
Journal of Machine Learning Research 10 (2009) 935-976 Submitted 8/07; Revised 11/08; Published 4/09

Perturbation Corrections in Approximate Inference:

Mixture Modelling Applications

Ulrich Paquet ulrich@cantab.net

Computer Laboratory
University of Cambridge
Cambridge CB3 0FD, United Kingdom

Ole Winther owi@imm.dtu.dk

Informatics and Mathematical Modelling
Technical University of Denmark
DK-2800 Lyngby, Denmark

Manfred Opper opperm@cs.tu-berlin.de

Computer Science

TU Berlin

D - 10587 Berlin, Germany

Editor: Zoubin Ghahramani

Abstract

Bayesian inference is intractable for many interesting models, making deterministic algo-
rithms for approximate inference highly desirable. Unlike stochastic methods, which are
exact in the limit, the accuracy of these approaches cannot be reasonably judged. In this
paper we show how low order perturbation corrections to an expectation-consistent (EC)
approximation can provide the necessary tools to ameliorate inference accuracy, and to
give an indication of the quality of approximation without having to resort to Monte Carlo
methods. Further comparisons are given with variational Bayes and parallel tempering
(PT) combined with thermodynamic integration on a Gaussian mixture model. To obtain
practical results we further generalize PT to temper from arbitrary distributions rather
than a prior in Bayesian inference.

Keywords: Bayesian inference, mixture models, expectation propagation, expectation
consistent, perturbation correction, variational Bayes, parallel tempering, thermodynamic
integration

1. Introduction

Approximate methods for Bayesian inference have recently enjoyed a limelight of attention.
These methods can be either deterministic or stochastic. Deterministic methods, which
typically turn integration and summation problems of Bayesian marginalization into opti-
mization problems, include the Laplace approximation, mean field (or variational) methods
like variational Bayes (VB), expectation propagation (EP), and expectation consistent (EC)
and Bethe/Kikuchi approximations (also known as loopy belief propagation or generalized
belief propagation). Their attraction lies in the precise but tractable inferences that they
typically provide, but their drawback is the lack of a built-in sanity check, as we cannot as-
sess the approximation error. Stochastic methods like Markov chain Monte Carlo (MCMC)

c©2009 Ulrich Paquet, Ole Winther and Manfred Opper.



Paquet, Winther and Opper

algorithms, which give exact estimates in a large enough sample limit, lie orthogonal to
deterministic methods. They are normally much slower than their deterministic counter-
parts, but given a skilled user and enough computational resources stochastic methods are
capable of giving more precise answers. Whether inference errors (of unknown size) are
acceptable of course depends on the application in question. In statistical applications one
might prefer simple models which allow for exact inferences, whereas in communication
systems intractability is an inherent property of communication channels and to counter
this, one instead designs fault tolerant error-correcting protocols.

The problem under consideration can be stated in general terms: We are presented with
a data set of N independent and identically distributed (i.i.d.) examples D = {xn}Nn=1,
which we model by a generative model specified by the distribution p(x|θ), such that
p(D|θ) =

∏

n p(xn|θ). In Bayesian inference we introduce a prior distribution p(θ) over
model parameters θ, and to infer unobserved random variables we compute different aver-
ages over the posterior distribution

p(θ|D) =
1

Z
p(D|θ)p(θ) with Z =

∫

dθ p(D|θ)p(θ) . (1)

In model selection or model averaging the normalizer (marginal likelihood) Z = p(D) needs
to be computed for different models under consideration, that is, p(D|Mm), m = 1, . . . , |M|.
Another central inference is about the density at a new (test) example, the so-called pre-
dictive density (or distribution):

p(x|D) =

∫

dθ p(x|θ)p(θ|D) . (2)

This paper mostly specializes to modelling the density with a mixture model

p(x|θ) =
K
∑

k=1

p(k)p(x|θk)

such that mixing proportions p(k) sum to one, and θ = {p(k), θk}Kk=1. A mixture of Gaus-
sians (MoG) corresponds to p(x|θk) being Gaussian. The prior distribution and the likeli-
hood term for each component term p(k)p(x|θk) are chosen to be conjugate, such that their
product is in the same distribution family as the prior and thus tractable. Intractability for
the mixture model arises not because integration is intractable, but because the number of
terms in the marginal likelihood is KN .

This paper starts from the vantage point of an expectation consistent (EC) approxima-
tion (Opper and Winther, 2005) (and its algorithmic realisation by expectation propagation
(EP) Minka 2001a) and substantiates these main contributions and findings:

1. We express the exact posterior distribution by an approximating distribution which
is given by EC plus a series of error terms with increasing complexity. When low
order corrections are small, one might hope that the remaining contributions will
also decrease with the order, suggesting that the approximation can be improved by
retaining only the lowest orders in the series. One can thus expect corrections to
improve an already good approximation, but not a poor one. On the other hand,
large lower order terms may indicate a poor approximation, providing an error check
on the approximation without having to resort to Monte Carlo methods.
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2. We derive corrections both for the marginal likelihood and the predictive distribution
in the form of an expansion in terms of “clusters” of likelihood terms of the posterior.
This expansion resembles the loop series expansions which were derived for correcting
loopy belief propagation (LBP) (Chertkov and Chernyak, 2006, Gómez et al., 2007,
Sudderth et al., 2008).1 All these methods hold in common that the correction terms
are expressed as averages over the approximating solution and can thus be calculated
after the convergence of the EP or LBP iterative scheme.

3. We show that our first order correction to the posterior can be simply expressed by
quantities already computed by the EP algorithm. No further averages are needed. In
contrast, the lowest non-trivial correction to the marginal likelihood is of second order,
with the number of terms growing as O(N2). Corrections to the marginal likelihood
can be tractably computed for example, for models where the likelihood is a mixture
distribution. Each of error terms contain the original K-component mixture, such
that a correction up to order j requires the computation of O((NK)j) terms.

4. When the true distribution is multi-modal, EP will in most cases provide a local
(single) mode approximation, with lower-order corrections also being local. One such
example is theK!-fold labelling symmetry of the latent space of mixture models, which
may cause O(K!) separated modes in the posterior distribution. While the predictive
distribution is invariant to this symmetry, the log marginal likelihood usually has to
be further corrected by a factor of O(logK!), a correction that is typically much larger
than a low-order perturbation correction.

5. Thorough empirical tests of EP validate its precision, and show errors that do not scale
with N . The perturbation corrected predictions are almost uniformly more precise
than EP. As a tool for improving inference accuracy, we show in a practical example
that the first nontrivial correction term to the marginal likelihood approximation can
make a clear difference in predicting which K maximizes the marginal likelihood,
compared to when the correction was not used.

In this paper EC or EP and its resulting corrections are compared with variational
Bayes (VB), Minka’s α-divergence message passing scheme, and a gold standard bench-
mark of parallel tempering (PT) and thermodynamic integration (TI). PT is a Markov
chain Monte Carlo (MCMC) method whose Markov chain operates on a “tempered poste-
rior” and has very good convergence properties. Contrary to more standard Monte Carlo
methods (for example Metropolis-Hastings or Gibbs sampling) it can also provide estimates
of the marginal likelihood by TI, which interpolates the expected value of the log likelihood
between the prior and the posterior. To increase the stability of estimates obtained by
TI, we give a novel generalization of PT, which allows interpolation of the value of the log
likelihood between any choice of distribution and the posterior. A good choice may also
improve sampling when the tempered posterior exhibits phase transition-like properties.
This choice might be obtained by some deterministic approximation, and although not in-

1. An information geometrical expansion for LBP is given by Ikeda et al. (2004), and for EP by Matsui
and Tanaka (2008). LBP can also be improved with a message passing algorithm that corrects for the
influence of loops (Mooij et al., 2007).
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vestigated in this paper, provides a springboard for combining deterministic and stochastic
inference algorithms.

As a further example it is also shown how the “cluster” perturbation expansion can
be applied to Gaussian Process classification models, where the evaluation of integrals for
Bayesian marginalization are not analytically tractable.

The rest of the paper follows with a description of EC and EP in Section 2. Section 3
shows an example of corrections for a marginal distribution in a Gaussian Process classifi-
cation model. In Section 4 an inference algorithm is presented for mixture weights, that is,
a mixture model with fixed component densities, while Appendix D treats the fully mul-
tivariate MoG. Section 5 contains short descriptions of PT with TI and a generalization
suitable for statistical inference. Results are presented for real world examples in Section
6, and we conclude in Section 7.

2. Expectation Consistent Inference

The expectation consistent approximation provides a framework for finding a surrogate
distribution q(θ) for p(θ|D) in Bayesian inference (Opper and Winther, 2005).2 The message
passing scheme of expectation propagation gives rise to an identical marginal likelihood
approximation, and the following interpretation sheds light on both methods by looking at
them as a set of self-consistent approximations to marginal or predictive distributions. The
outline presented here allows for further perturbation corrections to be derived.

For the purpose of this paper the EC approximation rests on the observation that the
predictive density p(x|D) in (2) can be fairly precisely approximated without averaging over
the actual posterior. The entire posterior can be replaced with a simpler distribution q(θ)
if it produces the correct statistics for this average, that is,

p(x|D) =

∫

dθ p(x|θ)p(θ|D) ≈
∫

dθ p(x|θ)q(θ) .

It is sufficient for q(θ) to share some key properties, namely low order statistics, with
p(θ|D). This is an ambitious demand that is generally not realizable, but we can transfer
the principle of moment matching to the “cavity” posteriors p(θ|D\n), which correspond to

reduced training sets D\n where the nth example has been left out. By introducing a similar
approximation to the “cavity” predictive distributions

p(xn|D\n) =

∫

dθ p(xn|θ)p(θ|D\n) ≈
∫

dθ p(xn|θ)q\n(θ)

for each xn in the training set, a computationally efficient approximation can be derived.
We shall now rather require q(θ) to share key properties, namely lower order statistics, with
each of the distributions qn(θ) ∝ p(xn|θ)q\n(θ); this is explored in the next section.

2.1 EC and EP with Exponential Families

EC defines a tractable approximation q(θ) through expectation consistency with each qn(θ).
Our view of EC shall be narrowed to models factorizing in likelihood terms p(xn|θ), and an

2. A more general interpretation is possible, but for clarity we show the approximation for the generative
model in (1).
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exponential family prior

p(θ) =
1

Z0
exp

(

ΛT
0 φ(θ)

)

h(θ) ,

where Z0 is the normalizing constant, φ(θ) is a fixed vector of the corresponding sufficient
statistics—for example for a univariate Gaussian we can choose φ(θ) =

(

θ,−θ2/2
)

, Λ0 is
the associated parameter vector and the fixed function h(θ) encodes additional constraints
(positivity, normalizations, etc.). The desired quality of approximation, and the possible
convenience of obtaining tractable moments, typically guide the choice of φ(θ).

The posterior will be approximated with a tractable density of the same exponential
family as the prior,

q(θ) =
1

Z(Λ, 0)
exp

(

ΛTφ(θ)
)

p(θ) . (3)

By adding the condition Λ =
∑

n Λn, we allow each likelihood factor p(xn|θ) of the posterior
in (1) to correspond to simpler factor proportional to Λ\n = Λ−Λn in (3): the Λn’s therefore
parameterize the likelihood term contributions to the approximation.3 We here introduced
a definition for normalization as

Z(Λ, a) =

∫

dθ
∏

n

[

p(xn|θ)
]an

exp
(

ΛTφ(θ)
)

p(θ) ,

with a being a vector with elements an. The cavity posterior p(θ|D\n) should then be
approximated by a member of the same exponential family

q\n(θ) ∝ exp
(

ΛT
\nφ(θ)

)

p(θ) ,

where Λ\n = Λ−Λn. This is obtained from (3) by removing a single likelihood approximation
and renormalizing.

Let 1n be a unit-vector in the nth direction. We can now formalize our concluding
remark: q(θ) is required to share lower order statistics with the tilted distributions

qn(θ) =
1

Z(Λ− Λn, 1n)
p(xn|θ) exp

(

(Λ− Λn)Tφ(θ)
)

p(θ) , (4)

each of which are obtained from the posterior p(θ|D) by replacing the cavity posterior by
its approximation. We therefore require consistency of the generalized moments, that is,

〈

φ(θ)
〉

q
=
〈

φ(θ)
〉

qn
, n = 1, . . . , N .

One can also show that the corresponding marginal likelihood approximation is given by
Minka (2005) and Opper and Winther (2005)

ZEC = Z(Λ, 0)
∏

n

Z(Λ− Λn, 1n)

Z(Λ, 0)
. (5)

In Appendix A we relate this approximation to variational bounds on the marginal likeli-
hood.

3. In this context the likelihood terms (factors) are sometimes referred to as sites, and hence the Λn’s as
site parameters of site functions that are proportional to exp(ΛT

n φ(θ)) (Seeger, 2003).
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2.1.1 Expectation Propagation

The final expression for the EC partition function in (5) depends upon the partition func-
tions for two distributions q and qn in (3) and (4), and consistency on the statistics φ(θ)
determines the Λn parameters. This moment consistency can be achieved via a message
passing framework called EP, which appear, together with VB,4 as special cases of a more
generic message passing framework recently proposed by Minka (2005). EP defines a specific
message algorithm which iteratively refines each Λn by minimising local Kullback-Leibler
divergences KL(qn(θ)‖q(θ)); in other words it iteratively performs the required moment
matching 〈φ(θ)〉q = 〈φ(θ)〉qn

. EP is presented in Algorithm 1 for our choice of q and qn,
and we shall henceforth use the terms EP and EC interchangeably.

If EP converges we will have expectation consistency 〈φ(θ)〉qn(θ) = 〈φ(θ)〉q(θ) = µ because
of the moment matching in lines 4 and 5 of Algorithm 1. Line 6 ensures that q and qn follow
the forms in (3) and (4). Solving for q in line 5 is analytical for most of the parameters as
long as q is in the exponential family. (In the mixture of Gaussian examples in this paper,
one has to solve two independent scalar non-linear equations for Dirichlet and Wishart
densities. All other vector and matrix parameters can be found analytically.)

EP is not guaranteed to converge, in which case double-loop algorithms may be used.
It has been observed by Heskes and Zoeter (2002) that when EP does not converge to a
stable fixed point, even when considerable damping (choosing γ small in Algorithm 1) is
used, the corresponding double-loop algorithm has a Hessian with a significantly negative
eigenvalue(s). It has been suggested that the failure of convergence of canonical EP usually
implies an inaccurate solution, with the choice of approximating family not being rich
enough (Minka, 2001a).

2.2 Perturbation Corrections

The goal of this section is to derive formal expressions for the errors of the EC approximation
to the marginal likelihood and the predictive distribution and to discuss ways of how this
error can be computed using a formal perturbation expansion. In order to expand the EC
approximation we use (4) to express each likelihood term by the approximating densities as

p(xn|θ) =
Z(Λ− Λn, 1n)

Z(Λ, 0)

qn(θ)

q(θ)
exp

(

ΛT
nφ(θ)

)

,

to find that

p(θ)
∏

n

p(xn|θ) = ZEC q(θ)
∏

n

(

qn(θ)

q(θ)

)

. (6)

If we define

εn(θ) =
qn(θ)− q(θ)

q(θ)

4. VB finds its approximation q(θ) by lower-bounding the log marginal likelihood with Jensen’s inequality
(Jordan et al., 1999), giving log ZVB ≤ log p(D). By writing

log ZVB = −KL(q(θ)‖p(θ|D)) + log p(D)

the bound can be made as tight as possible by adjusting q(θ); this is achieved by minimizing the KL-
divergence between q(θ) and p(θ|D).
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Algorithm 1 EP message passing (Minka, 2001a)

1: initialize: Set all Λn to zero, Λn ← 0, n = 1, . . . , N . This choice corresponds to
initializing in the prior, setting the sufficient statistics to µ← 〈φ(θ)〉p(θ).

2: repeat
3: Randomly choose example n, and make the following update steps:
4: Update sufficient statistics

µ←
〈

φ(θ)
〉

qn(θ;Λn)
.

5: Determine q(θ; Λ) from µ, that is, solve

〈

φ(θ)
〉

q(θ;Λ′)
= µ

with respect to Λ′ and update

∆Λ← Λ′ − Λ followed by Λ← Λ + ∆Λ .

The EP updates can also be damped by γ ∈ [0, 1] through ∆Λ← γ(Λ′ − Λ).
6: Update qn(θ; Λn):

Λn ← Λn + ∆Λ .

This update ensures that Λ =
∑

n Λn; q and qn are therefore in the forms of (3) and
(4). We have no guarantee in this step that qn stays a proper distribution. A robust
heuristic is to skip any update that makes qn improper.

7: until expectation consistency 〈φ(θ)〉qn(θ;Λn) = 〈φ(θ)〉q(θ;Λ) = µ holds for n = 1, . . . , N .

such that qn(θ)
q(θ) = 1 + εn(θ), we should expect εn(θ) to be on average small over a suitable

measure when the EC approximation works well. Bearing this definition in mind, the exact
posterior and the exact marginal likelihood can be written as

p(θ|D) =
1

R
q(θ)

∏

n

(1 + εn(θ)) and Z = ZEC R , (7)

with

R =

∫

dθ q(θ)
∏

n

(1 + εn(θ)) .

We expect that an expansion of posterior and Z in terms of εn(θ) truncated at low orders
might give the dominant corrections to EC. Hence, we get the (2N term finite) expansion

R = 1 +
∑

n1<n2

〈

εn1(θ)εn2(θ)
〉

q
+

∑

n1<n2<n3

〈

εn1(θ)εn2(θ)εn3(θ)
〉

q
+ . . . , (8)

showing that EC is correct to the first order as the term
∑

n 〈εn(θ)〉q = 0 vanishes. The
posterior in (7) can be similarly expanded with

p(θ|D) =
q(θ)

(

1 +
∑

n εn(θ) +
∑

n1<n2
εn1(θ)εn2(θ) + . . .

)

1 +
∑

n1<n2
〈εn1(θ)εn2(θ)〉q + . . .

, (9)
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where we should keep as many terms in the numerator as in the denominator in order to
keep the resulting density normalized to one.

The corresponding predictive distribution is

p(x|D) =

∫

dθ p(x|θ) p(θ|D)

=

∫

dθ q(θ) p(x|θ)
(

1 +
∑

n εn(θ) +
∑

n1<n2
εn1(θ)εn2(θ) + . . .

)

1 +
∑

n1<n2
〈εn1(θ)εn2(θ)〉q + . . .

, (10)

where again as many terms in the numerator as in the denominator should be kept to ensure
proper normalization.

If the expansions in (9) and (10) are truncated, the approximations are not guaranteed to
be valid probability distributions, since as functional approximations they may be negative.
Nevertheless, the quality of EC approximation is still improved, as is illustrated in Figures
1, 8, 12, and Table 1.

2.3 Tractability of Corrections

For the case where qn is just a finite mixture of K simpler densities from the exponential
family to which q belongs, then the number of mixture components in the j-th term of the
expansion of R is just of the order O(Kj) and an evaluation of low order terms is tractable
and can be computed in O((KN)j) after q has been found.

In other cases, an exact computation of even the low order terms may be analytically
intractable. If the dimensionality of necessary integrations is proportional to the order of
the correction one may still resort to numerical quadratures. A different approach would be
to re-expand each term εn in a different “measure of closeness” of densities which takes into
account the moments φ(θ) of the densities. This can be for example achieved in the case
where q(θ) is Gaussian and the statistics φ(θ) denote just the set of all first and a subset of
second moments (or cumulants) of the random variable θ. Then we could resort to the use
of characteristic functions χ(κ) and χn(κ) defined through

q(θ) =

∫

dκ eiκ
T θχ(κ), qn(θ) =

∫

dκ eiκ
T θχn(κ)

for all n. The coefficients in a formal multivariate Taylor expansion of logχn(κ) in powers
of the vector κ define (up to a factor) the cumulants of qn. Hence, the multivariate Taylor
expansion of rn(κ) ≡ log χn(κ) − logχ(κ) in powers of κ contains only those cumulants in
which qn and q differ. Thus, we may write

qn(θ)− q(θ) =

∫

dκ eiκ
T θχ(κ)

(

1− elog
“

χn(κ)
χ(κ)

”)

=

∫

dκ eiκ
T θχ(κ)

(

1− ern(κ)
)

(11)

=−
∫

dκ eiκ
T θχ(κ)

(

rn(κ) +
1

2
r2n(κ) + . . .

)

.

Hence, when the statistics φ(θ) contain all first and all second moments of θ, the integral
is expressed through cumulants of order 3 and higher. In this way the error of the EC
approximation can be expressed in terms of higher order cumulants.
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If we expand rn in powers of κ, it is possible to express the integral (11) explicitly in

a series containing derivatives of increasing order of the Gaussian q(θ) =
∫

dκ eiκ
T θχ(κ)

with respect to θ. This is because each such derivative creates a factor κ in the Fourier
integral via differentiations of the exponential eiκ

T θ. Finally, each term εn(θ) = qn(θ)−q(θ)
q(θ)

can then be expressed by a series of Hermite polynomials in a standard way. This alternative
expansion is introduced by Opper et al. (2008); its details and applications will be presented
in a future paper.

2.4 First Order Correction

We have seen that in general, higher order correction terms require the computation of extra
expectations. Remarkably, in contrast, the first order correction to the EC posterior (9) is
obtained as simple sum of terms which where already computed in the EC approximation.
Hence, it provides a simple and efficiently computable quantity to improve on EC/EP or
judge its validity. A straightforward calculation gives

p(θ|D) ≈
∑

n

qn(θ)− (N − 1)q(θ) . (12)

The first order correction does not change the moments which are consistent in EC, but
provides an approximation to nontrivial higher cumulants, which, for example, in the case
of a Gaussian q(θ) would be zero in EC.

3. Gaussian Process Classification

The cluster expansion can be applied in a limited setting to non-parametric models with a
Gaussian process prior. This section provides as an introductory case a correction to the
marginal distribution, illustrating that a lower-order correction can be very accurate. For
this family of models corrections to other quantities of interest, for example the log marginal
likelihood and predictive distribution, have to rely on cumulant expansions (Opper et al.,
2008), and will be treated in detail a companion paper.

A Gaussian process prior forms the cornerstone of many popular non-parametric Bayesian
methods. It has been used to great effect on various regression and classification problems.
A Gaussian prior is placed on an N -dimensional unobserved variable f , for example

p(f) = N (f ; 0, K) ,

where each fn is associated with an input vector xn, and K is a kernel matrix with entries
k(xn, xn′) (Rasmussen and Williams, 2005). A binary classification task attaches a class
label yn ∈ {−1,+1} to each input xn, and a typical prediction would be the class of a
new input x∗ given the data D = {xn, yn}Nn=1. It is common to use the cumulative Normal
distribution function Φ(·) as a likelihood for correctly classifying a data point (Opper and
Winther, 2000). The likelihood is dependent on the unobserved fn associated with xn, and
hence

p(yn|fn) = Φ(ynfn) .
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Figure 1: The first-order correction (13) is shown in black, with q(f∗) in blue. Full details
about the data set in question, as well as the individual terms in (13), are illus-
trated in Figure 13 in Appendix B. An MCMC estimate for the true marginal is
overlayed in black, and comes from averaging p(f∗|f) over 20,000 MCMC sam-
ples from the posterior of p(f |D). The “spikiness” is a result of the variance of
p(f∗|f) being very narrow: if the “noise-free” latent f is given, then f∗ is highly
correlated with f and well determined for this example. The first-order correction
gives an excellent approximation.

The posterior distribution of f is therefore

p(f |D) =
1

Z

N
∏

n=1

p(yn|fn)N (f ; 0, K) .

With this factorization the site functions are chosen to depend on only fn such that the
posterior is approximated by the same exponential family distribution (Gaussian) as the
prior,

q(f) ∝
N
∏

n=1

exp

(

ν̃nfn −
1

2
s̃nf

2
n

)

N (f ; 0, K) .

The notation in this section is deliberately chosen to be consistent with that of Rasmussen
and Williams (2005, chapter 3), and we refer the reader to the reference for an example
EP algorithm. We assume that a fixed point of EP has been reached. Let S̃ be a diagonal
matrix containing s̃n, and ν̃ be a vector containing ν̃n. The posterior approximation is
therefore q(f) = N (f ;µ,Σ), with Σ = (K−1 + S̃)−1 and µ = Σν̃.

The cavity posterior approximations q\n(f) = N (f ;µ\n,Σ\n) arise from setting ν̃n =

s̃n = 0 (giving diagonal matrix S̃\n and vector ν̃\n), where Σ\n can be determined with a
rank one update of Σ. The tilted distributions are therefore qn(f) ∝ q\n(f)Φ(ynfn).

The first order correction (12) can be applied to compute a correction to the marginal
distribution of f∗, the latent function associated with a novel input x∗. Integrating p(f∗|f)
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Figure 2: For different inputs x∗—and hence latent function f∗—the third cumulant of
the first-order correction (13) is shown in red. It closely matches the true third
cumulant of p(f∗|f), which is plotted in black. The EC approximation q(f∗)’s
higher cumulants are all zero. Figure 1 shows the particular approximations at
x∗ = −2, with further details appearing in Figure 13 and Appendix B.

with (12) yields

p(f∗|D) ≈
N
∑

n=1

qn(f∗)− (N − 1)q(f∗) . (13)

Notice that corrections for the predictive distribution and log marginal likelihood cannot be
expressed analytically in this way. Hence numerical quadrature or an expansion in terms of
cumulants (Opper et al., 2008) is required. Higher-order terms of the above correction are
also analytically intractable.

The detailed derivation of the correction is presented in Appendix B. Figure 1 pro-
vides a summary comparison of a first-order correction, q(f∗), and a MCMC estimate of
p(f∗|D). The correction is very accurate and provides a much better fit than EC or EP
at a negligible additional computational cost. Figure 13 in Appendix B gives further illus-
trations to accompany Figure 1. In Section 2.4 it was noted that the first order correction
provides an approximation to nontrivial higher cumulants which would otherwise be zero
in EC, even though the moments which are consistent in EC are not changed. Figure 2
illustrates this observation, showing an accurate approximation of the third cumulant for
various distributions p(f∗|D).

4. Mixture of Gaussians

We shall empirically examine the corrections to EP approximations through a multivariate
mixture of Gaussians (MoG). Mixture models provide a more challenging testbed for EP
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than the Gaussian Process model illustrated in Section 3, as the posterior is multi-modal
with many symmetries, and the site distributions are not log-concave. For clarity we relegate
the MoG derivations to Appendix D, favouring a simpler but similar model here. As an
outline to deriving an algorithm for a MoG we consider the task of inferring the mixing
proportions πk = p(k) in a model of the form

p(x|θ) =
∑

k

πkp(x|k) ,

with p(x|k) being fixed (Minka, 2001b). Since the mixing proportions should sum to one a
Dirichlet prior for π is is a natural choice, and Appendix C gives a detailed description of
all its properties needed in this context. We give the explicit EP message passing updates
for the mixing proportions with fixed component densities in Algorithm 2 (this scheme is
generalized to adaptive components in a straightforward way in Appendix D). Details for
the required computations in Algorithm 2 are given below.

4.1 Variational and Predictive Distributions

The prior—and thus also the q-distribution in (3)—are Dirichlet,

q(π) = D(π;λ) ,

with D(π;λ) given in Appendix C by (23). The parameters of q are λk = λk,0 +
∑

n λk,n

(here λ0 are the parameters of the prior, which we include into λ for simplicity).
We can also get the EC approximation to the predictive distribution both for new

datum x, p(x|D) and the cavity predictive distribution: p(xn|D\n). For the new datum x
the approximation is straightforward using q(π) as an approximate posterior:

p(x|D) ≈
∫

dπ p(x|π) q(π) =
∑

k

〈

πk

〉

q
p(x|k) , (14)

with the mean value being
〈

πk

〉

q
=

λk
∑

k′ λk′
.

For the “within data set” version we introduce the cavity distribution q\n(π) = D(π;λ\n),
using λk\n = λk − λk,n, and derive a result that is very similar to the one above:

p(xn|D\n) ≈
∑

k

〈

πk

〉

q\n
p(xn|k) . (15)

For message passing we also need expectations of qn(π) from (4):

qn(π) =
1

Zn(λ\n, 1n)
e

P

k′ (λk′\n−1) log πk′ δ

(

∑

k′

πk′ − 1

)

∑

k

πkp(xn|k) .

The above normalizer can easily be found by noting that

qn(π) =
Z(λ\n, 0)

Zn(λ\n, 1n)
q\n(π)

∑

k

πkp(xn|k) ,
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such that

Zn(λ\n, 1n) = Z(λ\n, 0)
∑

k

〈

πk

〉

q\n
p(xn|k) .

In this simple case we have Z(λ\n, 0) = ZD(λ\n), with the normalization ZD of the Dirichlet
being given by (24) in Appendix C.

4.2 Expectations

When updating µ← 〈φ(θ)〉qn(θ;Λn) in Algorithm 2 the sufficient statistics can be computed
using logZn(λ\n) as a generating function:

〈

log πk

〉

qn
=
d logZn(λ\n)

dλk\n
=
〈

log πk

〉

q\n
+

rnk

λk\n
− 1
∑

k′ λk′\n
, (16)

where the expression for 〈log πk〉q\n
is given by (25) in Appendix C with λ→ λ\n, and the

“responsibility” rnk was introduced as

rnk =
λk\np(xn|k)

∑

k′ λk′\np(xn|k′)
.

5. Parallel Tempering and Thermodynamic Integration

Having considered deterministic inference algorithms, the last bit of machinery that we
shall need is a stochastic method to provide exact estimates in a large enough sample limit.
Parallel tempering (PT) and thermodynamic integration (TI) are ideal for our purposes:
PT is an efficient method of combining separate Monte Carlo simulations to sample across
different modes of a target distribution and, as a by-product, TI can be used to estimate
the normalizing constant or log marginal likelihood.

We conclude this section with a new practical generalization of PT and TI, which can
in principle be used to combine stochastic and approximate methods. A further novel
extension to the generalization is given in Appendix E.2.

5.1 Parallel Tempering (Replica Exchange)

A single MCMC simulation may run into difficulties if the target distribution is multimodal.
The chain may get stuck in a local mode, and fail to fully explore other areas of the
parameter space that have significant probability. A conceptual solution to this problem
is to create a series of progressively flatter distributions through an inverse temperature
parameter β, which ranges from zero to one. This gives a “tempered” posterior

p(θ|D, β) =
1

Z(β)
p(D|θ)βp(θ) , (17)

where the normalizing constant (partition function) is Z(β) =
∫

dθ p(D|θ)βp(θ). The prior
is recaptured with β = 0, and the posterior with β = 1. We now simulate Nβ replicas of (17)

in parallel, each using a β ∈ {βi}Nβ

i=1. Let the set {βi} be ordered as a ladder with βi < βi+1.
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Algorithm 2 Message Passing for Mixing Proportions

1: initialize: Set λk,n ← 0, for n = 1, . . . , N and k = 1, . . . ,K, initializing q(π) to the
prior. Set µk ← 〈log πk〉p(π) = ψ(πk,0)− ψ(

∑

k πk,0), where the digamma function ψ(x)
is defined as log Γ(x)/dx.

2: repeat
3: Randomly choose example n, and make the following update steps:
4: Update the sufficient statistics

µk ←
〈

log πk

〉

qn(π;λn)
= ψ(λk − λk,n)− ψ

(

∑

k

(λk − λk,n)

)

.

5: Determine q(π;λ′) from µ, that is, by solving 〈log πk〉q(π;λ′) = µk with respect to λ′.

As shown in Appendix C, this involves solving for α ≡ ψ(
∑

k ψ
−1(µk + α)), followed

by with λ′k = ψ−1(µk + α). Update

∆λk ← λ′k − λk and λk ← λ′k .

6: Update qn(π;λn) with
λk,n ← λk,n + ∆λk ,

ensuring that λk = λk,0 +
∑

n λk,n.
7: until expectation consistency 〈log πk〉qn(π;λn) = 〈log πk〉q(π;λ) = µ holds ∀n, k.
8: Compute logZEC from (5) with

logZEC =
∑

n

logZ(λ− λ0 − λn, 1n)− (N − 1) logZ(λ− λ0, 0)

=
∑

n

log

[

ZD(λ\n)

ZD(λ)
p(xn|D\n)

]

+ logZD(λ0) + logZD(λ) ,

where p(xn|D\n) signifies the “cavity” predictive distribution from (15).

The parameter space is replicated Nβ times to {θi}Nβ

i=1, and the full target distribution that
is being sampled from is

p({θi}) =

Nβ
∏

i=1

1

Z(βi)
exp

(

βi log p(D|θi)
)

p(θi) .

We run the Nβ chains independently to sample from distributions p(θ|D, βi), and add an
additional replica-exchange Metropolis-Hastings move to swap two β’s, or equivalently two
parameters, between chains. Let {θi}new be a parameter set with θi and θj swapped.
The acceptance probability of the move is p(accept) = min(1, p({θi}new)/p({θi})), and the
acceptance ratio simplifies to

p({θi}new)

p({θi})
= exp

(

(βi − βj)
(

log p(D|θj)− log p(D|θi)
)

)

. (18)
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Figure 3: The density of log{p(D|θ)p(θ)/q(θ)} under replicas at different temperatures,
p(θ|D, β), defined in (20). These densities correspond to “energy histograms,”
and following (18) there should be an overlap between adjacent replicas at dif-
ferent temperatures, so that acceptance of configuration or parameter swaps is
allowed for. For interest, the log marginal likelihood log p(D) is indicated with
a ×. The color bar indicates the inverse temperature β. This illustration comes
from the galaxy data set with K = 3 components.

The temperatures of the two replica i and j have to be close to ensure non-negligible ac-
ceptance rates; neighboring pairs are typically taken as candidates. To fully satisfy detailed
balance, pairs {i, i + 1} can be uniformly chosen, for example. With this formulation the
states of the replicas are effectively propagated between chains, and the mixing of the
Markov chain is facilitated by the fast relaxation at small β’s.

From (18), the acceptance probability depends on the difference between log p(D|θi) and
log p(D|θi+1), and for some swaps to be accepted this difference should not be “too big”;
there should be an overlap of some of the log likelihood evaluations of adjacent chains,
as illustrated in Figure 3. For a simulation at inverse temperature β, define the mean
evaluation of the log likelihood as

〈

log p(D|θ)
〉

β
=

∫

dθ log p(D|θ) p(θ|D, β) .

If we knew the variance in chain β, σ2
β = 〈[log p(D|θ)]2〉β−〈log p(D|θ)〉2β, then it can be shown

that temperatures should be chosen according to the density Q(β) ∝ σβ (Iba, 2001). This
is obviously difficult, as σ2

β is not known in advance, and has to be estimated. Good results

can be achieved under the assumption σ2
β ∝ 1/β2 (the equivalent of assuming a constant

heat capacity in a physical system), giving a geometric progression, hence choosing βi/βi+1

constant (Kofke, 2002).
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5.2 Thermodynamic Integration

The samples from parallel tempering can be used for model comparison (Gregory, 2005,
Skilling, 1998), as the marginal likelihood can be obtained from tempering. Firstly, notice
that the integral

∫ 1

0
d logZ(β) =

∫ 1

0
dβ

d logZ(β)

dβ
= logZ(1)− logZ(0) = logZ(1) = log p(D)

is equal to the log marginal likelihood, as β = 0 gives the prior, which integrates to one. We
therefore have to determine the derivative d

dβ logZ(β). By taking the derivative of the log
normalizer (log partition function), we see that it evaluates as an average over the posterior

d logZ(β)

dβ
=

1

Z(β)

∫

dθ log p(D|θ)× p(D|θ)βp(θ) =
〈

log p(D|θ)
〉

β
.

The log marginal likelihood equals

log p(D) =

∫ 1

0
dβ
〈

log p(D|θ)
〉

β
(19)

and can be numerically estimated from the Markov chain samples. If {θ(t)
i } represents the

samples for tempering parameter βi, then the expectation is approximated with

〈

log p(D|θ)
〉

βi
≈ 1

T

T
∑

t=1

log p(D|θ(t)
i ) .

We assume that a burn-in sample is discarded in the sum over t. As a set of chains are run
in parallel at different inverse temperatures 0 = β1 < · · · < βNβ

= 1, the integral can be
evaluated numerically by interpolating the Nβ expectations between zero and one (say with
a piecewise cubic Hermite interpolation, available as part of Matlab and other standard
software packages), and using for example the trapesium rule to obtain the desired result.
Figure 4 illustrates how log p(D) is estimated.

Parallel tempering can be done complementary to any Monte Carlo method at a single
temperature. Appendix E presents Gibbs sampling to sample from p(θ|D, β) for the MoG
problem.

5.3 A Practical Generalization of Parallel Tempering

The success of the interpolation obtaining 〈log p(D|θ)〉β, illustrated in Figure 4, is dependent
on the slope

d〈log p(D|θ)〉β
dβ

=
d2 logZ(β)

dβ2
= σ2

β

at β ≈ 0. Consider the following thought exercise: Imagine a non-informative (infinitely
wide) prior at β = 0. Samples from this prior will strictly speaking have an infinite variance
σ2

0 . With β ≈ 0 we introduce the likelihood, practically infinitely decreasing the variance
of our samples, causing 〈log p(D|θ)〉β to asymptotically diverge at zero. As we narrow our
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Figure 4: The log likelihood averages 〈log p(D|θ)〉β are estimated from each of the MCMC
simulations at temperatures {βi}, and interpolated, so that Equation (19)’s inte-
gral can be evaluated numerically. This illustration comes from the galaxy data
set with K = 3 components.

prior the change in this mean should be less rapid, and this motivates a generalization of
PT and TI such that we get a more stable interpolation.

We introduce a new distribution q(θ), which might be a narrower version of the prior,
and modify (17) to

p(θ|D, β) =
1

Z(β)

[

p(D|θ)p(θ)
q(θ)

]β

q(θ) . (20)

The log marginal likelihood can, as before, be determined with

log p(D) =

∫ 1

0
dβ
〈

log p(D|θ) + log
p(θ)

q(θ)

〉

β

.

It is evident that setting q(θ) = p(θ|D) gives an integral over a constant function, log p(D) =
∫ 1
0 dβ 〈log p(D)〉β. This suggests a wealth of possibilities of approximating p(θ|D) with q(θ)

to effectively combine deterministic methods of inference with Markov chains. This comes
with a cautionary note as VB, for example, may give a q(θ) that captures (lower-bounds)
a mode of a possibly multimodal posterior, causing PT to lose its pleasing property of fast
relaxation at high temperatures. In our results presented in Section 6, we have found it
completely adequate to use a narrower version of the prior where necessary. Appendix E
concludes with a short generalization to sample from (20) for the MoG problem.

6. Results

Low order corrections provide the tools to both improve inference accuracy, and to give
an indication of the quality of approximate solutions. We illustrate and elaborate on these
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claims, with comparisons between various deterministic and stochastic methods, through
this practical discussion. Data is viewed as being observed from a mixture model p(x|θ) =
∑K

k=1 πkN (x;µk,Γ
−1
k ), as is discussed in Appendices D, E, and F. A Dirichlet prior is

placed on π, and Normal-Wishart priors on µk and Γk; the approximating distribution
q(θ) = q(π)

∏

k q(µk,Γk) follows the same distribution as the prior.

6.1 Modes and Symmetries

Mixture models are invariant under component relabelling, with a K! growth in the number
of permutations also manifesting itself in symmetries in the posterior density. In aid of
interpreting later results, we present some basic understanding of VB, EP, and low order
corrections under this property. Our aim in this section is to use simple toy posteriors to
facilitate discussion on the behavior of q under various scenarios and discuss how that might
affect the estimation of the marginal likelihood and predictive distribution.

The labelling of hidden units of a two-layer neural network gives rise to symmetries
similar to those observed in mixture models. For neural networks a statistical mechanics
analysis shows that for small N the posterior is uni-modal and “star-like,” as convex com-
binations of parameters with high posterior value which are equivalent under permutations
will also have high density (Engel et al., 1992). The symmetry is broken into equivalent
disconnected modes for large N .

For mixture models we can analyze the situation where q is restricted to approximate
the posterior in one of the symmetric modes, as what will typically be the solution for both
VB and EP/C when N is large. Minimizing the KL-divergence KL(q‖p) leads to a solution
where q is proportional to p within the mode (and by construction zero otherwise). If there
are K! modes contributing equally to the normalizer and q is restricted to one of them,
then q’s normalizer is a factor of K! smaller than p’s and consequently KL(q‖p) = logK!
at the minimum (Bishop, 2006, page 484). However, groups of equivalent modes are often
present. A simple example is a 3-component mixture with three “clusters” of data. If each
component is associated with a cluster, there are 3! labelling symmetries. Another VB or
EP fixed point may prune one mixture component (see MacKay 2001 for VB and Figure
11 for EP), leaving one component to cover two clusters of data, and one component the
other; this solution has yet another 3! labelling symmetries, albeit possibly with a lesser
contribution to the normalizer. In effect the correction is rather O(logK!), as illustrated in
Figure 9. A useful approximation would be to correct the marginal likelihood estimate by a
factor of K! when N is large. The predictive distribution is invariant under the symmetry
and will thus not be greatly affected by q approximating only one mode, as is shown in
Figure 5. For small to intermediate values of N the situation is less clear, as the following
example illustrates.

In Table 1 we illustrate a number of posterior distributions, with the VB and EC ap-
proximations overlaid. We also overlay the first order correction to q(θ), given from (12)
by p(θ|D) ≈∑n qn(θ)− (N − 1)q(θ). For Table 1 all parameters but the means were kept
fixed, such that with K = 2 the approximation q(θ) = q(µ1)q(µ2) is a factorised Gaussian.
Both component variances were equal, and we used (π1, π2) = (0.4, 0.6). The modes are
thus not completely symmetric but this set-up still illustrates the points made above well.
We chose the component variances (set to one) such that the posterior modes overlap when
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Table 1: A comparison between the VB (top row), and EC (middle row) approximations q(θ), and a first order correction to
the EC approximation (bottom row). Data is assumed to come from a two-component mixture with only the means
θ = {µ1, µ2} unknown. Under various priors and data set sizes we show the posterior p(θ|D) in thin black lines, with the
VB, EC, and first-order corrected approximations overlaid in thicker lines. The first order correction integrates to one
but is not guaranteed to be nonnegative (bottom row); dashed red lines are used to demarcate the regions of parameter
space where the correction dips below zero.
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Figure 5: Symmetries and averages: The likelihood p(x|{µ1, µ2}) = 0.4N (x;µ1, 1) +
0.6N (x;µ2, 1) is plotted as red contours for the novel observation x = 1

2 at the
arrow in the top figure. Observing x centres the likelihood function at (x, x) along
the µ1–µ2 axis in the bottom figure. The predictive density p(x|D) is average of
the likelihood over the bi-modal posterior (black contours), while the approximate
predictive density is the average of the likelihood function over the uni-modal EC
approximation (overlaid in blue). The near-symmetry of the posterior implies
that each mode contributes approximately half its mass. When the EC approxi-
mation puts all its mass on one mode, and the modes are well separated, the two
predictive densities are therefore similar. The top figure shows the ratio between
the true and approximate p(x|D); the discrepancy at negative x is due to the fact
that the posterior is not perfectly symmetrical (e.g., when x = −2 its likelihood
is centred at (-2,-2) and overlaps less with the EC mode).

N is small, with bimodality arising as N increases. We will see in the following sections
that even though q is a rather crude approximation to the posterior the predictions for the
predictive distribution are fairly precise.

The correction given by (12) integrates to one but is not guaranteed to be nonnegative,
as it follows from discarding the higher order terms in (7). The first order correction to the
predictive density, however, usually remains nonnegative because it is an average of p(x|θ)
over (12). This underlines the fact that average properties will not be strongly affected by
imprecision in approximating distributions.

Other local minima that we did not show in Table 1 was for N small, where q(µ1)
remains as broad as the prior and the component is effectively pruned, while q(µ2), on the
other hand, caters for both mixture components (MacKay, 2001).
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(a) With overlapping mixture components, damped EP does not neces-
sarily converge for small N (e.g., EP failed, in the sense that the 2nd

order correction cannot be computed, on all 30 random data sets of size
8). The corrections are on average (blue line) large for broadly over-
lapping posterior modes, as EP does not necessarily lock onto one of
them.
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(b) With well separated clusters the 2nd order corrections indicate for
which N , on average, EP prefers a modal solution. Note the better
convergence of EP for larger N , with on average stabler fixed points
than Figure 6(a). This is reflected in the corrections being close to zero.

Figure 6: The second order term of (8) on 3600 random data sets.

6.2 Corrections

The illustrations in Table 1 suggest that the lowest nontrivial corrections can provide in-
sight into the quality of approximation, as we expect corrections to be small for good
approximations. To illustrate this claim, 30 random data sets DN were drawn for each
size N = 1, . . . , 60 according to DN ∼ p(x), with p(x) being a three-component mixture
with π = (0.2, 0.3, 0.5) and µ = (−2, 0, 2). Two cases were used for the variance: firstly,
Γ−1

k = 0.5 provides a model with overlapping mixture components; secondly, Γ−1
k = 0.1

gives a model with components that are further separated. EP was run with damping
γ = 0.5, and the second order corrections to the log marginal likelihood approximations
were computed where possible (i.e., EP converged, etc.); see Appendices D and F.

Figures 6(a) and 6(b) illustrate the “overlapping” and “separate” examples, showing
that when N is small compared to logK!, and the posterior is “starlike” and comparatively
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Figure 7: The growth of logZEC for the random data sets DN used to obtain Figure 6(b).

unimodal, EP often fails, and the nature of the problem is reflected in the large corrections.
When N becomes large EP often converges (to one of K! equivalent modes); small correc-
tions immediately tell us that solution is close to exact, apart from here a logK! correction
to the marginal likelihood.

We also observe that the corrections do not scale withN , whereas the free energy logZEC

does, as shown in Figure 7. This is an important property, as it means that the quality of
approximation does not deteriorate with increasing N .

When the observations DN ∼ p(x) are i.i.d. we expect that logZEC/N , by its form as an
empirical average over N terms, should converge to a non-random cZ as N → ∞. In fact
a linear scaling logZEC → cZN is observed in Figure 7. When and whether the expected
correction 〈logR〉DN

= cR(N) → 0 as N → ∞ (and hence EP becomes exact) is an open
question. This does not seem true for Figure 6(a): If the the posterior modes were well-
separated then for large N , a change in one mean parameter in a factorized approximation
will not greatly affect the other. If, in this case, the means are close compared to the
standard deviations of the normal densities, the mean parameters will stay correlated also
for large data sets, and the corrections will persistently stay bigger for large N .

6.3 Toy Example

To illustrate the difference between EC and VB, and show additional gains from perturba-
tion corrections, we generated a small data set (N = 7) from a mixture of two Gaussians.
The hyperparameters followed that of Section 6.4.

Under two model assumptions we show in Figure 8 that EC or EP (labeled “EC/P”)
gives a predictive density that is generally closer to the truth than that given by VB. Each
example in the toy data set was duplicated (see Figure 8(b)) to show that this gain decreases
under larger data sets; this decrease is due to the predictive density being an average
of p(x|θ) over now more concentrated VB and EC posterior approximations. Secondly,
meaningful improvements can be achieved through perturbation corrections. Figure 8(d)
shows a second order correction to the log marginal likelihoods of the examples in question,
labeled “EC+R” (see Appendix F). A lower bound to the log marginal likelihood is provided
by VB. The improvement is also visible when we are concerned with the predictive density,
for which we show a first order correction.
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Figure 8: Predictive densities p(x|D,MK) given by VB, EC, and a perturbation correc-
tion (EC+R), with accompanying log marginal likelihood estimates and MCMC
“truth” baselines. Note that if we “correct” with a factor logK! we get very close
to the “truth” for VB and to a even higher degree for EC. EC+R overshoots
in two cases but that might be because the perturbation corrected posterior is
actually multi-modal. The lower figures in 8(a) to 8(c) show the ratio between
each of the approximate predictive densities and the “truth.”

6.4 A Practical Comparison

In this section we draw a comparison between the approximate log marginal likelihoods and
predictive distributions given by VB, EP, and various corrections, and use estimations given
by PT and TI as a benchmark. For interest we also include results from an implementation
of α = 1

2 in Minka’s general α-divergence message passing scheme for this problem, but
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refer the interested reader to Minka (2005) for further details. Finding a VB approximation
follows directly from the expectation maximisation algorithm given by Attias (2000), with
a slightly different parameterization of the Wishart distribution.

From the results that follow, we observe that the growth of logZ, as a function of model
size, gives a characteristic “Ockham hill” (defined in more detail later in this section), where
the “peak” of the hill indicates the model with highest approximate log p(D). This graph can
be used for model comparison or selection, as its form closely matches the MCMC evaluation
of log p(D). We will also see that, following Section 6.1’s discussion, the discrepancy between
a logZ estimate and the true log p(D) grows as the model size is increased. Furthermore,
the EC approximation gives a predictive distribution that is closer to the truth than VB,
with the gain decreasing with increasing N . We will show that a principled algorithm
initialization can circumvent many spurious local minima in the log marginal likelihood
estimate. If completely arbitrary initialization schemes are implemented, one may note
that the number of local solutions is influenced by the width of the prior distribution, with
more local minima arising under broader prior distributions.

The data sets under investigation have been well studied, for example, by Richardson
and Green (1997) for a reversible jump MCMC, and by Corduneanu and Bishop (2001)
for variational Bayesian model selection: the galaxy data set contains the velocities (in
1000s of km/second) of 82 galaxies, diverging from our own, in the Corona Borealis region;
the acidity data set contains the log measured acid neutralizing capacity indices for 155
lakes in North-central Wisconsin (USA); the enzyme data set contains enzymatic activity
measurements, for an enzyme involved in the metabolism of carcinogenic substances, taken
from 245 unrelated individuals; the old faithful data set contains 222 observation pairs
consisting of eruption time and waiting time to the next eruption, from the Old Faithful
Geyser in the Yellowstone National Park.

6.4.1 The Approximate Log Marginal Likelihood

Ockham hills are useful for visualizing log marginal likelihood estimates for a set of plausible
models with increasing explanatory power, for example, mixture models with increasing K.
The largest estimates of logZ for the various models typically form a hill, peaking at the
“optimal” model. As models become less complex, the hill falls steeply due to a poorer
explanation of the data. For more complex models the plots show a slower downward trend,
as an improvement in data fit is counterbalanced by a penalty from a larger parameter space
in Bayesian marginalization. For mixture models this downward trend is even slower when
the true log marginal is considered; this is mainly due to the number of modes in the true
posterior increasing with the number of components, with an approximation possibly only
capturing one of them.5

In the case of VB, the logZ approximation provides a lower bound to the marginal
likelihood p(D|M), and this quantity is often used for model selection (Beal and Ghahra-
mani, 2003, Bishop and Svensén, 2003, Corduneanu and Bishop, 2001). The model with the
largest bound is typically kept, although the bound can also be used for model averaging.
Regardless of our method of approximation, poor local minima in the objective function
have to be avoided in order to obtain meaningful results.

5. Rasmussen and Ghahramani (2001) present an account which includes “Ockham plateaus.”
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(d) old faithful data set

Figure 9: Ockham hills for various data sets. VB is shown as red squares, α = 1
2 as magenta

triangles, EC/P as blue circles, and EC+R as green diamonds. An estimate of
log p(D|MK) found by PT and TI is shown as a line. The effect of an O(logK!)
correction on any of the approximate solutions can be seen by comparing them
against the dashed-line plot of log p(D|MK)− logK!. (For Figure 9(d)’s K = 6
the EP and α = 1

2 schemes did not converge.)

Figure 9 shows such hills for the marginal likelihood approximations for different data
sets for VB, α = 1

2 message passing, EP, and a second-order perturbation correction. The
prior hyperparameters were λk,0 = 1, mk,0 = 0, νk,0 = 10−2, ak,0 = 1 and Bk,0 = 0.11. For
Figure 9(d) we took Bk,0 = [0.11, 0.01; 0.01, 0.11]. For each of the modelsMK , with K mix-
ture components, the figures show twenty approximations for each method, with the colour
intensity of each plot corresponding to the frequency of reaching different approximations
for logZ. Each plot is complemented with estimates of log p(D|MK). The estimates—
shown as lines—were obtained form an average over ten PT and TI simulations, with two
standard deviation error bars also being shown.
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Finally, it is evident that the “true peak” in Figure 9(a) does not match the peak
obtained by approximate inference. Without having to resort to MCMC and TI, the second
order correction for K = 3 already confirms that the approximation might be inadequate.

6.4.2 The Effect of a Good Initialization

Finding the best VB/EP solution is strongly seed-dependent in the problem considered
here. In this council of despair an educated guess may take us a long way: many inferior
local minima in the VB/EP objective functions can be suppressed with a good algorithm
initialization.

We base our factor initializations around a scaled version of the solution obtained by
the VB expectation maximisation algorithm,

exp(ΛT
nφ(θ)) ∝ exp

(
∫

dzn q(zn) log p(xn, zn|θ)
)

,

which was seeded with a data clustering based on the k-means algorithm.6 This is illustrated
in Figure 9.

When using an “out of the box” EP scheme, starting with a slight asymmetric prior
that is later corrected for, many lower minima are also found. The same behavior arises
when the VB parameters are randomly initialized. Figure 10 shows more local minima than
Figure 9(c), and the results in Bishop (2006, chapter 10), where the same principled initial
guess for VB was used.7

The canonical EP scheme (and indeed α = 1
2) sometimes did not converge to a fixed

point. This is evident in Figure 10 and has been observed in practice (Minka, 2001a): when
EP does not converge, the reason can be traced back to the approximating family being a
poor match to the exact posterior distribution.

6.4.3 The Predictive Distribution

Given a specific modelM, the predictive distribution can be approximated by using p(x|D) ≈
∫

dθ p(x|θ)q(θ), as is shown for example in Figure 11. The final predictive distribution
strongly depends on whether or not a global minimum in the objective function in (5) has
been found, as is clear from Figure 11. To illustrate how much the approximate predictive
distribution differs from the true predictive distribution, the figures show p(x|D) obtained
from an average over ten thousand β = 1 samples from a parallel tempered Markov chain.
Figure 12 shows the gain achieved by EC/P over VB, and in turn the further improvement
from a perturbation correction to the EC approximation (see Appendix F).

7. Conclusion and Outlook

In this paper we presented a method for computing systematic corrections to EC approxi-
mations in Bayesian inference. These corrections are useful not only in improving estimates
like log marginal likelihood and predictive density approximations, but can also provide

6. Similar to Appendix E, z indicates latent variables, with p(θ, z|D) approximated by q(θ)q(z). We point
the interested reader to Attias (2000).

7. Markus Svensén, personal communication.
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Figure 10: The effect of random algorithm initializations using the galaxy data set: For
the left figure a broader prior with νk,0 = 10−6, and for the right figure a much
narrower prior with νk,0 = 10−2, was used. Compared to Figure 9(c), note for
example the additional local maxima at K = 3, and the greater number of local
minima under a broader prior. (For K = 6 the EP scheme failed to converge
without a sensible initialization.)
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Figure 11: EP can have more than one stable fixed point: The predictive distribution
p(x|D,M3), from two different approximations for the galaxy data set. For
K = 3 under narrower prior in Figure 10, we see three local maxima of the EC
objective function in (5): the predictive distribution shown on the left coincided
with logZEC = −243.8, whereas the approximation on the right coincided with
a much higher logZEC = −232.4. The true predictive distribution, obtained
from an average over a PT MCMC sample, is shown with a dotted line.

insight into the quality of an approximation in polynomial time. When the corrections are
large the EC approximation may be questioned or discarded, and we hope to address the
question of how it is done in practice in future work.

A juxtaposition of VB, EC and EP, PT with TI, and EC with corrections, was given in
the context of Gaussian mixture models. We argued that EC can give improvements over
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Figure 12: The ratio between each of the approximate predictive densities and the MCMC
“truth” of p(x|D,M3) for the galaxy data set. This figure corresponds to Figure
11 (right).

VB, and can in turn be improved through a perturbation expansion. Throughout the paper
our “gold standard” was given by PT, and we presented possible ways of improving it. We
would like to include better MCMC algorithms in this rich tapestry of methods: PT is not
the best choice for near first-order phase transitions. In Figure 3 the high probability regions
are very different above and below the transition at β ≈ 0.5, suggesting multicanonical
sampling as a viable alternative, since it aims at sampling from a distribution that is flat
in the log likelihood and will therefore not have this “bottle-neck.”

The choice of a unimodal q(θ) to capture the characteristics of a typically multimodal
p(θ|D) also leads to various questions. When there are symmetries in the parameter space,
with overlapping modes, we may ask whether or not we would achieve a better predictive
density with EC, say, if the approximation is restricted to one mode. In the case where
p(θ|D) is multimodal (large N) then fairly general arguments suggest that we should correct
the marginal likelihood estimate by a factor of K!—higher order corrections may clarify for
which N and under which conditions this transition will typically take place.

One way be improve the approximation is to generalize q(θ) for example by including a
small fraction of the data points (similar to the proposed generalization of PT). However,
that poses an additional problem an the matching of moments step in EP message passing
gets much more complicated.

Finally, we focused on a MoG where the lower order terms in the correction R are
tractable. For models where this is not the case, R can be expanded in terms of the higher
order cumulants of qn(θ) and q(θ). This approach will be presented in a companion paper.
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Appendix A. Bounds on the Marginal Likelihood

It is interesting to compare the marginal likelihood approximation (5) with the one given
by a variational approximation. Here one would use the fact that the relative entropy
〈

log q(θ)
p(θ|D)

〉

q
≥ 0 to approximate the free energy − logZ by the upper bound

− logZ ≤
〈

log

(

q(θ)

p(θ)
∏

n p(xn|θ)

)

〉

q

.

To compare with (5) we use the definition (3) to get

Z(Λ− Λn, 1n)

Z(Λ, 0)
=
〈

p(xn|θ) exp
(

− ΛT
nφ(θ)

)〉

q
.

After inserting this expression into (5), taking logs and applying Jensen’s inequality we
arrive at

− logZEC ≤
〈

log





exp
(

∑

n ΛT
nφ(θ)

)

∏

n p(xn|θ)





〉

q

− logZ(Λ, 0) =

〈

log

(

q(θ)

p(θ)
∏

n p(xn|θ)

)

〉

q

,

where in the last step we have used
∑

n Λn = Λ. This shows that if one would use the distri-
bution q(θ) derived from EC within the variational approximation, the EC approximation
achieves a lower free energy. Since approximating densities in the variational approximation
will usually differ from the EC result (by the way they are optimised) this does not imply
that variational free energies are always higher than the EC counterpart. Also we cannot
draw any conclusion about the relation to the true free energy.

Appendix B. Gaussian Process Classification

This appendix provides the details of the derivation of first order correction to marginal
distribution p(f∗|D) for Gaussian process classification, as introduced in Section 3. Let k∗
be the kernel vector with entries k(x∗, xn) for all n, and κ∗ = k(x∗, x∗). It is well-established
that

q(f∗) = N (f∗ ; µ∗, σ
2
∗), (21)

µ∗ = kT
∗K

−1µ,

σ2
∗ = κ∗ − kT

∗ (K + S̃−1)−1k∗

where p(f∗|f) = N (f∗ ; k⊤∗ K
−1f, κ∗ − k⊤∗ K

−1k∗) was averaged over q(f). To determine
qn(f∗), we have to average p(f∗|f) over qn(f): a lengthy derivation shows that the required
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Figure 13: An illustration of all the terms occurring in the first-order correction in (13) for
an example data set.

integral qn(f∗) =
∫

df p(f∗|f) qn(f) simplifies to

qn(f∗) = Φ

(

ynmn(f∗)√
1 + Vn

)

/

Φ

(

yn µ\n;n
√

1 + Σ\n;n,n

)

×N (f∗ ; µ∗\n, σ
2

∗\n), (22)

µ∗\n = kT
∗K

−1µ\n,

σ 2
∗\n = κ∗ − kT

∗ (K + S̃−1
\n )−1k∗ .

This “tilted” predictive marginal in (22) has exactly the same form as q(f∗) in (21), except8

for its use of µ\n and S̃\n, and the nonlinear “weight” that is still a function of f∗, so that
qn(f∗) is ultimately non-Gaussian. Σ\n;n,n and µ\n;n denote elements (n, n) and n in Σ\n

and µ\n.
In the ratio of cumulative Normals in (22) we have

Vn = Σ\n;n,n −
η2

σ 2
∗\n

,

8. This representation is chosen for simplicity, although S̃\n contains a zero on its diagonal.
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mn(f∗) = µ\n;n +
η(f∗ − µ∗\n)

σ 2
∗\n

,

where we define η = kT
∗K

−1cn, with cn being column n of Σ\n.

When comparing Vn and Σ\n;n,n in the numerator and denominator in (22), we see that
Vn is close to Σ\n;n,n whenever η is small compared to σ∗\n. Function mn(f∗) adjusts µ\n;n

with a term linear in how far f∗ differs from the Gaussian mean in (22), and is similarly
close to µ\n;n when η is small compared to σ2

∗\n.

Figure 13 provides an illustration of how the correction in (13) works. A squared expo-
nential kernel k(xn, xn′) = a exp(−1

2‖xn − xn′‖2/ℓ2) was used, with a being the (positive)
amplitude, and ℓ the characteristic length-scale of the latent function. In Figure 13 the
marginals q(f∗) and qn(f∗) are shown, leading to the first-order correction originally shown
in Figure 1.

Appendix C. Useful Distributions in the Exponential Family

In this paper we use the Dirichlet, Normal-Gamma and Normal-Wishart distributions for
the MoG problem. For these distribution have to 1) compute their sufficient statistics, 2)
for message passing solve the inverse problem: given the sufficient statistics we must solve
for the parameters of the distribution and 3) for the predictions with the mixture models
compute their predictive distribution.

C.1 Dirichlet

The Dirichlet distribution over the probability simplex π,
∑

k πk = 1, is commonly used
in two contexts: here as a prior over mixing proportions in the mixture model, and as a
prior/posterior for the parameters of multinomial distribution. We denote the Dirichlet
with parameters λk by

D(π;λ) =
1

ZD(λ)
e

P

k(λk−1) log πkδ

(

∑

k

πk − 1

)

, (23)

ZD(λ) =

∏

k Γ(λk)

Γ(
∑

k λk)
. (24)

C.1.1 Sufficient Statistics

The sufficient statistic of the Dirichlet is

〈

log πk

〉

=
∂ logZD(λ)

∂λk
= ψ(λk)− ψ

(

∑

k

λk

)

, (25)

where ψ is the digamma-function d log Γ(x)/dx.
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C.1.2 Inverse

In line 5 of the Algorithms 1 and 2 we have to solve the inverse problem: given the statistics
mk = 〈log πk〉 find the parameters λ. This can be done effectively by first solving for

α ≡ ψ
(

∑

k

λk

)

= ψ

(

∑

k

ψ−1(mk + α)

)

by Newton’s method, and then setting λk := ψ−1(mk + α).

C.1.3 Predictive Distribution

The Dirichlet can also be used as a prior for the parameters of the multinomial distribution.
This distribution is used multi-category either counts or sequence data. For counts, x =
(x1, . . . , xd) is a vector of counts for each of the possible d outcomes. For sequence data
x is an indicator variable being one for the outcome and zero in all other entries. The
multinomial distribution is:

p(x|π) =
(
∑

k xk)!

x1! . . . xd!

d
∏

k=1

πxk

k ,

where the combinatorial prefactor goes away in the sequence case. The predictive distribu-
tion for multinomial data and Dirichlet distributed posterior is straightforward to calculate
using the result for the normalizer of the Dirichlet:

p(x|λ) =

∫

dπp(x|π)D(π;λ) =
(
∑

l xl)!

x1! . . . xd!

ZD(x+ λ)

ZD(λ)
.

C.2 Normal-Gamma

The Normal-Gamma (or Gauss-Gamma) model is use for a joint distribution of one dimen-
sional mean and precision (inverse variance) variables:

NG(µ, γ;m, ν, a, b) =
1

ZNG (m, ν, a, b)
exp



















mν
−1

2ν
−b− 1

2νm
2

a− 1
2









T 







µγ
µ2γ
γ

log γ



















,

ZNG (m, ν, a, b) =

√

2π

ν

Γ(a)

ba
,

where this distribution is obtained by multiplying the Normal and Gamma distributions:

N (µ;m, (νγ)−1) =

√

νγ

2π
exp

(

−1

2
(µ−m)2νγ

)

,

G(γ; a, b) =
ba

Γ(a)
exp((a− 1) log γ − bγ) ,

where a and b must be positive.
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C.2.1 Sufficient Statistics

The sufficient statistics are obtained by using logZNG (m, ν, a, b) as a generating function
for the sufficient statistic. By taking derivatives of logZNG with respect to the parameters
{m, ν, a, b},

ν〈µγ〉 − νm〈γ〉 = 0,

m〈µγ〉 − 1

2
〈µ2γ〉 −m2〈γ〉 = − 1

2ν
,

〈log γ〉 = ψ(a) − log b,

−〈γ〉 = −a/b ,

we can solve for 〈µγ〉, 〈µ2γ〉, 〈γ〉 and 〈log γ〉.

C.2.2 Inverse

We can use these expressions to solve for the parameters in terms of the sufficient statistics
in the same fashion as above. We get closed form expressions for three of parameters

m =
〈µγ〉
〈γ〉 , ν =

1

〈µ2γ〉 −m2〈γ〉 , b =
a

〈γ〉 ,

and a should be found from

ψ(a)− log a = 〈log γ〉 − log〈γ〉

by for example Newton’s method.

C.2.3 Predictive Distribution

The predictive distribution can be calculated straightforwardly from the normalizer and is
a univariate Student-t distribution:

p(x|m, ν, a, b) =
1√
2π

ZNG

(

x+νm
ν+1 , ν + 1, a+ 1

2 , b+ ν
ν+1 (x−m)2

)

ZNG (m, ν, a, b)

= T
(

x; m,
b

a

ν + 1

ν
, 2a

)

,

where T
(

x;µ, σ2, df

)

is a Student-t distribution with mean µ, variance σ2 and df degrees
of freedom:

T
(

x;µ, σ2, df

)

=
1

ZT (µ, σ2, df)
exp

[

−df + 1

2
log

(

1 +
1

df

(

x− µ
σ

)2
)]

,

ZT (µ, σ2, df) =
√

2πσ2

√

df

2

Γ
(

df
2

)

Γ
(

df+1
2

) .
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C.3 Normal-Wishart

The Normal-Wishart is the multidimensional generalization of the Normal-Gamma. We
will write the Wishart distribution over positive definite symmetric matrices in the same
form as the Gamma distribution:

W(Γ; a,B) ∝ exp

((

a− d+ 1

2

)

log det Γ− trBΓ

)

,

where the degrees of freedom 2a should be greater than d − 1 for the distribution to be
normalizable. The Normal-Wishart is given by

NW(µ,Γ;m, ν, a,B) =
1

ZNW (m, ν, a,B)

exp











νm
−1

2ν

a− d
2





T 



Γµ
µT Γµ

log det Γ



− tr(B +
1

2
νmmT )Γ






,

ZNW (m, ν, a,B) = πd(d−1)/4

(

2π

ν

)d/2 d
∏

l=1

Γ

(

a+
1− l

2

)

e−a log det B .

C.3.1 Sufficient Statistics

The sufficient statistics follow from a straightforward generalization of the results from the
Normal-Gamma model:

〈Γ〉 = aB−1,

〈Γµ〉 = 〈Γ〉m,

〈µT Γµ〉 = d

ν
+mT 〈Γ〉m,

〈log det Γ〉 =
d
∑

l=1

ψ

(

a+
1− l

2

)

− log detB .

C.3.2 Inverse

From the sufficient statistics we can get closed form expressions for the parameters

m = 〈Γ〉−1〈Γµ〉 , ν =
d

〈µT Γµ〉 −mT 〈Γ〉m , B = a〈Γ〉−1 ,

whereas a should be found from
d
∑

l=1

ψ

(

a+
1− l

2

)

− d log a = 〈log det Γ〉 − log det〈Γ〉 .

C.3.3 Predictive Distribution

A generalization of the result for the predictive distribution in one dimension to the multi-
variate case gives:

p(x|m, ν, a, b) = T
(

x; m,
2B

2a− d+ 1

ν + 1

ν
, 2a− d+ 1

)

,
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where T (x;µ,Σ, df) is the d-dimensional multivariate Student-t distribution with mean µ,
covariance Σ and df degrees of freedom:

T (x;µ,Σ, df) =
1

ZT (µ,Σ, df)
exp

[

−df + d

2
log

(

1 +
1

df
(x− µ)T Σ−1(x− µ)

)]

,

ZT (µ, σ2, df) =
√

det(2πΣ)

(

df

2

)d/2 Γ
(

df
2

)

Γ
(

df+d
2

) .

Appendix D. Inference for a Mixture of Gaussians

When we have unconstrained d-dimensional data we can model this with a Normal (or
Gaussian) distribution,

p(x|µ,Γ) = N (x;µ,Γ−1) =

√

det Γ

(2π)d
exp

(

−1

2
(x− µ)T Γ(x− µ)

)

,

where µ and Γ are respectively the mean vector and precision (or inverse covariance) matrix.
The conjugate prior for the mean and precision is the Normal-Wishart distribution, which
we describe in appendix C. In the following we choose Gaussians p(x|µk,Γk) as components
densities p(x|k) in the mixture.

D.1 Variational and Predictive Distributions

The q distribution follows the prior and is conveniently chosen to factorise over mixture
components:

q(θ) = q(π)
∏

k

q(µk,Γk)

with q(µk,Γk|mk, νk, ak, Bk) being a Normal-Wishart distribution; see Appendix C. We
can use the same machinery as Section 4 to derive the EC approximation to the predictive
distribution and the statistics needed for message passing.

The predictive distribution p(x|D) is again approximated by the form given in (14), with
p(x|k) replaced by

p(x|k) ≡ p(x|mk, νk, ak, Bk) = T
(

x; mk,
2Bk

2ak − d+ 1

νk + 1

νk
, 2ak − d+ 1

)

. (26)

Here T is a Student-t distribution, which we describe in greater detail in Appendix C.
Likewise, the within data set predictive distribution p(xn|D\n) follows (15); only now

p(xn|k) is replaced with p(xn|k\n), which takes the same form as (26) above, with Λ re-
placed by Λ\n. The Dirichlet cavity parameters are again λk\n = λk,0 +

∑

n′ 6=n λk,n′. The
other cavity parameters are similarly defined in terms of the appropriate parameter vector
components, for instance νk\nmk\n = νk,0mk,0 +

∑

n′ 6=n νk,n′mk,n′.
We can again use the cavity parameters to write qn in terms of q\n:

qn(θ) =
Z(Λ\n, 0)

Zn(Λ\n, 1n)
q\n(θ)

∑

k

πkp(xn|µk,Γk) .
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The normalizer is given by

Zn(Λ\n, 1n) = Z(Λ\n, 0)
∑

k

〈πk〉q\n
p(xn|k\n) , (27)

where the explicit form of Z(Λ\n, 0) is

Z(Λ\n, 0) = ZD(λ\n)
∏

k

ZNW (mk\n, νk\n, ak\n, Bk\n) .

D.2 Expectations

The statistics of qn(θ) for the mixture of Gaussians are computed by using logZn(Λ\n)
from (27) as a generating function. To simplify the derivative with respect to the pre-
dictive distribution p(xn|k\n), we introduce another component-specific Normal-Wishart
distribution

qk,n(µk,Γk) ∝ p(xn|µk,Γk)q\n(µk,Γk) ,

and write the predictive distribution as a ratio between the normalizers of qk,n and q\n:

p(xn|k\n) =

(2π)−d/2ZNW

(νk\nmk\n+xn

νk\n+1 , νk\n + 1, ak\n + 1
2 , Bk\n + 1

2

νk\n

νk\n+1(xn −mk\n)(xn −mk\n)T
)

ZNW (mk\n, νk\n, ak\n, Bk\n)
.

For example, for 〈Γkµk〉 we get

〈

Γkµk

〉

qn
=

1

νk\n

d logZn(Λ\n)

dmk\n
= (1− rnk)

〈

Γkµk

〉

q\n
+ rnk

〈

Γkµk

〉

qk,n
, (28)

where the “responsibility” (the probability of example n being generated by the kth mixture
component) is defined as

rnk =
λk\np(xn|k\n)

∑

k′ λk′\np(xn|k′\n)
. (29)

The expectation in (28) is expressed as a weighed sum of a “prior” expectation over the
cavity distribution q\n(µk,Γk), and a “posterior” expectation over qk,n(µk,Γk). The other

moments 〈Γk〉, 〈µT
k Γkµk〉 and 〈log det Γk〉 can be expressed as weighed sums similar to (28):

〈

Γk

〉

qn
= (1− rnk)

〈

Γk

〉

q\n
+ rnk

〈

Γk

〉

qk,n
,

〈

µT
k Γkµk

〉

qn
= (1− rnk)

〈

µT
k Γkµk

〉

q\n
+ rnk

〈

µT
k Γkµk

〉

qk,n
,

〈

log det Γk

〉

qn
= (1− rnk)

〈

log det Γk

〉

q\n
+ rnk

〈

log det Γk

〉

qk,n
.

The explicit expressions for the qk,n are given below, whereas those for q\n can be obtained
from Appendix C:

〈

Γk

〉

qk,n
=

(

ak\n +
1

2

)[

Bk\n +
1

2

νk\n

νk\n + 1
(xn −mk\n)(xn −mk\n)T

]−1

,
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〈

Γkµk

〉

qk,n
=
〈

Γk

〉

qk,n

νk\nmk\n + xn

νk\n + 1
,

〈

µT
k Γkµk

〉

qk,n
=

d

vk\n + 1
+

(

νk\nmk\n + xn

νk\n + 1

)T
〈

Γk

〉

qk,n

(

νk\nmk\n + xn

vk\n + 1

)

,

〈

log det Γk

〉

qk,n
=

d
∑

i=1

ψ

(

ak\n +
1

2
+

1− i
2

)

− log det

(

Bk\n +
1

2

νk\n

νk\n + 1
(xn −mk\n)(xn −mk\n)T

)

.

We have already seen how to solve for 〈log πk〉qn , the only difference being rnk in (16), which
we now take from (29).

Appendix E. Gibbs Sampling for Parallel Tempering

Parallel tempering of a mixture of Gaussian distributions p(xn|θ) =
∑K

k=1 πkN (xn;µk,Γ
−1
k )

requires a Monte Carlo simulation at inverse temperature β. We can either sample from
p(θ|D, β) using a Metropolis-Hastings (MH) method, or augment the parameter space with
latent allocation variables z so that we can sample from p(θ, z|D, β) with Gibbs sampling.
We may also define p(z|D, β) =

∫

dθ p(θ, z|D, β), and devise a MH scheme on this distribu-
tion by making random assignment changes to z.

The road of Gibbs sampling is pathed with tractable conditional distributions of p(θ, z|D, β),
and it is the one we choose. We extend the parameter space to include a binary latent allo-
cation vector zn for each data point n to indicate which mixture component was responsible
for generating it (Diebolt and Robert, 1994); consequently znk ∈ {0, 1}, and

∑

k znk = 1.
The complete joint distribution is therefore

p(D, z|θ)p(θ) =
∏

n

∏

k

[

πkN (xn;µk,Γ
−1
k )
]znk

p(θ) .

We can write the complete data likelihood as p(D, z|θ) = p(D|z, θ)p(z|θ), and in this form
the likelihood, to the power β, multiplied by the prior over z and θ, is

p(D|z, θ)β × p(z, θ) =
∏

n

∏

k

N (xn;µj ,Γ
−1
k )βznk ×

∏

n

∏

k

πznk

k p(θ) .

(Note that the introduction of z moves π to the prior.) With inverse temperature parameter
β the tempered posterior distribution is p(θ, z|D, β) ∝ p(D|z, θ)βp(z, θ), and can be treated
as any missing-value Gibbs sampling problem. The allocation variables are sampled with

znk|π, µ,Γ ∼
πkN (xn;µk,Γ

−1
k )β

∑

k′ πk′N (xn;µk′ ,Γ−1
k′ )β

.

Given the allocation variables, we define

rnk = βznk, x̄k =
1

Nk

∑

n

rnkxn,
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Nk =
∑

n

rnk Σk, =
1

Nk

∑

n

rnk(xn − x̄k)(xn − x̄k)
T ,

to give the conditional distributions needed for sampling the mixture parameters as

π|z ∼ D
(

π;λ1,0 + 1
βN1, . . . , λK,0 + 1

βNK

)

,

µk,Γk|z ∼ NW
(

µk,Γk;m, ν, a,B
)

, (30)

with

m =
νk,0mk,0 +Nkx̄k

νk,0 +Nk
,

ν = νk,0 +Nk,

a = ak,0 +Nk/2,

B = Bk,0 +
1

2
NkΣk +

1

2

Nkvk,0(x̄k −mk,0)(x̄k −mk,0)
T

νk,0 +Nk
. (31)

As p(D) =
∫

dθdz p(D, θ, z), we use the samples over θ and z to estimate the average log

likelihood. If {{π(t)
k,i, µ

(t)
k,i,Γ

(t)
k,i}Kk=1, {z

(t)
n,i}Nn=1}Tt=1 indicates the samples of chain i (after a

burn-in period), then

〈log p(D|θ, z)〉βi
≈ 1

T

∑

t

∑

n

∑

k

z
(t)
nk,i logN

(

xn;µ
(t)
k,i,Γ

(t)
k,i

−1)
. (32)

Notice that the samples of the mixing weights π
(t)
k,i are not used in estimating the log

likelihood average over the posterior, but occur in the prior.

E.1 A Practical Generalization (I)

The generalization of PT and TI from Section 5.3 can be made by writing the tempered
posterior distribution as

p(θ, z|D, β) ∝
∏

n

∏

k

N (xn;µk,Γ
−1
k )βznk πznk

k p(θ)β q(θ)1−β ,

where
∏

n,k π
znk

k = p(z|θ)βq(z|θ)1−β follows from p(z|θ) = q(z|θ). To do Gibbs sampling as
before, we have to determine the parameters of the “effective” prior in the above scenario.
Here we let q(θ) be in the same family—for example a narrower version—of the prior. If
superscripts p and q now differentiate between the parameters of p(θ) and q(θ), we use

λ0 = βλp
0 + (1− β)λq

0,

mk,0 =
βνp

k,0m
p
k,0 + (1− β)νq

k,0m
q
k,0

βνp
k,0 + (1− β)νq

k,0

,

νk,0 = βνp
k,0 + (1− β)νq

k,0,

ak,0 = βap
k,0 + (1− β)aq

k,0,
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Bk,0 = βBp
k,0 + (1− β)Bq

k,0 +
1

2

βνp
k,0(1− β)νq

k,0

βνp
k,0 + (1− β)νq

k,0

(mp
k,0 −m

q
k,0)(m

p
k,0 −m

q
k,0)

T

as substitute for the usual prior in (30) and (31). The empirical expectation given in
(32) should be generalized—simplifying the left hand side below with p(z, θ)/q(z, θ) =
p(θ)/q(θ)—to

〈

log p(D|θ, z) + log
p(θ)

q(θ)

〉

βi

≈ 1

T

∑

t

[

log p(π
(t)
i )− log q(π

(t)
i ) +

∑

k

[

log p(µ
(t)
k,i,Γ

(t)
k,i)

− log q(µ
(t)
k,i,Γ

(t)
k,i) +

∑

n

z
(t)
nk,i logN

(

xn;µ
(t)
k,i,Γ

(t)
k,i

−1)]
]

.

E.2 A Practical Generalization (II)

We implemented a further possible generalization, which arises from choosing q(θ) =
p(θ|D′), where D′ contains a small subset of data points from D. This sensibly restricts q
to parameter space closer to the posterior, with the benefit that the normalizer of q needs
to be calculated only once. With |D′| being small, q can be evaluated analytically without
feeling the effect of the exponentially expanding number of terms. This brings an interest-
ing tradeoff, as setting D′ ← D solves our original (difficult) problem. (Figure 3 used this
choice of surrogate prior, with D′ containing 3 out of a possible 82 data points.)

We can construct q(θ) as follows: Let N ′ = |D′| be the number of data points in D′,
so that q(θ) expands as a sum over (N ′)K terms. Allow 1, . . . ,K to be the digit set of a
number system in baseK. Make a list S of the first (N ′)K numbers in baseK, such that each
number s consists of N ′ digits, and each xn′ ∈ D′ can be associated with a corresponding
digit position. Each s ∈ S therefore defines a unique allocation for all xn′ ∈ D′ to clusters
1, . . . ,K (xn′ ’s digit value). We shall use the shorthand D′

s to indicate a data set with a
data point to cluster allocation given by s.

The surrogate prior is a weighted sum of various posteriors

q(θ) = p(θ|D′) =
∑

s∈S

wsp(π|D′
s)
∏

k

p(µk,Γk|D′
s) .

If Zs =
∫

dθ p(θ,D′
s), the weights are determined with ws = Zs/

∑

s′ Zs′ .
Instead of merely raising q to the power 1− β, we first turn q into a product amenable

to Gibbs sampling by augmenting it with binary indicator variables y = {ys}s∈S that pick
a particular component of q;

∑

s ys = 1. With q(y) = p(y) =
∏

sw
ys
s , the surrogate

prior now takes the form q(z|θ)q(θ|y)q(y); the prior becomes p(z|θ)p(θ)p(y). The empirical
expectation in (32) generalizes to

〈

log p(D|θ, z) + log
p(θ)

q(θ|y)
〉

βi

≈ 1

T

∑

t

[

log p(π
(t)
i )−

∑

s

y
(t)
s,i log p(π

(t)
i |D′

s)

+
∑

k

[

log p(µ
(t)
k,i,Γ

(t)
k,i)−

∑

s

y
(t)
s,i log p(µ

(t)
k,i,Γ

(t)
k,i|D′

s)

+
∑

n

z
(t)
nk,i logN

(

xn;µ
(t)
k,i,Γ

(t)
k,i

−1)]
]

.
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Appendix F. Perturbation Corrections for Mixture of Gaussians

In this appendix we show how to compute the second-order terms of (8),

R = 1 +
∑

n1<n2

〈

εn1(θ)εn2(θ)
〉

q
+

∑

n1<n2<n3

〈

εn1(θ)εn2(θ)εn3(θ)
〉

q
+ . . . , (33)

and the first-order term in the numerator of (10),

p(x|D) =

∫

dθ q(θ) p(x|θ)
(

1 +
∑

n εn(θ) +
∑

n1<n2
εn1(θ)εn2(θ) + . . .

)

1 +
∑

n1<n2
〈εn1(θ)εn2(θ)〉q + . . .

. (34)

The sum in the second order term runs over all distinct pairs and the complexity thus
grows as O(N2). However, one would expect that the largest contribution comes from
nearby points, or more precisely points that belong to the same component, as indicated
by a large responsibility for the same component. Although not done here, it is plausible
to restrict the summation to only include these pairs without sacrificing much precision.

Let Λ = {λ, {mk, vk, ak, Bk}Kk=1} be the parameters that solve the EC equations. We
also have access to the parameters of each of the cavity distributions Λ\n.

For each n the parameters of qn(θ) is given by the parameters of p(xn|θ)q\n(θ), which
expands as a sum over the K mixture components. Each element k in the sum contains a
product of a Dirichlet density and K Normal-Wishart densities. The Dirichlet parameter
vector will have element k incremented by one, and as xn is associated with component k,
it will affect only the parameters of the kth Normal-Wishart. Therefore, apart from the
cavity parameters Λ\n, we will also need for each k = 1, . . . ,K:

λ∗k\n = λk\n + 1 and λ∗k′\n = λk′\n for k′ 6= k,

v∗k\n = vk\n + 1,

m∗
k\n =

vk\nmk\n + xn

vk\n + 1
,

a∗k\n = ak\n + 1
2 ,

B∗
k\n = Bk\n +

1

2

vk\n

vk\n + 1
(mk\n − xn)(mk\n − xn)T . (35)

The normalizer of qn(θ) follows from (27) to be
∫

dθ′p(xn|θ′)q\n(θ′) =
∑

k〈πk〉q\n
p(xn|k\n) =

Zn.

F.1 Corrections for the Marginal Likelihood

A single second-order term in (33) can be evaluated with

〈

εn1(θ)εn2(θ)
〉

q
=

∫

dθ
qn1(θ)qn2(θ)

q(θ)
− 1

= −1 +
1

Zn1

1

Zn2

(2π)−d
K
∑

k=1

K
∑

l=1

{

ZD(λ)ZD(λ(k,l))

ZD(λ\n1
)ZD (λ\n2

)
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· · · ×
K
∏

j=1

ZNW (mj , vj , aj , Bj)ZNW (m
(k,l)
j , v

(k,l)
j , a

(k,l)
j , B

(k,l)
j )

ZNW (mj\n1
, vj\n1

, aj\n1
, Bj\n1

)ZNW (mj\n2
, vj\n2

, aj\n2
, Bj\n2

)

}

.

The above sum over k relates xn1 to coming from a particular mixture component k, while
the sum over l does the same for xn2 . For a particular element in the sum over k and l we
need parameters relating to each of the j = 1, . . . ,K mixture components. For the Dirichlet

normalizer the parameters λ
(k,l)
j depend on whether k = l, implying that both xn1 and xn2

were generated from the same mixture component, or whether k 6= l, implying that xn1 and
xn2 came from different mixture components. The elements of λ(k,l) are:

λ
(k,l)
j = λj\n1

+ λj\n2
− λj for j 6= k, l .

When k 6= l two indices j remain to be defined; if k = l we will have one remaining index
to take care of:

λ
(k,l)
j = λ∗j\n1

+ λj\n2
− λj for j = k and k 6= l,

λ
(k,l)
j = λj\n1

+ λ∗j\n2
− λj for j = l and k 6= l,

λ
(k,l)
j = λ∗j\n1

+ λ∗j\n2
− λj for j = k = l .

For each element in the sum over k and l the Normal-Wishart parameters are similarly
defined. When j 6= k, l we have:

v
(k,l)
j = vj\n1

+ vj\n2
− vj ,

m
(k,l)
j =

vj\n1
mj\n1

+ vj\n2
mj\n2

− vjmj

vj\n1
+ vj\n2

− vj
,

a
(k,l)
j = aj\n1

+ aj\n2
− aj ,

B
(k,l)
j = Bj\n1

+
1

2
vj\n1

mj\n1
mT

j\n1
+Bj\n2

+
1

2
vj\n2

mj\n2
mT

j\n2

· · · −Bj −
1

2
vjmjm

T
j −

1

2
v
(k,l)
j m

(k,l)
j m

(k,l)T
j .

As was seen for the mixture weights, we will need further definitions: when j = k and k 6= l

we shall use v
(k,l)
j = v∗j\n1

+ vj\n2
− vj ; a similar definition follows when j = l. Finally, when

j = k = l we find that v
(k,l)
j = v∗j\n1

+ v∗j\n2
− vj. The other Normal-Wishart parameters

follow the same route. The correction evaluates in O(N2K2) complexity.

F.2 Corrections for the Predictive Distribution

From (34) we can compute a first-order correction to the predictive distribution with
p(x|D) ≈

∫

dθ q(θ)p(x|θ)(1 +
∑

n εn(θ)), which we rewrite as

p(x|D) ≈
∑

n

∫

dθ p(x|θ)qn(θ)− (N − 1)

∫

dθ p(x|θ)q(θ) .
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Each predictive density in the above equation simplifies as

∫

dθ p(x|θ)qn(θ) =
1

Zn

∑

k

∑

l























λk\n λl\n

(
∑

k′ λk′\n + 1)
∑

k′ λk′\n
p(xn|k\n) p(x|l\n) if k 6= l

(λk\n + 1)λk\n

(
∑

k′ λk′\n + 1)
∑

k′ λk′\n
p(xn|k\n) p(x|xn, k\n) if k = l.

We have seen how to compute p(xn|k\n) in (26) and the discussion that followed it; we
similarly define p(x|l\n). Density p(x|xn, k\n) is again the Student-t distribution of (26),
but now Λ is replaced with Λ∗

\n from (35). The correction evaluates in O(NK2) complexity.
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