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ABSTRACT
A prominent approach in collaborative filtering based rec-
ommender systems is using dimensionality reduction (ma-
trix factorization) techniques to map users and items into
low-dimensional vectors. In such systems, a higher inner
product between a user vector and an item vector indicates
that the item better suits the user’s preference. Tradition-
ally, retrieving the most suitable items is done by scoring and
sorting all items. Real world online recommender systems
must adhere to strict response-time constraints, so when the
number of items is large, scoring all items is intractable.

We propose a novel order preserving transformation, map-
ping the maximum inner product search problem to Eu-
clidean space nearest neighbor search problem. Utilizing this
transformation, we study the efficiency of several (approxi-
mate) nearest neighbor data structures. Our final solution
is based on a novel use of the PCA-Tree data structure in
which results are augmented using paths one hamming dis-
tance away from the query (neighborhood boosting). The
end result is a system which allows approximate matches
(items with relatively high inner product, but not necessar-
ily the highest one). We evaluate our techniques on two
large-scale recommendation datasets, Xbox Movies and Ya-
hoo Music, and show that this technique allows trading off
a slight degradation in the recommendation quality for a
significant improvement in the retrieval time.

Categories and Subject Descriptors
H.5 [Information systems]: Information retrieval—retrieval
models and ranking, retrieval tasks and goals

Keywords
Recommender systems, matrix factorization, inner product
search, fast retrieval
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1. INTRODUCTION
The massive growth in online services data gives rise to

the need for better information filtering techniques. In the
context of recommender systems the data consists of (1)
the item catalog; (2) the users; and (3) the user feedback
(ratings). The goal of a recommender system is to find for
every user a limited set of items that have the highest chance
to be consumed. Modern recommender systems have two
major parts. In the first part, the learning phase, a model is
learned (offline) based on user feedback1. In the second part,
the retrieval phase, recommendations are issued per user
(online). This paper studies the scalability of the retrieval
phase (the second part) in massive recommender systems
based on matrix factorization. Specifically, we introduce a
new approach which offers a trade-off between running time
and the quality of the results presented to a user.

Matrix Factorization (MF) is one of the most popular ap-
proaches for collaborative filtering. This method has re-
peatedly demonstrated better accuracy than other methods
such as nearest neighbor models and restricted Boltzmann
machines [2, 8]. In MF models, users and items are repre-
sented by latent feature vectors. A Bayesian MF model is
also at the heart of the Xbox recommendation system [16]
which serves games, movies, and music recommendations to
millions of users daily. In this system, users and items are
represented by (low-dimensional) vectors in R

50. The qual-
ity of the match between a user u represented by the vector
xu and the item i represented by the vector yi is given by
the inner product xu ·yi between these two vectors. A higher
inner product implies a higher chance of the user consuming
the item.

The Retrieval Problem: Ideally, given a user u repre-
sented by a vector xu, all the item vectors (y1, . . . ,yn) are
examined. For each such item vector yi, its match quality
with the user (xu · yi) is computed, and the items sorted
according to their match quality. The items with the high-
est match quality in the list are then selected to form the
final list of recommendations. However, the catalog of items
is often too large to allow an exhaustive computation of all
the inner products within a limited allowed retrieval time.

The Xbox catalog consists of millions of items of various
kinds. If a linear scan is used, millions of inner product com-
putations are required for each single recommendation. The

1This phase cannot be done entirely offline when a context
is used to issue the recommended items.



user vectors can take into account contextual information2

that is only available during user engagement. Hence, the
complete user vector is computed online (at runtime). As a
result, the retrieval of the recommended items list can only
be performed online, and cannot be pre-computed offline.
This task constitutes the single most computational inten-
sive task imposed on the online servers. Thereby, having a
fast alternative for this process is highly desirable.

Our Contribution: This paper shows how to signifi-
cantly speed up the recommendation retrieval process. The
optimal item-user match retrieval is relaxed to an approxi-
mate search: retrieving items that have a high inner product
with the user vector, but not necessarily the highest one.
The approach combines several building blocks. First, we
define a novel transformation from the inner product prob-
lem to a Euclidean nearest neighbor problem (Section 3). As
a pre-processing step, this transformation is applied to the
item vectors. During item retrieval, another transformation
is applied to the user vector. The item with the smallest Eu-
clidean distance in the transformed space is then retrieved.
To expedite the nearest neighbor search, the PCA-Tree [21]
data structure is used together with a novel neighborhood
boosting scheme (Section 4).

To demonstrate the effectiveness of the proposed approach,
it is applied to an Xbox recommendations dataset and the
publicly available Yahoo Music dataset [8]. Experiments
show a trade-off curve of a slight degradation in the rec-
ommendation quality for a significant improvement in the
retrieval time (Section 5). In addition, the achievable time-
accuracy trade-offs are compared with two baseline approaches,
an implementation based on Locality Sensitive Hashing [1]
and the current state of the art method for approximate rec-
ommendation in matrix-factorization based CF systems [13].
We show that for a given required recommendation quality
(accuracy in picking the optimal items), our approach allows
achieving a much higher speedup than these alternatives.

Notation: We use lower-case fonts for scalars, bold lower-
case fonts for vectors, and bold upper-case fonts for matrices.
For example, x is a scalar, x is a vector, and X is a matrix.
Given a vector x ∈ R

d, let xi be the measure in dimension
i, with (x1, x2, . . . , xd)

T ∈ R
d. The norm is denoted by ‖·‖;

in Euclidean space ‖x‖ =
√

∑d

i=1 x
2
i . We denote by x · y a

dot product (inner product) between x and y. Finally, we

use
(

a,xT
)T

to denote a concatenation of a scalar a with a
vector x.

2. BACKGROUND AND RELATED WORK
In this section we will explain the problem of finding best

recommendations in MF models and review possible ap-
proaches for efficient retrieval of recommendations.

2.1 Matrix Factorization Based Recommender
Systems

In MF models, each user u is associated with a user-traits
vector xu ∈ R

d, and each item i with an item-traits vector
yi ∈ R

d. The predicted rating of a user u to an item i is
denoted by r̂ui and obtained using the rule:

r̂ui = µ+ bu + bi + xu · yi , (1)

2The contextual information may include the time of day,
recent search queries, etc.

where µ is the overall mean rating value and bi and bu repre-
sent the item and user biases respectively. The above model
is a simple baseline model similar to [14]. It can be readily
extended to form the core of a variety of more complex MF
models, and adapted to different kinds of user feedback.

While µ and bi are important components of the model,
they do not effect the ranking of items for any given user,
and the rule r̃ui = bi + xu · yi will produce the same set
of recommendations as that of Equation 1. We can also
concatenate the item bias bi to the user vector and reduce
our prediction rule to a simple dot product: r̃ui = x̄u ·
ȳi, where x̄u , (1, xT

u )
T , and ȳi , (bi, yT

i )
T . Hence,

computing recommendations in MF models amounts to a
simple search in an inner product space: given a user vector
x̄u, we wish to find items with vectors ȳi that will maximize
the inner product x̄u · ȳi. For the sake of readability, from
this point onward we will drop the bar and refer to x̄u and
ȳu as xu and yi. We therefore focus on the problem of
finding maximal inner product matches as described above.

2.2 Retrieval of Recommendations in Inner-
Product Spaces

The problem of efficient retreival of recommendations in
MF models is relatively new, but it has been discussed in
the past [10, 11, 13]. In real-world large scale systems such
as the Xbox Recommender, this is a concrete problem, and
we identified it as the main bottleneck that drains our online
resources.

Previous studies can be categorized into two basic ap-
proaches. The first approach is to propose new recommen-
dation algorithms in which the prediction rule is not based
on inner-product matches. This was the approach taken by
Khoshneshin et al. [10], who were first to raise the problem of
efficient retrieval of recommendations in MF models. In [10]
a new model is proposed in which users and items are em-
bedded based on their Euclidean similarity rather than their
inner-product. In a Euclidean space, the plethora of algo-
rithms for nearest-neighbor search can be utilized for an effi-
cient retrieval of recommendations. A similar approach was
taken by [11] where an item-oriented model was designed to
alleviate retrieval of recommendations by embedding items
in a Euclidean space. While these methods show significant
improvements in retrieval times, they deviate from the well
familiar MF framework. These approaches which are based
on new algorithms do not benefit the core of existing MF
based recommender systems in which the retrieval of rec-
ommendations is still based on inner-products.

The second approach to this problem is based on designing
new algorithms to mitigate maximal inner-product search.
These algorithms can be used in any existing MF based sys-
tem and require only to implement a new data structure
on top of the recommender to assist at the retrieval phase.
For example, in [13] a new IP-Tree data structure was pro-
posed that enables a branch-and-bound search scheme in
inner-product spaces. In order to reach higher speedup val-
ues, the IP-Tree was combined with spherical user clustering
that allows to pre-compute and cache recommendations to
similar users. However, this approach requires prior knowl-
edge of all the user vectors which is not available in systems
such as the Xbox recommender where ad-hoc contextual in-
formation is used to update the user vectors. This work was
later continued in [18] for the general problem of maximal
inner-product search, but these extensions showed effective-



ness in high-dimensional sparse datasets which is not the
case for vectors generated by a MF process.

This paper builds upon a novel transformation that re-
duces the maximal inner-product problem to simple nearest
neighbor search in a Euclidean space. On one hand the pro-
posed approach can be employed by any classical MF model,
and on the other hand it enables using any of the existing
algorithms for Euclidean spaces. Next, we review several
alternatives for solving the problem in a Euclidean Space.

2.2.1 Nearest Neighbor in Euclidean Spaces
Locality Sensitive Hashing (LSH) was recently popular-

ized as an effective approximate retrieval algorithm. LSH
was introduced by Broder et al. to find documents with high
Jaccard similarity[4]. It was later extended to other metrics
including the Euclidean distance [9], cosine similarity [5],
and earth mover distance [5].

A different approach is based on space partitioning trees:
KD-trees [3] is a data structure that partitions Rd into hyper-
rectangular (axis parallel) cells. In construction time, nodes
are split along one coordinate. At query time, one can search
of all points in a rectangular box and nearest neighbors effi-
ciently. Several augmented splits are used to improve the
query time. For example, (1) Principal component axes
trees (PCA-Trees) transform the original coordinates to the
principal components [21]; (2) Principal Axis Trees (PAC-
Trees) [15] use a principal component axis at every node;
(3) Random Projection Trees (RPT) use a random axis at
each node [6]; and (4) Maximum Margin Trees (MMT) use a
maximum margin axis at every node [20]. A theoretical and
empirical comparison for some variants can be found [19].

Our approach makes use of PCA-trees and combines it
with a novel neighborhood boosting scheme. In Section 5 we
compare to alternatives such as LSH, KD-Trees, and PAC-
Trees. We do not compare against MMT and RPT as we
don’t see their advantage over the other methods for the
particular problem at hand.

3. REDUCIBLE SEARCH PROBLEMS
A key contribution of this work is focused on the concept

of efficient reductions between search problems. In this sec-
tion we formalize the concept of a search problem and show
efficient reductions between known variants.

We define a search problem as:

Definition 1. A search problem S(I,Q, s) consists of an
instance set of n items I = {i1, i2, . . . , in} ∈ I, a query
q ∈ Q, and a search function

s : I × Q → {1, 2, . . . , n} .

Function s retrieves the index of an item in I for a given
query q. The goal is to pre-process the items with g : I →
I′ such that each query is answered efficiently. The pre-
processing g can involve a transformation from one domain
to another, so that a transformed search problem can oper-
ate on a different domain. The following definition formal-
izes the reduction concept between search problems:

Definition 2. A search problem S1(I,Q, s1) is reducible
to a search problem S2(I

′,Q′, s2), denoted by S1 ≤ S2, if
there exist functions g : I → I′ and h : Q → Q′ such that

j = s1(I, q) if and only if j = s2(g(I), h(q)) .

This reduction does not apply any constraints on the run-
ning time of g and h. Note that g runs only once as a
pre-processing step, while h is applied at the query time.
This yields a requirement that h has a O(1) running time.
We formalize this with the following notation:

Definition 3. We say that S1 ≤O(f(n)) S2 if S1 ≤ S2

and the running time of g and h are O(f(n)) and O(1) re-
spectively.

For a query vector in R
d, we consider three search prob-

lems in this paper: MIP, the maximum inner product from
n vectors in R

d (MIPn,d); NN, the nearest neighbor from
n vectors in R

d (NNn,d); MCS, the maximum cosine sim-
ilarity from n vectors in R

d (MCSn,d). They are formally
defined as follows:

Instance: A matrix of n vectors Y = [y1,y2, . . . ,yn] such
that yi ∈ R

d; therefore I = R
d×n.

Query: A vector x ∈ R
d; hence Q = R

d.

Objective: Retrieve an index according to

s(Y,x) = argmax
i

x · yi MIPn,d

s(Y,x) = argmin
i

‖x− yi‖ NNn,d

s(Y,x) = argmax
i

x · yi

‖x‖ ‖yi‖
MCSn,d ,

where i indicates column i of Y.

The following section shows how transformations between
these three problems can be achieved with MCSn,d ≤O(n)

MIPn,d ≤O(n) NNn,d+1 and NNn,d ≤O(n) MCSn,d+1 ≤O(n)

MIPn,d+1.

3.1 Order Preserving Transformations
The triangle inequality does not hold between vectors x,

yi, and yj when an inner product compares them, as is the
case in MIP. Many efficient search data structures rely on
the triangle inequality, and if MIP can be transformed to
NN with its Euclidian distance, these data structures would
immediately become applicable. Our first theorem states
that MIP can be reduced to NN by having an Euclidian
metric in one more dimension than the original problem.

Theorem 1. MIPn,d ≤O(n) NNn,d+1

Proof: Let φ , maxi ‖yi‖ and preprocess input with: ỹi =

g(yi) =

(

√

φ2 − ‖yi‖
2
,yT

i

)T

. During query time: x̃ =

h(x) =
(

0,xT
)T

. As

‖x̃‖2 = ‖x‖2

‖ỹi‖
2 = φ

2 − ‖yi‖
2 + ‖yi‖

2 = φ
2

x̃ · ỹi =

√

φ2 − ‖xi‖
2 · 0 + x · yi = x · yi

we have

‖x̃− ỹi‖
2 = ‖x̃‖2 + ‖ỹ‖2 − 2x̃ · ỹi = ‖x‖

2 + φ
2 − 2x · yi .

Finally, as φ and x are independent of index i,

j = argmin
i

‖x̃− ỹi‖
2 = argmax

i

x · yi .



Theorem 1 provides the main workhorse for our proposed
approach (Section 4). In the remaining of this section, we
present its properties as well the related transformations.

If it is known that the transformed Ỹ = [ỹ1, ỹ2, . . . , ỹn]
is in a manifold, as given above, we might expect to recover
Y by reducing back with NNn,d ≤O(n) MIPn,d−1. However,
in the general case the transformation is only possible by
increasing the dimensionality by one again:

Theorem 2. NNn,d ≤O(n) MIPn,d+1

Proof: The preprocessing of the input: ỹi = g(yi) =
(

‖yi‖
2
,yT

i

)T
. During query time: x̃ = h(x) =

(

1,−2xT
)T

.

We have x̃ · ỹi = ‖yi‖
2 − 2x · yi. Finally,

j = argmax
i

x̃ · ỹi = argmin
i

‖x‖2 + ‖yi‖
2 − 2x · yi

= argmin
i

‖x− yi‖
2
.

MIP search can also be embedded in a MCS search by
increasing the dimensionality by one:

Theorem 3. MIPn,d ≤O(n) MCSn,d+1

Proof: Preprocessing and query transformation are iden-
tical to Theorem 1. The preprocessing of the input: φ ,

maxi ‖yi‖ and let ỹi = g(yi) =

(

√

φ2 − ‖yi‖
2
,yT

i

)T

. Dur-

ing query time: x̃ = h(x) =
(

0,xT
)T

. Finally,

j = argmax
i

x̃ · ỹi

‖x̃‖ ‖ỹi‖
= argmax

i

x · yi

‖x‖φ
= argmax

i

x · yi .

However, MCS is simply MIP searching over normalized
vectors:

Theorem 4. MCSn,d ≤O(n) MIPn,d

Proof: The preprocessing of the input: ỹi = g(y) = yi

‖yi‖
.

During query time: x̃ = h(x) = x. Finally,

j = argmax
i

x̃ · ỹi = argmax
i

x · yi

‖x‖ ‖yi‖
.

Our final result states that a NN search can be transformed
to a MCS search by increasing the dimensionality by one:

Theorem 5. NNn,d ≤O(n) MCSn,d+1

Proof: Same reduction as in Theorem 1. The prepro-
cessing of the input: φ , maxi ‖yi‖ and ỹi = g(yi) =
(

√

φ2 − ‖yi‖
2
,yT

i

)T

. During query time: x̃ = h(x) =

(

0,xT
)T

. Thus by Theorem 1,

j = argmax
i

x̃ · ỹi

‖x̃‖ ‖ỹi‖
= argmax

i

x · yi

‖x‖φ
= argmax

i

x · yi

= argmin
i

‖x̃− ỹi‖
2
.

Next, we utilize Theorem 1 for speeding up retrieval of rec-
ommendations in Xbox and other MF based recommender
systems.

Algorithm 1 TransformAndIndex(Y, d′)

input: item vectors Y, depth d′ ≤ d+ 1
output: tree t
compute φ, µ, W
S = ∅
for i = 1 : n do

ỹi = g(yi) ; S = S ∪ ỹi

end for
return T ← PCA-Tree(S , d′)

4. AN OVERVIEW OF OUR APPROACH
Our solution is based on two components, a reduction to

a Euclidian search problem, and a PCA-Tree to address it.
The reduction is very similar to that defined in Theorem 1,
but composed with an additional shift and rotation, so that
the MIP search problem is reduced to NN search, with all
vectors aligned to their principal components.

4.1 Reduction
We begin with defining the first reduction function follow-

ing Theorem 1. Let φ , maxi ‖yi‖, and

y⋆
i = g1(yi) =

(

√

φ2 − ‖yi‖
2
, yT

i

)T

x⋆ = h1(x) =
(

0,xT
)T

, (2)

which, when applied to Y, gives elements y⋆
i ∈ R

d+1. This
reduces MIP to NN. As NN is invariant to shifts and ro-
tations in the input space, we can compose the transforma-
tions with PCA rotation and still keep an equivalent search
problem.

We mean-center and rotate the data: Let µ = 1
n

∑

i
y⋆
i

be the mean after the first reduction, and M ∈ R
d+1×n a

matrix with µ replicated along its columns. The SVD of the
centered data matrix is

(Y⋆ −M) = WΣUT
,

where data items appear in the columns of Y⋆. Matrix
W is a (d + 1) by (d + 1) matrix. Each of the columns
of W = [w1, . . . ,wd+1] defines an orthogonal unit-length
eigenvector, so that each wj defines a hyperplane onto which
each y⋆

i − µ is projected. Matrix W is a rotation matrix
that aligns the vectors to their principal components. 3 We
define the centered rotation as our second transformation,

ỹi = g2(y
⋆
i ) = WT (y⋆

i − µ)

x̃ = h2(x
⋆) = WT (x⋆ − µ) . (3)

The composition

g(yi) = g2(g1(yi)), h(x) = h2(h1(x)) (4)

still defines a reduction from MIP toNN. Using ỹi = g(yi),

gives us a transformed set of input vectors Ỹ, over which an
Euclidian search can be performed. Moreover, after this
transformation, the points are rotated so that their compo-
nents are in decreasing order of variance. Next, we index
the transformed item vectors in Ỹ using a PCA-Tree data
structure. We summarize the above logic in Algorithm 1.

3Notice that Σ is not included, as the Euclidian metric is
invariant under rotations of the space, but not shears.



Algorithm 2 PCA-Tree(S , δ)

input: item vectors set S , depth δ
output: tree t
if δ = 0 then

return new leaf with S
end if
j = d+ 1− δ // principal component at depth δ
m = median({ỹij for all ỹi ∈ S})
S≤ = {ỹi ∈ S where ỹij ≤ m}
S> = {ỹi ∈ S where ỹij > m}
t.leftChild = PCA-Tree(S≤, δ − 1)
t.rightChild = PCA-Tree(S>, δ − 1)
return t

4.2 Fast Retrieve with PCA-Trees
Building the PCA-Tree follows from a the KD-Tree con-

struction algorithm on Ỹ. Since the axes are aligned with
the d+1 principal components of Y⋆, we can make use of a
KD-tree constriction process to get a PCA-Tree data struc-
ture. The top d′ ≤ d + 1 principal components are used,
and each item vector is assigned to its representative leaf.
Algorithm 2 defines this tree construction procedure.

At the retrieval time, the transformed user vector x̃ =
h(x) is used to traverse the tree to the appropriate leaf.
The leaf contains the item vectors in the neighborhood of x̃,
hence vectors that are on the same side of all the splitting
hyperplanes (the top principal components). The items in
this leaf form an initial candidates set from which the top
items or nearest neighbors are selected using a direct ranking
by distance.

The number of items in each leaf decays exponentially in
the depth d′ of the tree. By increasing the depth we are left
with less candidates hence trading better speedup values
with lower accuracy. The process allows achieving differ-
ent trade-offs between the quality of the recommendations
and an allotted running time: with a larger d′, a smaller
proportion of candidates are examined, resulting in a larger
speedup, but also a reduced accuracy. Our empirical analy-
sis (Section 5) examines the trade-offs we can achieve using
our PCA-trees, and contrasts this with trade-offs achievable
using other methods.

4.2.1 Boosting Candidates With Hamming Distance
Neighborhoods

While the initial candidates set includes many nearby
items, it is possible that some of the optimal top K vec-
tors are indexed in other leafs and most likely the adjacent
leafs. In our approach we propose boosting the candidates
set with the item vectors in leafs that are on the “wrong”
side in at most one of the median-shifted PCA hyperplane
compared to x̃. These vectors are likely to have a small
Euclidean distance from the user vector.

Our PCA-Tree is a complete binary tree of height d′,
where each leaf corresponds to a binary vector of length d′.
We supplement the initial candidates set from the leaf of the
user vector, with all the candidates of leafs with a Hamming
distance of ‘1’, and hence examine candidates from d′ of the

2d
′

leafs. In Section 5.1.1 we show that this approach is in-
strumental in achieving the best balance between speedup
and accuracy.

5. EMPIRICAL ANALYSIS OF SPEEDUP-
ACCURACY TRADEOFFS

We use two large scale datasets to evaluate the speedup
achieved by several methods:

1. Xbox Movies [12] – This dataset is a Microsoft pro-
priety dataset consisting of 100 million binary {0, 1}
ratings of more than 15K movies by 5.8 million users.
We applied the method used in [12] to generate the
vectors representing items and users.

2. Yahoo! Music [8] – This is a publicly available ratings
dataset consisting of 252,800,275 ratings of 624,961
items by 1,000,990 users. The ratings are on a scale of
0-100. The users and items vectors were generated by
the algorithm in [7].

From both datasets we created a set of item vectors and user
vectors of dimensionality d = 50. The following evaluations
are based on these vectors.

Speedup Measurements and Baselines.
We quantify the improvement of an algorithm A over an-

other (naive) algorithm A0 by the following term:

SpeedupA0
(A) =

Time taken by Algorithm A0

Time taken by Algorithm A
. (5)

In all of our evaluations we measure the speedup with re-
spect to the same algorithm: a naive search algorithm that
iterates over all items to find the best recommendations for
every user (i.e. computes the inner product between the user
vector and each of the item vectors, keeping track of the item
with the highest inner product found so far). Thus denoting
by Tnaive the time taken by the naive algorithm we have:
Tnaive = Θ(#users×#items× d).

The state of the art method for finding approximately
optimal recommendations uses a combination of IP-Trees
and user cones [13]. In the following evaluation we dubbed
this method IP-Tree. The IP-Tree approach assumes all the
user vectors (queries) are computed in advance and can
be clustered into a structure of user cones. In many real-
world systems like the Xbox recommender the user vectors
are computed or updated online, so this approach cannot be
used. In contrast, our method does not require having all
the user vectors in advance, and is thus applicable in these
settings.

The IP-Tree method relies on an adaptation of the branch-
and-bound search in metric-trees [17] to handle nearest neigh-
bor search in inner-product spaces. However, the construc-
tion of the underlaying metric-tree data structure, which is
a space partitioning tree, is not adapted to inner-product
spaces (it partitions vectors according to Euclidean proxim-
ity). By using the Euclidean transformation of Theorem 1,
we can utilize the data structures and algorithms designed
for Euclidean spaces in their original form, without adapta-
tions that may curb their effectiveness. Next, we show that
our approach achieves a superior computation speedup,
despite having no access to any prior knowledge about the
user vectors or their distribution. 4

4We focus on online processing time, i.e. the time to choose
an item to recommend for a target user. We ignore the
computation time required by offline preprocessing steps.



Theorem 1 allows using various approximate nearest-neighbor
algorithms for Euclidean spaces, whose performance depends
on the specific dataset used. We propose using PCA-Trees
as explained in Section 4.2, and show that they have an
excellent performance for both the Xbox movies and Ya-
hoo! music datasets, consisting of low dimensionality dense
vectors obtained by matrix factorization. A different and
arguably more popular approach for finding approximate-
nearest-neighbors in Euclidean spaces is Locality-Sensitive
Hashing (LSH) [1]. In the evaluations below we also in-
clude a comparison against LSH. We emphasize that using
both our PCA-Trees approach and LSH techniques is only
enabled by our Euclidean transformation (Theorem 1).

Our approximate retrieval algorithms introduce a trade-
off between accuracy and speedup. We use two measures to
quantify the quality of the top K recommendations. The
first measure Precision@K denotes how similar the approxi-
mate recommendations are to the optimal top K recommen-
dations (as retrieved by the naive approach):

Precision@K ,
|Lrec ∩ Lopt|

K
, (6)

where Lrec and Lopt are the lists of the top K approximate
and the top K optimal recommendations respectively. Our
evaluation metrics only consider the items at the top of the
approximate and optimal lists.5

A high value for Precision implies that the approximate
recommendations are very similar to the optimal recommen-
dations. In many practical applications (especially for large
item catalogs), it is possible to have low Precision rates but
still recommend very relevant items (with a high inner prod-
uct between the user and item vectors). This motivates our
second measure RMSE@K which examines the preference
to the approximate items compared to the optimal items:

RMSE@K ,

√

√

√

√

1

K

K
∑

k=1

(

Lrec(k)− Lopt(k)
)2

, (7)

where Lrec(k) and Lopt(k) are the scores (predicted ratings)
of the k’th recommended item in the approximated list and
the optimal list respectively. Namely, Lrec(k) and Lopt(k)
are the values of inner products between the user vector
and k’th recommended item vector and optimal item vector

respectively. Note that the amount
(

Lrec(k) − Lopt(k)
)

is

always positive as the items in each list are ranked by their
scores.

5.1 Results
Our initial evaluation considers three approximation algo-

rithms: IP-Tree, LSH, and our approach (Section 4.2). Fig-
ure 1(a) depicts Precision@10 for the Xbox Movies dataset
(higher values indicate better performance). The Precision
values are plotted against the average speedup values they
enable. At very low speedup values the LSH algorithm shows
the best trade-off between precision and speedup, but when
higher speedup values are considered the LSH performance
drops significantly and becomes worst. One possible rea-
son for this is that our Euclidean transformation results in
transformed vectors with one dimension being very large
compared with the other dimensions, which is a difficult

5Note that for this evaluation the recall is completely deter-
mined by the precision.

Method Enabled by Prior Neighborhood
Theorem 1 knowledge boosting

IP-Tree no user vectors not allowed

KD-Tree yes none allowed

PCA-Tree yes none allowed

PAC-Tree yes none not allowed

Table 1: A summary of the different tree ap-
proaches. IP-Tree is the baseline from [13], which
requires prior knowledge of the users vectors. All
other approaches (as well as LSH) were not feasible
before Theorem 1 was introduced in this paper.

input distribution for LSH approaches.6 In contrast, the
tree-based approaches (IP-Tree and our approach) show a
similar behavior of a slow and steady decrease in Precision
values as the speedup increases. The speedup values of our
approach offers a better precision-vs-speedup tradeoff than
the IP-tree approach, though their precision is almost the
same for high speedup values.

Figure 1(b) depicts the RMSE@10 (lower values indicate
better performance) vs. speedup for the three approaches.
The trend shows significantly superior results for our PCA-
Tree approach, for all speedup values. Similarly to Fig-
ure 1(a), we see a sharp degradation of the LSH approach as
the speedup increases, while the tree-based approaches show
a trend of a slow increase in RMSE values as the speedup in-
creases. We note that even for high speed-up values, which
yield low precision rates in Figure 1(a), the RMSE values
remain very low, indicating that very high quality of rec-
ommendations can be achieved at a fraction of the compu-
tational costs of the naive algorithm. In other words, the
recommended items are still very relevant to the user, al-
though the list of recommended items is quite different from
the optimal list of items.

Figure 2 depicts Precision@10 and RMSE@10 for the Ya-
hoo! Music dataset. The general trends of all three algo-
rithms seem to agree with those of Figure 1: LSH starts bet-
ter but deteriorates quickly, and the tree-based approaches
have similar trends. The scale of the RMSE errors in Fig-
ure 1(b) is different (larger) because the predicted scores are
in the range of 0-100, whereas in the Xbox Movies dataset
the predictions are binary.

The empirical analysis on both the Xbox and Yahoo! datasets
shows that it is possible to achieve excellent recommenda-
tions for very low computational costs by employing our Eu-
clidean transformation and using an approximate Euclidean
nearest neighbor method. The results indicate that tree-
based approaches are superior to an LSH based approach
(except when the required speedup is very small). Further,
the results indicate that our method yields higher quality
recommendations than the IP-trees approach [13]. Note that
we also compared Precision@K and RMSE@K for other K
values. While the figures are not included in this paper, the
trends are all similar to those presented above.

5.1.1 Comparing Different Tree Approaches
A key building block in our approach is aligning the item
vectors with their principal components (Equation 3) and
using PCA-Trees rather than KD-Trees. Another essential

6The larger dimension is the auxiliary dimension

(
√

φ2 − ‖yi‖
2) in Equation 2.
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Figure 1: Performance against speedup values for the Xbox Movies dataset top 10 recommendations
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Figure 2: Performance against speedup values for the Yahoo! Music dataset top 10 recommendations

ingredient in our approach is the neighborhood boosting of
Section 4.2.1. One may question the vitality of PCA-Trees or
the neighborhood boosting to our overall solution. We there-
fore present a detailed comparison of the different tree based
approaches. For the sake of completeness, we also included
a comparison to PAC-Trees [15]. Table 1 summarizes the
different data structures. Except the IP-Tree approach, all
of these approaches were not feasible before Theorem 1 was
introduced in this paper. Note that neighborhood boosting
is possible only when the tree splits are all based on a single
consistent axis system. It is therefore prohibited in IP-Tees
and PAC-Trees where the splitting hyperplanes are ad-hoc
on every node.

We compare the approach proposed in this paper with
simple KD-Trees, PAC-Trees, and with PCA-Trees without
neighborhood boosting (our approach without neighborhood
boosting). Figure 3 depicts Precision@10 and RMSE@10 on
the Yahoo! Music dataset. As the speedup levels increase,
we notice an evident advantage in favor of PCA aligned
trees over KD-Trees. When comparing PCA-Trees with-
out neighborhood boosting to PAC-Trees we see a mixed
picture: For low speedup values PCA-Trees perform better,
but for higher speedup values we notice an eminent advan-

tage in favor of PAC-Trees. To conclude, we note the overall
advantage for the method proposed in this paper over any of
the other tree based alternatives both in terms of Precision
and RMSE.

6. CONCLUSIONS
We presented a novel transformation mapping a maximal

inner product search to Euclidean nearest neighbor search,
and showed how it can be used to speed-up the recommenda-
tion process in a matrix factorization based recommenders
such as the Xbox recommender system.

We proposed a method for approximately solving the Eu-
clidean nearest neighbor problem using PCA-Trees, and em-
pirically evaluated it on the Xbox Movie recommendations
and the Yahoo Music datasets. Our analysis shows that
our approach allows achieving excellent quality recommen-
dations at a fraction of the computational cost of a naive ap-
proach, and that it achieves superior quality-speedup trade-
offs compared with state-of-the-art methods.
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Figure 3: Comparing tree based methods for the Yahoo! Music dataset top 10 recommendations
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