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Abstrat. We present a novel approah to two-lass lassi�ation, in

whih a lassi�er is parameterised in terms of a distribution over exam-

ples. The optimal distribution is determined by the solution of a linear

program; it is found experimentally to be highly sparse, and to yield a

lassi�er resistant to noise, whose error rates are ompetitive with the

best existing methods.

1 Introdution

Many lassi�ation algorithms assoiate a weight with eah element of the train-

ing set. In support vetor mahines, these weights are Lagrange multipliers in

a quadrati optimisation problem; when set orretly, they de�ne a separating

hyperplane in the kernel-indued feature spae (Sh�olkopf et al. (1999)). The

relevane vetor mahine (Tipping (2001)) plaes a Gaussian of onstant width

over every data point and, in a Bayesian setting, assigns a weight to eah suh

basis funtion. By an expliit assumption on the form of the solution, the dis-

tribution of weights is enouraged to be sparse. Boosting methods, in ontrast,

work iteratively and update the weights in response to eah hypothesis hosen

by a so-alled weak learner (Freund and Shapire (1995)). An example's weight

is related to the frequeny with whih it has been mislassi�ed; by appropri-

ate reweighting of the data, boosting algorithms enourage the weak learner to

explore advantageous regions of hypothesis spae.

While studying the behaviour of boosting when applied to a simple weak

learner, we observed the approximate onvergene of the example weights, and

the orrelated onvergene of the deision boundary. This observation motivated

the idea that a �xed distribution over examples may be apable of induing

a useful distribution over the basis lass. In this work, we show how a novel

interpretation of example weights may indeed yield a sensible distribution over

hypotheses. The optimal weight assignment is given by the solution of a linear

program, and we show that the preditions of this distributed lassi�er may then

be evaluated eÆiently. Preliminary results indiate our algorithm is stable in

noisy onditions, and performs ompetitively with the best existing methods. It

also yields sparse solutions, in that many examples are given weights equal to

or very lose to zero. The relevane vetor mahine also exhibits this property,

but is omputationally more involved, and shows onsiderable sensitivity to the

parameter that governs the width of eah Gaussian.



2 Interpretation of weights

Let us formalise the problem.We have a data setD = f(x
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novel interpretation of d has the potential to yield a omplex distribution over
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Assume that p(h) is symmetri with respet to the two lasses; that is, we have

p(h(x) = 1) = p(h(x) = �1) for all x. We may now lassify x:
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where in the last line we have used the symmetry of p(h). We note that in (2), the

�nal braketed expression has the appearane of a kernel funtion: it is related

to the probability that an arbitrary hypothesis drawn from p(h) will have equal

sign evaluated at x and x

i

.

2.1 Assignment of weights

Write the margin of the lassi�er on eah element of the training set as a vetor:
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Q is symmetri; we have also Q
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for all i. The linear formulation (3) allows

us to �nd suitable weights by solving a linear program. For example, we an

hoose weights that maximise the minimum margin over the training set:
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Alternatively, we an introdue a parameter C > 0 and slak variables � to allow

a small number of mislassi�ations:
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In either ase, the �nal lassi�er is given by sgn(F

d

(x)).

Optimisation with respet to a weight vetor's 1-norm was investigated in the

ontext of support vetor mahines (for whih the 2-norm is more onventional)

by Bradley and Mangasarian (1998), and Zhu et al. (2003). The approah we

have adopted is di�erentiated by our probabilisti interpretation of d, whih

yields a �nite set of bases (2) that orrespond impliitly to an integral over H.

3 Implementation

To onstrut the matrix Q, we need to hoose H and p(h), and thus determine
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In the following analysis, we restrit our attention to the two-dimensional ase,

and �x H to be the lass of planes in R

2

. Extending these onepts to higher

dimensions and further lasses is deferred to future work.

Without loss of generality, let the mean of the data be at the originO = (0; 0),

and let all training oordinates lie in the region [�R;R℄

2

. All hypotheses h 2 H,

with the exeption of those that pass through the origin, may be paramaterised

by a pair (r; s) 2 (R

2

; f�1g). The oordinate r indiates the losest point on the

line to O, while the sign term s de�nes the lassi�ation of the origin. Let us

now de�ne a measure on H by plaing a uniform distribution over r in the range

[�R;R℄

2

, and assigning equiprobably s = 1 or s = �1.



In order to alulate (6), we must �nd the expeted proportion of hypotheses

disriminating between x

i

and x

j

. With the preeding assumptions, we may now

onsider (6) as the volume of parameter spaeH
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(r; s), if the hypothesis parameterised by (r; s) satis�es this property, so also will

that parameterised by (r;�s).

Fig. 1. Visualisation of (6). The shaded re-
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respetively. Indepen-

dently of s, h
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0
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x
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and x

2

, while h

2

62 H

0

lassi�es the two

examples identially.

For a point x 2 X , write the irular region parameterising hypotheses that

disriminate between x and O as 
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4 Results

Results were obtained for two benhmark data sets: Ripley's mixture of Gaus-

sians (Ripley (1996)) onsists of 250 training examples and 1000 test examples;

the Banana set

1

onsists of 100 realisations of 400 training examples and 4900

1

Available from http://ida.first.fhg.de/projets/benh/benhmarks.htm.



test examples. Both are two-dimensional. We hose the parameter C on the Rip-

ley set by examining the deision boundary for a variety of hoies, and seleting

the one with qualitatively best �t; this was found to be C = 0:009. For the Ba-

nana benhmark, we split the training set into equal subsets for training and

validation, to �nd the optimal C 2 f0:01; 0:012; : : : ; 0:02g. In eah ase, we used

the formulation (7), and set R = 5.

On Ripley's set, the test error was 8:6%. This ompares favourably with

existing methods: using an SVM, Ripley ahieved 10:6%, while Tipping's RVM

ahieved 9:3%.

2

The Bayes rate is around 8%. Over the �rst ten realisations of

the Banana set, our method ahieved a mean test error of 10:9%; the support and

relevane vetor mahines obtained error rates of 10:6% and 10:5% respetively.

3

The deision boundary we obtained on the Ripley set is illustrated in Figure 2.

The training data are shown, together with surrounding irles, eah of whose

radii is proportional to the weight of the assoiated data point. It is interesting

to observe that many omponents of this distribution are equal to or lose to

zero, and that the heavily weighted examples tend to be some distane from the

deision boundary. The SVM solution to this problem used 38 support vetors,

while the RVM solution used 4 relevane vetors; our solution plaes non-zero

weight on 8 examples.

Fig. 2. The deision boundary obtained on Ripley's 2-d training set by solving (5) with

C = 0:009. Data points with non-zero weight assignment have been irled; the radius

of the irle is proportional to the example's weight.

2

Results from Bishop and Tipping (2003).

3

Results from Tipping (2001).



5 Conlusions

We have shown how a simple sampling sheme for lassi�ation and a novel inter-

pretation of weighted examples indues a distribution over hypothesis spae. We

have evaluated the preditions of this distributed lassi�er for an optimal weight-

ing of the training set, and found these preditions to be resistant to over�tting.

Our method has ertain advantages. The weight assignment an be determined

easily by solving a linear program, with a single parameter de�ning the degree

to whih mislassi�ations are tolerated. The weight vetor is experimentally

found to be sparse when the solution has not over�t; new lassi�ations are then

possible in time O(m

0

), where m

0

� m is the number of examples in the training

set with non-zero weight. We have observed also that our \support vetors" lie

away from the deision boundary and tend to be fewer in number than for an

SVM solution. Unfortunately, we have not provided a rigorous explanation for

our algorithm's strong performane. We believe its suess is due to the alula-

tion of a Bayesian integral under a novel noise model; developing the theory to

support this hypothesis, and extending the algorithm to further dimensions, are

areas of urrent researh.
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