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Abstract. We present a novel approach to two-class classification, in
which a classifier is parameterised in terms of a distribution over exam-
ples. The optimal distribution is determined by the solution of a linear
program; it is found experimentally to be highly sparse, and to yield a
classifier resistant to noise, whose error rates are competitive with the
best existing methods.

1 Introduction

Many classification algorithms associate a weight with each element of the train-
ing set. In support vector machines, these weights are Lagrange multipliers in
a quadratic optimisation problem; when set correctly, they define a separating
hyperplane in the kernel-induced feature space (Scholkopf et al. (1999)). The
relevance vector machine (Tipping (2001)) places a Gaussian of constant width
over every data point and, in a Bayesian setting, assigns a weight to each such
basis function. By an explicit assumption on the form of the solution, the dis-
tribution of weights is encouraged to be sparse. Boosting methods, in contrast,
work iteratively and update the weights in response to each hypothesis chosen
by a so-called weak learner (Freund and Schapire (1995)). An example’s weight
is related to the frequency with which it has been misclassified; by appropri-
ate reweighting of the data, boosting algorithms encourage the weak learner to
explore advantageous regions of hypothesis space.

While studying the behaviour of boosting when applied to a simple weak
learner, we observed the approximate convergence of the example weights, and
the correlated convergence of the decision boundary. This observation motivated
the idea that a fized distribution over examples may be capable of inducing
a useful distribution over the basis class. In this work, we show how a novel
interpretation of example weights may indeed yield a sensible distribution over
hypotheses. The optimal weight assignment is given by the solution of a linear
program, and we show that the predictions of this distributed classifier may then
be evaluated efficiently. Preliminary results indicate our algorithm is stable in
noisy conditions, and performs competitively with the best existing methods. It
also yields sparse solutions, in that many examples are given weights equal to
or very close to zero. The relevance vector machine also exhibits this property,
but is computationally more involved, and shows considerable sensitivity to the
parameter that governs the width of each Gaussian.



2 Interpretation of weights

Let us formalise the problem. We have a data set D = {(z;,y;)}1™,, where z; € X
and y; € Y = {£1}, a distribution over examples d;, such that ||d||; = 1 and
d; > 0, and also a class of hypotheses H with an associated measure, allowing
us to place over it a distribution p(h). We will find that even for uniform p(h), a
novel interpretation of d has the potential to yield a complex distribution over
the basis class.

Consider the following scheme for classifying a new point z € X. We draw
examples from D according to the probability vector d; for each example (z;, y;)
selected, we sample a hypothesis from H according to p(h), with the restriction
that h(x;) = y;, and evaluate h(x). If we sum indefinitely many such classifica-
tions and normalize the result, the final output will tend to
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Assume that p(h) is symmetric with respect to the two classes; that is, we have
p(h(xz) = 1) = p(h(z) = —1) for all z. We may now classify z:
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where in the last line we have used the symmetry of p(h). We note that in (2), the
final bracketed expression has the appearance of a kernel function: it is related
to the probability that an arbitrary hypothesis drawn from p(h) will have equal
sign evaluated at = and x;.

2.1 Assignment of weights

Write the margin of the classifier on each element of the training set as a vector:
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where
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Q is symmetric; we have also Q;; = 1 for all i. The linear formulation (3) allows
us to find suitable weights by solving a linear program. For example, we can
choose weights that maximise the minimum margin over the training set:
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subject to y;Fa(z;) > yfori=1...m (4)
d; > 0and ||d||; = 1.

Alternatively, we can introduce a parameter C' > 0 and slack variables £ to allow
a small number of misclassifications:
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In either case, the final classifier is given by sgn(Fa(z)).

Optimisation with respect to a weight vector’s 1-norm was investigated in the
context of support vector machines (for which the 2-norm is more conventional)
by Bradley and Mangasarian (1998), and Zhu et al. (2003). The approach we
have adopted is differentiated by our probabilistic interpretation of d, which
yields a finite set of bases (2) that correspond implicitly to an integral over H.

3 Implementation

To construct the matrix Q, we need to choose H and p(h), and thus determine
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In the following analysis, we restrict our attention to the two-dimensional case,
and fix H to be the class of planes in R?. Extending these concepts to higher
dimensions and further classes is deferred to future work.

Without loss of generality, let the mean of the data be at the origin O = (0, 0),
and let all training coordinates lie in the region [~ R, R]?. All hypotheses h € H,
with the exception of those that pass through the origin, may be paramaterised
by a pair (r,s) € (R?,{%1}). The coordinate r indicates the closest point on the
line to O, while the sign term s defines the classification of the origin. Let us
now define a measure on A by placing a uniform distribution over r in the range
[—R, R)?, and assigning equiprobably s =1 or s = —1.



In order to calculate (6), we must find the expected proportion of hypotheses
discriminating between z; and z;. With the preceding assumptions, we may now
consider (6) as the volume of parameter space H' C H, in which h(z;) # h(z;) &
h € H'. The situation is illustrated in Figure 1. We note that, for a given pair
(r, s), if the hypothesis parameterised by (r, s) satisfies this property, so also will
that parameterised by (r, —s).

Fig. 1. Visualisation of (6). The shaded re-
gion parameterises hypotheses h € H' C H
for which h(z1) # h(z2) & h € H'. Two
hypotheses are shown, hi and ha, parame-
terised by ri and r» respectively. Indepen-
dently of s, h1 € H' discriminates between
z1 and z2, while ho € H' classifies the two
examples identically.

For a point z € X, write the circular region parameterising hypotheses that
discriminate between x and O as (.. Now,
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It can be shown that the area of intersection |QI N Oz]| is given by
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where 6; (0;) is the angle subtended at the centre of O, (O, ) by radii extending
to the two points of intersection. Define
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4 Results

Results were obtained for two benchmark data sets: Ripley’s mixture of Gaus-
sians (Ripley (1996)) consists of 250 training examples and 1000 test examples;
the Banana set' consists of 100 realisations of 400 training examples and 4900

! Available from http://ida.first.fhg.de/projects/bench/benchmarks.htm.



test examples. Both are two-dimensional. We chose the parameter C' on the Rip-
ley set by examining the decision boundary for a variety of choices, and selecting
the one with qualitatively best fit; this was found to be C' = 0.009. For the Ba-
nana benchmark, we split the training set into equal subsets for training and
validation, to find the optimal C' € {0.01,0.012,...,0.02}. In each case, we used
the formulation (7), and set R = 5.

On Ripley’s set, the test error was 8.6%. This compares favourably with
existing methods: using an SVM, Ripley achieved 10.6%, while Tipping’s RVM
achieved 9.3%.2 The Bayes rate is around 8%. Over the first ten realisations of
the Banana set, our method achieved a mean test error of 10.9%; the support and
relevance vector machines obtained error rates of 10.6% and 10.5% respectively.?

The decision boundary we obtained on the Ripley set is illustrated in Figure 2.
The training data are shown, together with surrounding circles, each of whose
radii is proportional to the weight of the associated data point. It is interesting
to observe that many components of this distribution are equal to or close to
zero, and that the heavily weighted examples tend to be some distance from the
decision boundary. The SVM solution to this problem used 38 support vectors,
while the RVM solution used 4 relevance vectors; our solution places non-zero
weight on 8 examples.

Fig. 2. The decision boundary obtained on Ripley’s 2-d training set by solving (5) with
C = 0.009. Data points with non-zero weight assignment have been circled; the radius
of the circle is proportional to the example’s weight.

2 Results from Bishop and Tipping (2003).
® Results from Tipping (2001).



5 Conclusions

We have shown how a simple sampling scheme for classification and a novel inter-
pretation of weighted examples induces a distribution over hypothesis space. We
have evaluated the predictions of this distributed classifier for an optimal weight-
ing of the training set, and found these predictions to be resistant to overfitting.
Our method has certain advantages. The weight assignment can be determined
easily by solving a linear program, with a single parameter defining the degree
to which misclassifications are tolerated. The weight vector is experimentally
found to be sparse when the solution has not overfit; new classifications are then
possible in time O(m'), where m’ < m is the number of examples in the training
set with non-zero weight. We have observed also that our “support vectors” lie
away from the decision boundary and tend to be fewer in number than for an
SVM solution. Unfortunately, we have not provided a rigorous explanation for
our algorithm’s strong performance. We believe its success is due to the calcula-
tion of a Bayesian integral under a novel noise model; developing the theory to
support this hypothesis, and extending the algorithm to further dimensions, are
areas of current research.
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