corporated into the rules? Without 
recourse to repeating history, we rei-
magine chess and address such ques-
tions in silico with AlphaZero.25

AlphaZero is a system that can 
learn superhuman chess strategies 
from scratch without any human 
supervi sion.19,22 It represents a mile-
stone in artificial intelligence (AI), 
a field that has ventured down the 
corridors of chess more than once in 
search of challenges and inspiration. 
Throughout the history of computer 
chess, the focus was on creating sys-
tems that could spar with top human 
players over the board.3 Computer 
chess has progressed steadily since 
the 1950s, with better-tuned evalu-
ation functions and enhanced 
search algorithms deployed on 
increasingly more computational 
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resources.2,3,9,13,18,24 Alan Turing 
already envisioned more in 1953 by 
asking, “Could one make a machine 
to play chess, and to improve its 
play, game by game, profiting from 
its experience?”27 Unlike its prede-
cessors, AlphaZero learns its policy 
from scratch from repeated self-play 
games, answering the second part 
of Turing’s question. The result is a 
unique approach to playing classical 
chess22 and a new era in the devel-
opment of chess engines, as spear-
headed by Leela Chess Zero.15

AlphaZero’s ability to continu-
ally improve its understanding of the 
game, and reach superhuman play-
ing strength in classical chess and 
Go,25 lends itself to the question of 
assessing chess variants and poten-
tial variants of other board games 
in the future. Provided only with the 
implementation of the rules, it is pos-
sible to effectively simulate decades 
of human experience in a day, open-
ing a window into top-level play of 
each variant. In doing so, computer 
chess completes the circle, from the 
early days of pitting man vs. machine 
to a collaborative present of man with 
machine, where AI can empower play-
ers to explore what chess is and what 
it could become.11

Rule Alterations
There are many ways in which the 
rules of chess could be altered. In this 
work, we limit ourselves to atomic 
changes that do not involve changes 
to the starting position and keep the 
game as close as possible to classical 
chess. Some of the alterations that we 
consider are novel, while others have 
been previously discussed within the 
chess community but have yet to be 
widely adopted. The nine changes 
considered in this study are listed in 
Table 1. No-castling and No-castling 
(10) involve a full and partial restric-
tion on the castling rule. Pawn-one-
square, Semi-torpedo, Torpedo, Pawn-
back, and Pawn-sideways involve 
changes to pawn mobility. Self-capture 
chess allows players to also capture 

their own pieces. Final-
ly, Stalemate=win recasts 
stalemate as a win for the at-
tacking side, rather than a draw. 
As such, it is particularly aimed at 
increasing the decisiveness of the 
game, by removing certain defensive 
patterns. Self-capture is sometimes 
referred to as “Reform Chess” or “Free 
Capture Chess,” while Pawn-back is 
called “Wren’s Game” by Pritchard.20 
Figure 1 illustrates positions from 
AlphaZero games for three of these 
variants.

AlphaZero
AlphaZero is an adaptive learning 
system that improves through many 
rounds of self-play.25 It consists of a 
deep neural network fθ with weights 
θ that compute (p, υ) = fθ(s) for a given 
position or state s. The network out-
puts a vector of move probabilities p 
with elements p(s′|s) as prior prob-
abilities for considering each move 
and, hence, each next state s′.a If we 
denote a game’s outcome numerically 
by +1 for a win, 0 for a draw, and −1 for 
a loss, the network additionally out-
puts a scalar estimate υ ∈ (−1, 1) of the 
expected outcome of the game from 
position s.

Move selection is done  
b y  M o n t e  C a r l o  t r e e  
search (MCTS), which runs 
repeated search simula-
tions of how the game might 
unfold up to a preset 
maximum ply depth. 
In one MCTS simula-
tion, fθ is recursively 
applied to a sequence 
of positions until a 
maximum-depth leaf 
node is reached. The 
sequence of moves in 

a We have suppressed nota-
tion somewhat; the prob-
abilities are technically 
over actions or moves a in 
state s, but as each action a 
deterministically leads to a 
separate next position s′, we use 
the concise p(s′|s) in this paper.



62    COMMUNICATIONS OF THE ACM   |   FEBRUARY 2022  |   VOL.  65  |   NO.  2

contributed articles

moves at a “first glance” of the board. 
When a leaf node is reached, its posi-
tion’s evaluation υ is “backed up” to 
the root, with each node along the 
path incrementing its visit count and 
including the leaf’s υ in its action-
value estimate. After a number of such 
MCTS simulations, the root move that 
was visited most is played.

Training fθ(s) is done via gradient 
descent steps to let p and υ predict the 
next move and final game outcome 
from s as closely as possible for a 
streaming sample of game positions. 
The sample is continually refreshed 
with self-play games that are gener-
ated using fθ in MCTS as fθ is updated. 
The result is a feedback loop that pro-
duces a streaming sample of games of 
increasing quality.

The starting point for our experi-
mental setup is the input state 
representation, neural network 

architecture, MCTS depth and 
action selection criterion, 

AlphaZero training configura-
tion, and hardware in Silver 
et al.25 As the rule changes in 
Table 1 are atomic, we assume 

that a quality of play compa-
rable to AlphaZero’s classical 

chess games22 would be reached for 
each of the variants under the same 
conditions. If the experimental setup 
is kept constant except for altering 
the legal moves list, we furthermore 

assume that differences in game 
outcomes would be informative 

of their relative decisiveness. We 
trained each variant in Table 1’s 
neural network from a random 

initialization for 1 million gradi-
ent descent steps using the config-

uration in Silver et al.25

Self-Play Games for 
Each Chess Variant

For each chess variant, we used 
the resulting AlphaZero model 

to generate a diverse set of 
10,000 self-play games at 
1 sec per move and 1,000 
self-play games at 1 min 
per move. In the absence of 
external stochasticity, each 

variant’s self-play games 
would be identical under 
the same time controls. To 
generate self-play games 
for analysis, we promoted 

diversity by sampling the first 20 
plies in each game proportional to 
the MCTS visit counts for each move. 
Game outcomes are presented in 
Figure 2. A selection of the self-play 
games is annotated and presented in 
our technical report, together with the 
qualitative assessments by Vladimir 
Kramnik.26

Across all variants the percentage 
of drawn games increases with lon-
ger calculation times, suggesting that 
they may be theoretically drawn, as 
is believed to be the case for classical 
chess. However, when calculation is 
sliced at either 1 sec or 1 min, four vari-
ants consistently stand out with games 
that are more decisive than classi-
cal chess: Torpedo, Semi-torpedo, 
No-castling, and Stalemate = win. 
Conditioned on the games in Figure 
2, the posterior probabilities that each 
of these four variants would yield a 
lower draw rate than classical chess is 
at least 99.9% at 1 sec calculation and 
87% at 1 min calculation (see Tomašev 
et al.26 for full analysis). Simply put, 
some variants may be harder to play, 
involving more calculation and richer 
patterns. Figure 2 adds data to a long-
standing debate about whether letting 
stalemate count as a win would make 
top-level chess substantially more 
decisive.16 At 1 sec per move, there 
are 2.4% fewer Stalemate=win draws 
than under classical rules; at 1 min 
per move, this reduces to 0.8% fewer 
draws.

Utilization of Special Moves
The chess variants’ special moves 
play an important role in the arising 
dynamics of play, as evidenced by 
their frequency of use in the 1-min-
per-move self-play games discussed 
in the previous section. The variants’ 
median game lengths ranged from 62 
to 76 moves, while the median game 
under classical rules was 68 moves 
long. This suggests that none of the 
special moves would radically impact 
the time that a player spends at the 
board.

At least one torpedo move appeared 
in 83% of all Semi-torpedo games and 
94% of Torpedo games. A pawn promo-
tion with a torpedo move occurred in 
21% of Torpedo games, high lighting 
the speed at which a passed pawn can 
be promoted to a queen. Backwards 

a simulation depends on an action 
selection criterion that is applied at 
each node along the path; it is this 
version of the PUCT algorithm21 that 
trades off exploration against revisit-
ing more promising moves more fre-
quently over consecutive simulations. 
The action selection criterion is such 
that before a state is first encountered 
in a simulation, its resulting prior 
vector p assigns weights to candidate 
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Classical

No-castling

No-castling (10)
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Game outcomes at 1 second per move

White wins Draw Black wins
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Game outcomes at 1 minute per move

White wins Draw Black wins
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Game outcomes at 1 second per move

White wins Draw Black wins

Classical

No-castling

No-castling (10)

Pawn one square

Stalemate=win

Torpedo

Semi-torpedo

Pawn-back

Pawn-sideways

Self-capture
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3

4
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4

13

6

4

5

2

Game outcomes at 1 minute per move

White wins Draw Black wins

Table 1. A list of considered alterations to the rules of chess.

Variant Rule change

No-castling Castling is disallowed.

No-castling (10) Castling is disallowed for the first 10 moves (20 plies).

Pawn one square Pawns can only move by one square.

Stalemate = win Forcing stalemate is a win rather than a draw.

Torpedo Pawns can move by one or two squares anywhere on the board and can be captured en passant after any  
two-square advance.

Semi-torpedo Pawns can move by two squares both from the second and the third ranks, and they can be captured en passant  
after any two-square advance.

Pawn-back Pawns can move backwards by one square but only back to the second/seventh rank for White/Black.  
Pawn moves do not count toward the 50-move rule.

Pawn-sideways Pawns can also move sideways by one square. Sideways pawn moves do not count toward the 50-move rule.

Self-capture It is possible to capture one’s own pieces.

Figure 1. Examples by AlphaZero of three of the nine chess variants analyzed in this article. In Torpedo chess (left), White generates rapid 
counterplay with a torpedo move (b4-b6). Rh1 is followed by yet another torpedo move, b6-b8=Q. In Pawn-sideways chess (center), Black 
plays a tactical sideways pawn move (f7-e7) after sacrificing a knight on f2 in the previous move, opening the f-file toward the White king.  
In Self-capture chess (right), White’s self-capture move (Rxh4) generates threats against the Black king.
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Figure 2. AlphaZero self-play game outcomes: for 10,000 games played at 1 sec per move (left) and for 1,000 games played at 1 min per 
move (right).
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Diversity of Choices  
in Top-Level Play
Rule perturbations should not leave 
top-level players with only a few forc-
ing lines of play and so diminish the 
richness of classical chess. Generally, 
if there are M(st) legal moves in posi-
tion or state st at ply t, then the number 
of candidate moves m(st)—the num-
ber that a top player would realisti-
cally consider—is much smaller than 
M(st). de Groot6 called M(st) a player’s 
legal freedom of choice and m(st) an 
objective freedom of choice. Iida et 
al.10 hypothesize that  
on average, and we show that similar 
relationships hold across variants.

Choices in a single position. We 

estimate the diversity of choice in 
a single position st via the entropy 
of the AlphaZero prior. The prior is 
a weighted list of possible moves 
to st+1 from st that are used in 
AlphaZero’s MCTS search; it specifies 
candidates for consideration before 
MCTS calculation. The average 
information content, or entropy, 

, 
represents the information content in 
the reasonable choices available in st. A 
more naturally interpretable number 
is the average number of candidate 
moves in the position, which we define 
as m(st) = exp(H(st)). It is the number of 
uniformly weighted moves that could 
be encoded in the same number of 
nats as p(st+1|st).b These two quantities 
will be used to construct footprints for 
opening tree diversity.

Opening tree diversity. We mea-
sure the diversity of choice with the 
entropy of the first T plies of play 
from each variant’s prior p from fθ(s). 
If s = [s1, s2, … sT] represents the seq-
uence of states after T plies, the prior 
probability of s is . 
The entropy in a sequence of T moves 
is hence H(T) = – Σs p(s) log p(s) = 
Es∼p(s)[– log p(s)]. An entropy H(T) = 0 
implies that, according to the prior, 
one and only one reasonable opening 
line could be considered by White and 
Black up to depth T, with all deviations 
from that line leading to substantially 
worse positions for the deviating 
side. A higher H(T) implies that we 
would a priori expect a wider opening 
tree of variations, and consequently 
a more diverse set of middlegame 
positions. H(T) contains an average 
over an exponential number of move 
sequences, which we approximate 
with a Monte Carlo estimate. Table 
2 shows the estimated entropy of 20-
ply opening trees for each variant. 
As one of the most drawish variants, 
players of Pawn-one-square chess 
will have substantially more playable 
candidate moves at their disposal, 
despite there being fewer legal moves 
than any other variant.

b As an illustrative example, if the number of 
candidate moves is m(st) = 3 for some p(st+1|st) 
that might put nonzero mass on all of its 
moves, then m(st) is also equal to the number 
of candidate moves of a probability vector  

 that puts equal nonzero mass 

on only three moves.

pawn moves occurred in 97% of Pawn-
back games, while all Pawn-sideways 
games involved a sideways pawn 
move. A startling 12% of all moves in 
Pawn-sideways chess were sideways 
moves, demonstrating a high utiliza-
tion of the newly introduced move. In 
Stalemate=win chess, the percentage 
of all decisive games that were won by 
stalemate rather than mate was 31%, 
although this number includes con-
clusions from endings such as K+Q 
vs. K, where either conclusion is a 
valid win. In Self-capture chess, 42% 
of games featured self-capture moves, 
most commonly involving pawns 
(95%), while bishop (3%), knight (1%), 
and rook self-captures (1%) were rarer.

Table 2. The entropy (in nats) of the first 20 plies of the AlphaZero prior, with an estimate of 
the number of lines in the equivalent opening book.

Variant Entropy 20-ply Games Variant Entropy 20-ply Games

No-castling 27.65 1.02 × 1012 Stalemate = win 29.01 3.97 × 1012

Torpedo 27.89 1.30 × 1012 Semi-torpedo 31.63 5.45 × 1013

Self-capture 27.94 1.36 × 1012 Pawn-back 32.30 1.07 × 1014

No-castling (10) 27.97 1.40 × 1012 Pawn-sideways 34.16 6.85 × 1014

Classical 28.58 2.58 × 1012 Pawn one square 38.95 8.24 × 1016

Uniform random 64.96 1.63 × 1028

Figure 3. Statistical footprints of the diversity of responses to 1. e4 and 1. Nf3 in Classical 
and No-castling chess, as well as the average number of candidate moves available for 
White and Black at each ply.

0 10 20 30 40 50 60 70
−log p(s) when s ∼ p(s) at ply depth 20

0.00

0.01

0.02

0.03

0.04

0.05

0.00

0.01

0.02

0.03

0.04

0.05

D
en

si
ty

(h
is

to
gr

am
)

1... e5 2. Nf3 Nc6 3. Bb5 Nf6 4. O-O Nxe4 5. Re1 Nd6 6. Nxe5 Nxe5
7. Bf1 Be7 8. Rxe5 O-O 9. d4 Bf6 10. Re1 Re8 11. c3

Classical (e4)

Classical (Nf3)

0 10 20 30 40 50 60 70
−log p(s) when s ∼ p(s) at ply depth 20

D
en

si
ty

(h
is

to
gr

am
)

No-castling (e4)

No-castling (Nf3)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Ply t

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

A
ve

ra
ge

nu
m

be
r

of
ca

nd
id

at
e

m
ov

es

Classical (e4) (w)

Classical (e4) (b)

Classical (Nf3) (w)

Classical (Nf3) (b)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Ply t

A
ve

ra
ge

nu
m

be
r

of
ca

nd
id

at
e

m
ov

es

No-castling (e4) (w)

No-castling (e4) (b)

No-castling (Nf3) (w)

No-castling (Nf3) (b)



contributed articles

pieces in chess helps players master 
the game and is one of the very first 
pieces of chess knowledge taught to 
beginners.

We approximate piece values via 
the weights of a linear model trained 
to predict game outcome from differ-
ences in piece counts for any given 
position, given as d = [1, d

p
, d

N
, d

B
, 

d
R

, d
Q

]. We fit the model on fast-play 
AlphaZero games for each of the chess 
variants. We define gw with weights w 
∈ R6 as gw(s) = tanh(wT d). In the linear 
model, the weights w indicate relative 

Shannon’s source coding theorem 
states that we can compress a game 
sampled from p(s) into just over H(T) 
nats. This is equivalent to assigning a 
unique number to each of exp(H(T)) 
games, and we take this as the size of 
a variant’s opening book: the number 
of plausible T-ply games in a variant.

The “uniform random” policy in 
Table 2 plays all legal moves in clas-
sical chess with equal probability. Its 
entropy is more than double that of 
classical chess; conversely, like the 
hypothesis by Iida et al.,10 the classical 
opening book is a little smaller than 
the square root of the number of all 
legal openings.

Classical vs. no-castling chess. 
Both White and Black castle in 
most classical chess openings, 
and removing castling as an 
option profoundly changes the 
characteristics of the game.14 In 
this section, we explore the changes 
using one opening, the Berlin 
Defence, as an example. A tool is the 
decomposition of the entropy H(T)’s 
statistical expectation, which can 
help identify the existence (or not) of 
defensive lines that equalize the game 
in an almost forceful way. The top 
row in Figure 3 shows histograms of 
–log p(s) when s is generated from the 
AlphaZero prior after 1. e4 and 1. Nf3. 
The histograms provide a footprint of 
opening diversity.

Berlin defence. In classical chess, 
one equalizing defensive resource for 
Black in the Ruy Lopez (1. e4 e5 2. Nf3 
Nc6 3. Bb5) is the Berlin Defence, 
starting with 3… Nf6. Vladimir 
Kramnik successfully used it as a 
defensive resource for Black during 
his world championship match 
against Garry Kasparov in 2000. Prior 
to the match, chess engines of the 
time evaluated the Berlin endgame 
at around +1 in White’s favor, but 
today it is considered to be very solid, 
with modern engines assessing most 
arising positions as being equal.26

In Figure 3 (top left), samples of 
s that contribute to the high prob-
ability spike after 1. e4 correspond to 
AlphaZero’s strong preference for the 
Berlin Defence in classical chess. In 
the footprint of lines after 1. Nf3, the 
spike disappears, indicating a wider 
range of possibilities for both sides. 
White’s main response to 3. Nf6 is 

4. O-O. Without the option to castle, 
the Berlin Defence and many other 
lines either disappear or become less 
prominent, where 1. e4 yields a simi-
lar variety of preferred lines of play as 
1. Nf3.

Average number of candidate moves.  
The entropy of a chess variant’s prior 
opening tree is an unwieldy number 
that does not immediately inform us 
how many move options are in each 
variant. Instead, Figure 3 (bottom 
row) also shows the average number 
of candidate moves at ply T, M(T) 
= Σs p(s) m(sT) = Es∼p(s) [m(sT)], for a 
progression of plies T = 2, 3, … after 
1. e4 and 1. Nf3. Notably, Black in 
particular is afforded far fewer 
options on average after 1. 
e4 in classical chess than in 
No-castling chess. When 
castling is removed as a 
legal move, we can expect 
both White and Black to 
have at least one more 
plausible move at their 
disposal for each of the first 
20 plies.

Piece Value
Material plays an important 
role in chess and is often 
used to assess whether a 
particular sequence of 
piece exchanges and 
captures is favor-
able. Material sac-
rifices in chess are 
made either for 
concrete tacti-
cal reasons—for 
example, mat-
ing attacks—or 
as a  trade-off for 
long-term posi-
tional strength. 
Understanding the 
material value of 

Table 3. Estimated piece values from AlphaZero self-play games for each variant.

Variant p N B R Q Variant p N B R Q

Classical 1 3.05 3.33 5.63 9.5 Self-capture 1 3.10 3.22 5.34 9.42

No-castling 1 2.97 3.13 5.02 9.49 Pawn-back 1 2.65 2.85 4.67 9.39

No-castling (10) 1 3.14 3.40 5.37 9.85 Semi-torpedo 1 2.72 2.95 4.69 8.3

Pawn one square 1 2.95 3.14 5.36 9.62 Torpedo 1 2.25 2.46 3.58 7.12

Stalemate = win 1 2.95 3.13 4.76 8.96 Pawn-sideways 1 1.8 1.98 2.99 5.92
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Torpedo, Pawn-sideways, No-Castling, 
and Self-capture are now a reality, 
playable on a major chess portal such 
as chess.com.5 On the back of the 
initial evidence, the first No-castling 
tournament was held in Chennai in 
January 2020.23 Chess’s role in artifi-
cial intelligence research is far from 
over. The outcome of this article is a 
result of a man with machine, show-
ing how AI can provide the evidence to 
take reimagining to reality.

Looking beyond chess, this ar-
ticle’s contribution hinged on being 
able to learn a policy for an agent in an 
environment with known dynamics 
and then exploring changes in the en-
vironment to measure different emer-
gent properties of agent behavior.28 
We believe that a similar approach 
could be used for auto-adjusting game 
mechanics in other types of games, 
including computer games, in cases 
where a sufficiently strong reinforce-
ment learning system is available. 
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piece importance. If (s, z) ∼ games 
represent a sample of a position and 
final game outcome from a variant’s 
self-play games, we minimize (w) = 
E(s,z)∼games [(z – gw(s))2] empirically over 
w and normalize weights w by w

p
 to 

yield the relative piece values. The 
recovered piece values for each of the 
chess variants are given in Table 3.

Looking at the piece value esti-
mates for classical chess, the 
method approximately recovers 
known material values4,12 and identi-
fies bishops as more valuable than 
knights. Estimates of piece values 
in No-castling, No- castling (10), 
Pawn-one-square, Self-capture, and 
Stalemate = win variants look fairly 
similar, which is not surprising given 
the minor differences in piece mobil-
ity compared to the other variants. 
Variants involving an increase in pawn 
mobility result in lower relative val-
ues for other pieces, as can be seen in 
Pawn-back, Semi-torpedo, Torpedo, 
and Pawn-sideways. In Pawn-sideways 
chess, AlphaZero often sees the trade 
of a knight or bishop for two pawns 
as favorable, in accordance with this 
approximation. Such an exchange 
would normally be considered bad in 
classical chess. Material values may 
vary across different game stages and 
position types, and hence, the values 
in Table 3 are merely meant to help 
new players make sense of tactical 
exchanges in these chess variants.

From Reimagining to Reality
The combination of human curiosity 
and a powerful reinforcement learn-
ing system allowed us to reimagine 
what chess would have looked like if 
history had taken a slightly different 
course. When the statistical proper-
ties of top-level AlphaZero games 
are compared to classical chess, a 
number of more decisive variants 
appear, without impacting the diver-
sity of plausible options available to 
a player. Aside from a mathematical 
evaluation, the actual games could be 
viewed through an aesthetic lens; this 
was done in Tomašev et al.26 and in 
many online discussion forums.14

Taken together, the statistical 
properties and aesthetics provide evi-
dence that some variants would lead 
to games that are at least as engaging 
as classical chess. Variants such as 

Watch the authors discuss  
this work in the exclusive 
Communications video.  
https://cacm.acm.org/videos/
reimagining-chess-alphazero




