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Abstra
t. We present a novel approa
h to two-
lass 
lassi�
ation, in

whi
h a 
lassi�er is parameterised in terms of a distribution over exam-

ples. The optimal distribution is determined by the solution of a linear

program; it is found experimentally to be highly sparse, and to yield a


lassi�er resistant to noise, whose error rates are 
ompetitive with the

best existing methods.

1 Introdu
tion

Many 
lassi�
ation algorithms asso
iate a weight with ea
h element of the train-

ing set. In support ve
tor ma
hines, these weights are Lagrange multipliers in

a quadrati
 optimisation problem; when set 
orre
tly, they de�ne a separating

hyperplane in the kernel-indu
ed feature spa
e (S
h�olkopf et al. (1999)). The

relevan
e ve
tor ma
hine (Tipping (2001)) pla
es a Gaussian of 
onstant width

over every data point and, in a Bayesian setting, assigns a weight to ea
h su
h

basis fun
tion. By an expli
it assumption on the form of the solution, the dis-

tribution of weights is en
ouraged to be sparse. Boosting methods, in 
ontrast,

work iteratively and update the weights in response to ea
h hypothesis 
hosen

by a so-
alled weak learner (Freund and S
hapire (1995)). An example's weight

is related to the frequen
y with whi
h it has been mis
lassi�ed; by appropri-

ate reweighting of the data, boosting algorithms en
ourage the weak learner to

explore advantageous regions of hypothesis spa
e.

While studying the behaviour of boosting when applied to a simple weak

learner, we observed the approximate 
onvergen
e of the example weights, and

the 
orrelated 
onvergen
e of the de
ision boundary. This observation motivated

the idea that a �xed distribution over examples may be 
apable of indu
ing

a useful distribution over the basis 
lass. In this work, we show how a novel

interpretation of example weights may indeed yield a sensible distribution over

hypotheses. The optimal weight assignment is given by the solution of a linear

program, and we show that the predi
tions of this distributed 
lassi�er may then

be evaluated eÆ
iently. Preliminary results indi
ate our algorithm is stable in

noisy 
onditions, and performs 
ompetitively with the best existing methods. It

also yields sparse solutions, in that many examples are given weights equal to

or very 
lose to zero. The relevan
e ve
tor ma
hine also exhibits this property,

but is 
omputationally more involved, and shows 
onsiderable sensitivity to the

parameter that governs the width of ea
h Gaussian.



2 Interpretation of weights

Let us formalise the problem.We have a data setD = f(x
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� 0, and also a 
lass of hypotheses H with an asso
iated measure, allowing

us to pla
e over it a distribution p(h). We will �nd that even for uniform p(h), a

novel interpretation of d has the potential to yield a 
omplex distribution over

the basis 
lass.

Consider the following s
heme for 
lassifying a new point x 2 X . We draw

examples from D a

ording to the probability ve
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h example (x
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sele
ted, we sample a hypothesis from H a

ording to p(h), with the restri
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Assume that p(h) is symmetri
 with respe
t to the two 
lasses; that is, we have

p(h(x) = 1) = p(h(x) = �1) for all x. We may now 
lassify x:
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where in the last line we have used the symmetry of p(h). We note that in (2), the

�nal bra
keted expression has the appearan
e of a kernel fun
tion: it is related

to the probability that an arbitrary hypothesis drawn from p(h) will have equal

sign evaluated at x and x

i

.

2.1 Assignment of weights

Write the margin of the 
lassi�er on ea
h element of the training set as a ve
tor:
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Q is symmetri
; we have also Q

ii

=

1

2

for all i. The linear formulation (3) allows

us to �nd suitable weights by solving a linear program. For example, we 
an


hoose weights that maximise the minimum margin over the training set:
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Alternatively, we 
an introdu
e a parameter C > 0 and sla
k variables � to allow

a small number of mis
lassi�
ations:
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In either 
ase, the �nal 
lassi�er is given by sgn(F

d

(x)).

Optimisation with respe
t to a weight ve
tor's 1-norm was investigated in the


ontext of support ve
tor ma
hines (for whi
h the 2-norm is more 
onventional)

by Bradley and Mangasarian (1998), and Zhu et al. (2003). The approa
h we

have adopted is di�erentiated by our probabilisti
 interpretation of d, whi
h

yields a �nite set of bases (2) that 
orrespond impli
itly to an integral over H.

3 Implementation

To 
onstru
t the matrix Q, we need to 
hoose H and p(h), and thus determine

Z

I[h(x
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) 6= h(x

j

)℄dp(h) for i; j = 1; 2; : : : ;m: (6)

In the following analysis, we restri
t our attention to the two-dimensional 
ase,

and �x H to be the 
lass of planes in R

2

. Extending these 
on
epts to higher

dimensions and further 
lasses is deferred to future work.

Without loss of generality, let the mean of the data be at the originO = (0; 0),

and let all training 
oordinates lie in the region [�R;R℄

2

. All hypotheses h 2 H,

with the ex
eption of those that pass through the origin, may be paramaterised

by a pair (r; s) 2 (R

2

; f�1g). The 
oordinate r indi
ates the 
losest point on the

line to O, while the sign term s de�nes the 
lassi�
ation of the origin. Let us

now de�ne a measure on H by pla
ing a uniform distribution over r in the range

[�R;R℄

2

, and assigning equiprobably s = 1 or s = �1.



In order to 
al
ulate (6), we must �nd the expe
ted proportion of hypotheses

dis
riminating between x

i

and x

j

. With the pre
eding assumptions, we may now


onsider (6) as the volume of parameter spa
eH

0

� H, in whi
h h(x

i

) 6= h(x

j

),

h 2 H

0

. The situation is illustrated in Figure 1. We note that, for a given pair

(r; s), if the hypothesis parameterised by (r; s) satis�es this property, so also will

that parameterised by (r;�s).

Fig. 1. Visualisation of (6). The shaded re-

gion parameterises hypotheses h 2 H

0

� H

for whi
h h(x

1

) 6= h(x

2

) , h 2 H

0

. Two

hypotheses are shown, h

1

and h

2

, parame-

terised by r

1

and r

2

respe
tively. Indepen-

dently of s, h

1

2 H

0

dis
riminates between

x

1

and x

2

, while h

2

62 H

0


lassi�es the two

examples identi
ally.

For a point x 2 X , write the 
ir
ular region parameterising hypotheses that

dis
riminate between x and O as 
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4 Results

Results were obtained for two ben
hmark data sets: Ripley's mixture of Gaus-

sians (Ripley (1996)) 
onsists of 250 training examples and 1000 test examples;

the Banana set

1


onsists of 100 realisations of 400 training examples and 4900

1

Available from http://ida.first.fhg.de/proje
ts/ben
h/ben
hmarks.htm.



test examples. Both are two-dimensional. We 
hose the parameter C on the Rip-

ley set by examining the de
ision boundary for a variety of 
hoi
es, and sele
ting

the one with qualitatively best �t; this was found to be C = 0:009. For the Ba-

nana ben
hmark, we split the training set into equal subsets for training and

validation, to �nd the optimal C 2 f0:01; 0:012; : : : ; 0:02g. In ea
h 
ase, we used

the formulation (7), and set R = 5.

On Ripley's set, the test error was 8:6%. This 
ompares favourably with

existing methods: using an SVM, Ripley a
hieved 10:6%, while Tipping's RVM

a
hieved 9:3%.

2

The Bayes rate is around 8%. Over the �rst ten realisations of

the Banana set, our method a
hieved a mean test error of 10:9%; the support and

relevan
e ve
tor ma
hines obtained error rates of 10:6% and 10:5% respe
tively.

3

The de
ision boundary we obtained on the Ripley set is illustrated in Figure 2.

The training data are shown, together with surrounding 
ir
les, ea
h of whose

radii is proportional to the weight of the asso
iated data point. It is interesting

to observe that many 
omponents of this distribution are equal to or 
lose to

zero, and that the heavily weighted examples tend to be some distan
e from the

de
ision boundary. The SVM solution to this problem used 38 support ve
tors,

while the RVM solution used 4 relevan
e ve
tors; our solution pla
es non-zero

weight on 8 examples.

Fig. 2. The de
ision boundary obtained on Ripley's 2-d training set by solving (5) with

C = 0:009. Data points with non-zero weight assignment have been 
ir
led; the radius

of the 
ir
le is proportional to the example's weight.

2

Results from Bishop and Tipping (2003).

3

Results from Tipping (2001).



5 Con
lusions

We have shown how a simple sampling s
heme for 
lassi�
ation and a novel inter-

pretation of weighted examples indu
es a distribution over hypothesis spa
e. We

have evaluated the predi
tions of this distributed 
lassi�er for an optimal weight-

ing of the training set, and found these predi
tions to be resistant to over�tting.

Our method has 
ertain advantages. The weight assignment 
an be determined

easily by solving a linear program, with a single parameter de�ning the degree

to whi
h mis
lassi�
ations are tolerated. The weight ve
tor is experimentally

found to be sparse when the solution has not over�t; new 
lassi�
ations are then

possible in time O(m

0

), where m

0

� m is the number of examples in the training

set with non-zero weight. We have observed also that our \support ve
tors" lie

away from the de
ision boundary and tend to be fewer in number than for an

SVM solution. Unfortunately, we have not provided a rigorous explanation for

our algorithm's strong performan
e. We believe its su

ess is due to the 
al
ula-

tion of a Bayesian integral under a novel noise model; developing the theory to

support this hypothesis, and extending the algorithm to further dimensions, are

areas of 
urrent resear
h.
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