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ABSTRACT

Determinantal point processes (DPPs) are an emerging model
for encoding probabilities over subsets, such as shopping
baskets, selected from a ground set, such as an item cat-
alog. They have recently proved to be appealing models
for a number of machine learning tasks, including prod-
uct recommendation. DPPs are parametrized by a pos-
itive semi-definite kernel matrix. Prior work has shown
that using a low-rank factorization of this kernel provides
scalability improvements that open the door to training on
large-scale datasets and computing online recommendations,
both of which are infeasible with standard DPP models
that use a full-rank kernel. A low-rank DPP model can
be trained using an optimization-based method, such as
stochastic gradient ascent, to find a point estimate of the
kernel parameters, which can be performed efficiently on
large-scale datasets. However, this approach requires care-
ful tuning of regularization parameters to prevent overfitting
and provide good predictive performance, which can be com-
putationally expensive. In this paper we present a Bayesian
method for learning a low-rank factorization of this kernel,
which provides automatic control of regularization. We show
that our Bayesian low-rank DPP model can be trained effi-
ciently using stochastic gradient Hamiltonian Monte Carlo
(SGHMC). Our Bayesian model generally provides better
predictive performance on several real-world product recom-
mendation datasets than optimization-based low-rank DPP
models trained using stochastic gradient ascent, and better
performance than several state-of-the art recommendation
methods in many cases.

1. INTRODUCTION
Online shopping revenue has grown significantly in recent

years. Central to the online retail experience is the recom-
mendation task of “basket completion”, where we seek to
compute predictions for the next item that should be added
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to a shopping basket, given a set of items already present
in the basket. Determinantal point processes (DPPs) of-
fer an attractive model for basket completion, since they
jointly model set diversity and item quality or popularity.
DPPs also offer a compact parameterization and efficient
algorithms for performing inference.

A distribution over sets that models diversity is of particu-
lar interest when recommendations are complementary. For
example, consider a shopping basket that contains a smart-
phone and a SIM card. A collaborative filtering method
based on user and item similarities, such as a matrix factor-
ization model [27], would tend to provide recommendations
that are similar to the items already present in the basket
but not necessarily complementary. In this example, matrix
factorization might recommend other similar smartphones
to complete this basket, which may not be appropriate since
the basket already contains a smartphone. In contrast, a
complementary recommendation for this basket might be a
smartphone case, rather than another smartphone. In this
setting, DPPs would be used to learn the inherent item di-
versity present within the observed sets (baskets) that users
purchase, and hence can provide such complementary rec-
ommendations.

DPPs have been used for a variety of machine learning
tasks [16, 18, 19]. DPPs can be parameterized by a M ×M
positive semi-definite L matrix, where M is the size of the
item catalog. There has been some work focused on learning
DPPs from observed data consisting of example subsets [1,
10, 12, 17, 24], which is a challenging learning task that is
conjectured to be NP-hard [18]. Some of this recent work has
involved learning a nonparametric full-rank L matrix [12,
24] that does not constrain L to take a particular paramet-
ric form, while other recent work has involved learning a
low-rank factorization of this nonparametric L matrix [10].
A low-rank factorization of L enables substantial improve-
ments in runtime performance compared to a full-rank DPP
model during training and when computing predictions, on
the order of 10-20x or more, with predictive performance
that is equivalent to or better than a full-rank model.

The low-rank DPP model presented in [10] uses stochastic
gradient ascent to maximize an objective function defined
in terms of a low-rank factorization of L. While this ap-
proach for model learning is efficient on large-scale data, it
has some drawbacks. Careful tuning of regularization hy-
perparameters is required to prevent overfitting and provide
good predictive performance. This tuning can be performed
using a line search over the range of possible regularization
settings. This procedure is expensive since it entails train-



ing a separate model for each regularization setting and then
selecting the model that performs best. The optimization-
based approach also provides a point estimate that commits
to a single most probable setting for each learned parameter,
which can be problematic in that it does not consider uncer-
tainty. In contrast to this approach, we present a Bayesian
low-rank DPP model that provides better predictive per-
formance and robust regularization, without the need for
expensive hyperparameter tuning.

Our work makes the following contributions:

1. We present a Bayesian low-rank DPP model, which
uses an efficient stochastic gradient Hamiltonian Monte Carlo
(SGHMC) algorithm for learning from observed data.

2. The Bayesian low-rank DPP model does not require ex-
pensive hyperparameter tuning and provides robust regular-
ization, in contrast to prior work on an optimization-based
learning algorithm for low-rank DPPs.

3. A detailed experimental evaluation on several real-world
datasets shows that our Bayesian model provides better pre-
dictive performance than existing low-rank DPP models.
Our model also provides significantly better predictive per-
formance than several other recommendation methods in
many cases.

2. MODEL
DPPs originated in statistical mechanics [23], where they

were used to model distributions of fermions. Fermions are
particles that obey the Pauli exclusion principle, which in-
dicates that no two fermions can occupy the same quantum
state. As a result, systems of fermions exhibit a repulsion
or “anti-bunching” effect, which is described by a DPP. This
repulsive behavior is a key characteristic of DPPs, which
makes them a capable model for diversity. We now proceed
with some details of DPPs, including how they are defined
and a method for efficient learning.

2.1 Background
A point process is a distribution over configurations of

points selected from a ground set Y, which are finite subsets
of Y. In this paper we deal only with discrete DPPs, which
describe a distribution over subsets of a discrete ground set
of items Y = 1, 2, . . . ,M , which we also call the item catalog.
A discrete DPP on Y is a probability measure P on 2Y (the
power set or set of all subsets of Y), such that for any A ⊆ Y,
the probability P(A) is specified by P(A) ∝ det(LA). In the
context of basket completion, Y is the item catalog (inven-
tory of items on sale), and Y is the subset of items in a user’s

basket; there are 2|Y| possible baskets. The notation LY de-
notes the principal submatrix of the DPP kernel L indexed
by the items in Y , which is the restriction of L to the rows
and columns indexed by the elements of Y : LA ≡ [Lij ]i,j∈A.
Intuitively, the diagonal entry Lii of the kernel matrix L
captures the importance or quality of item i, while the off-
diagonal entry Lij = Lji measures the similarity between
items i and j.
The normalization constant for P follows from the ob-

servation that
∑

A′⊆Y det(LA′) = det(L + I). The value

det(LA) associates a “volume” to basket A from a geometric
viewpoint, and its probability is normalized by the volumes
of all possible baskets A′ ⊆ Y. Therefore, we have

P(A) =
det(LA)

det(L+ I)
. (1)

An
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Figure 1: A graphical model for the low-rank DPP
model.

We use a low-rank factorization of the M ×M L matrix,

L = VVT , (2)

for the M ×K matrix V, where M is the number of items
in the item catalog and K is the number of latent trait
dimensions. This low-rank factorization of L leads to sig-
nificant efficiency improvements compared to a model that
uses a full-rank L matrix when it comes to model learning
and computing predictions [10]. This also places an implicit
constraint on the space of subsets of Y, since the model is re-
stricted to place zero probability mass on subsets with more
than K items (all eigenvalues of L beyond K are zero). We
see this from the observation that a sample from a DPP will
not be larger than the rank of L [11].

2.2 Model Specification
Our learning task is to fit a DPP kernel L based on a

collection of N observed subsets A = {A1, . . . , AN}, where
each subset An is composed of items from the item catalog
Y. These observed subsets in A constitute our training data,
and our task is to infer L from A. The log-likelihood for
seeing A is

f(V) = logP(A|V) =

N
∑

n=1

logP(An|V) (3)

=

N
∑

n=1

log det(L[n])−N log det(L+ I) (4)

where [n] indexes the observations or objects in A. Recall
from (2) that L = VVT .

Figure 1 shows the graphical model for our Bayesian low-
rank DPP model. We place a multivariate Gaussian prior
on each item in our model. Our prior distribution on V is
given by

p(V|γ) =
M
∏

i=1

N (vi;0, γ
−1I) (5)

where vi is the row vector from V for item i, and all items
i share the same precision γ. We furthermore place a con-
jugate gamma prior on γ: p(γ|a0, b0) = Gamma(γ; a0, b0).
The joint distribution over A, V and γ, as depicted in Fig-
ure 1, is

p(A,V, γ|a0, b0) = P(A|V) p(V|γ) p(γ|a0, b0) . (6)

To draw samples from the posterior p(V, γ|A, a0, b0) we al-
ternately Gibbs-sample from p(γ|V, a0, b0) and p(V|A, γ).
The first conditional distribution is

γ|V, a0, b0 ∼ Gamma(γ; a, b)

a = a0 +
MK

2

b = b0 +
1

2

∑

i

‖vi‖2 , (7)

and is sampled in Line 4 in Algorithm 1.



The second conditional distribution p(V|A, γ) does not
have the same simple form, and is:

p(V|A, γ) ∝ exp
(

f(V)
)

M
∏

i=1

N (vi|0, γ−1I) , (8)

log p(V|A, γ) = f(V) +
γ

2

M
∑

i=1

vT
i vi + const , (9)

where const indicates an additive constant independent of
V. In the following section, we consider sampling from
p(V|A, γ).

2.3 Learning Algorithm
We estimate the conditional distribution p(V|A, γ) using

stochastic gradient Hamiltonian Monte Carlo (SGHMC) [7].
Hamiltonian Monte Carlo (HMC) [9, 26] is a Markov chain
Monte Carlo (MCMC) method that uses the gradient of the
log-density of the target distribution to efficiently explore
the state space of the target. HMC defines a Hamiltonian
function, an idea borrowed from physics, in terms of the tar-
get distribution that we wish to sample from. The Hamilto-
nian function has a potential energy term, corresponding to
the target distribution, and a kinetic energy term, defined
in terms of auxiliary momentum variables. By updating the
momentum variables using the gradient of the log-density of
the target distribution, we simulate a Hamiltonian dynam-
ical system that enables proposals of distant states, thus
allowing HMC to move rapidly through the state space of
the target. We cannot simulate directly from the continu-
ous Hamiltonian dynamics, so HMC uses a discretization of
this continuous system composed of a number of “leapfrog
steps”.

HMC requires computation of the gradient of the log-
density of the target distribution over all training instances
with each iteration of the algorithm, which is expensive or
infeasible for large datasets or a complex target. SGHMC
addresses this issue by using stochastic gradients that are
computed on minibatches, where each minibatch is com-
posed of training instances sampled uniformly at random
from the full training set. SGHMC adds a friction term
to the momentum update, which counteracts the effects of
noise from the stochastic gradients. The estimates computed
by SGHMC samples are not unbiased any more (notice that
there is no accept-reject step in Algorithm 1, and the distri-
bution that is sampled from is different from the true poste-
rior), but due to the effectively faster mixing, we are able to
efficiently train our Bayesian low-rank DPP model on large-
scale datasets.

Since we learn p(V|A, γ) by SGHMC, we need to effi-
ciently compute the gradient of the log-density for this distri-
bution. We begin by computing the gradient of log-likelihood,
∂f/∂V, which will be a M × K matrix. For i ∈ 1, . . . ,M
and k ∈ 1, . . . ,K, we need a matrix of scalar derivatives,
{

∂f

∂V

}

ik
= ∂f

∂vik
. Taking the derivative of each term of the

log-likelihood, we have

∂f

∂vik
=

∑

n:i∈[n]

∂

∂vik

(

log det(L[n])
)

−N
∂

∂vik

(

log det(L+ I)
)

=
∑

n:i∈[n]

tr

(

L−1
[n]

∂L[n]

∂vik

)

−N tr

(

(L+ I)−1 ∂(L+ I)

∂vik

)

.

(10)

Algorithm 1 Sampling algorithm for learning p(V|A, γ)

1: initialize V randomly, W = 0
2: samples := {}
3: repeat
4: sample γ|V, a0, b0 according to (7)
5: // approximately sample V|A, γ:
6: for leapfrogSteps j = 1, . . . , L do
7: W := η∇Ũ(V)− αW +N (0, 2(α− β̂)η)
8: V := V +W
9: end for
10: samples := {samples,V}
11: until sufficient samples have been taken

Examining the first term of the derivative, we see that

tr

(

L−1
[n]

∂L[n]

∂vik

)

= ai · vk +

M
∑

j=1

ajivjk , (11)

where ai denotes row i of the matrix A = L−1
[n] and vk

denotes column k of V[n]. Note that L[n] = V[n]V
T
[n]. Com-

puting A is a relatively inexpensive operation, since the
number of items in each training instance An is generally
small for many recommendation applications.

For the second term of the derivative, we see that

tr

(

(L+ I)−1 ∂(L+ I)

∂vik

)

= bi · vk +
M
∑

j=1

bjivjk (12)

where bi denotes row i of the matrix B = Im − V(Ik +
VTV)−1VT . Computing B is a relatively inexpensive op-
eration, since we are inverting a K × K matrix with cost
O(K3), and K (the number of latent trait dimensions) is
usually set to a small value.

We now proceed with computing the gradient of the log-
density for p(V|A, γ) shown in Equation 9. Looking at one
component of this gradient, we have:

∂ log p(V|A, γ)

∂vik
= γvik +

∂f

∂vik
(13)

Our SGHMC algorithm is shown in Algorithm 1. In this
algorithm, ∇Ũ(V) is a noisy estimate of the log-density gra-
dient of p(V|A, γ) computed for a minibatch, η > 0 is the
learning rate, α ∈ [0, 1] is the momentum coefficient, and

W is the auxiliary momentum variable. β̂ is an estimate
of the noise from the gradient, which we ignore by setting
β̂ = 0 and relying on small η, as explained in [7]. We find
that setting α = 0.01 and η = 1.0× 10−5 or η = 1.0× 10−6,
with a minibatch size of 1000 instances, works well for the
datasets we tested.

2.4 Predictions
We compute singleton next-item predictions, given a set

of observed items. An example of this class of problem is
“basket completion”, where we seek to compute predictions
for the next item that should be added to shopping basket,
given a set of items already present in the basket.

We use a k-DPP to compute next-item predictions. A k-
DPP is a distribution over all subsets A ∈ Y with cardinality
k, where Y is the ground set, or the set of all items in the
item catalog. Next item predictions are done via a condi-
tional density. We compute the probability of the observed
basket A, consisting of k items. For each possible item to



be recommended, given the basket, the basket is enlarged
with the new item to k+ 1 items. For the new item, we de-
termine the probability of the new set of k + 1 items, given
that k items are already in the basket, using a Monte Carlo
estimate from the samples. Ignoring burn-in samples, and
letting s index the S remaining V(s) samples in samples,

p(A+1|A,A, a0, b0) =

∫

P(A+1|A,V) p(V|A, a0, b0) dV

≈ 1

S

S
∑

s=1

P(A+1|A,V(s)) (14)

where A+1 indicates set A enlarged to contain a new item b
from the catalog Y. The samples in V implicitly marginal-
ize out γ from the posterior density. We run the sampler to
generate 2,000 samples, and discard the first 1,800 samples
as burn-in. From [10], we see that the conditional probabil-
ity for an item b in the singleton set B, given the appearance
of items in A, is

P(A+1 = A ∪B|A) =
LA

bb

e1(λA
1 , λ

A
2 , . . . , λ

A
N )

(15)

where LA
bb denotes diagonal element bb from the k-DPP ker-

nel matrix conditioned on A, LA; λA
1 , λ

A
2 , . . . , λ

A
N are the

eigenvalues of LA; and e1(λ
A
1 , λ

A
2 , . . . , λ

A
N ) is the first ele-

mentary symmetric polynomial on these eigenvalues. See [10]
for full details on how to efficiently compute conditional den-
sities for a k-DPP given an observed basket.

3. EVALUATION
In this section we evaluate the performance of Bayesian

low-rank DPP model on on the task of basket completion
for several real-world datasets. We compare to several com-
peting recommendation methods, including an optimization-
based low-rank DPP [10] and two matrix factorization mod-
els [13, 27], and find that our approach provides better pre-
dictive performance in many cases.

We formulate the basket-completion task as follows. Let
Atest be a subset of n ≥ 2 co-purchased items (i.e, a basket)
from the test-set. In order to evaluate the basket completion
task, we pick an item i ∈ Atest at random and remove it from
Atest. We denote the remaining set as Atest−1. Formally,
Atest−1 = Atest� {i}. Given a ground set of possible items
Y = 1, 2, ...,M , we define the candidates set C as the set of all
items except those already in Atest−1; i.e., C = Y�Atest−1.
Our goal is to identify the missing item i from all other items
in C.

3.1 Datasets
Our experiments are based on several datasets:

1. Amazon Baby Registries - Amazon1 is one of the
world’s leading online retail stores. The Amazon Baby Reg-
istries dataset [12] is a public dataset consisting of 111,006
registries or “baskets” of baby products. The choice of this
dataset was motivated by the fact that it has been used by
several prominent DPP studies [10, 12, 24]. The registries
are collected from 15 different categories (such as “feeding”,
“diapers”, “toys”, etc.), and the items in each category are
disjoint. We maintain consistency with prior work by evalu-
ating each of its categories separately using a random split of

1www.amazon.com

70% of the data for training and 30% for testing. The low-
rank DPP models trained on this dataset were built with
K = 30 trait dimensions.

In addition to the above evaluation, we also constructed
a dataset composing of the concatenation of the three most
popular categories: apparel, diaper, and feeding. This three-
category dataset allows us to simulate data that could be ob-
served for department stores that offer a wide range of items
in different product categories. Its construction is deliber-
ate, and concatenates three disjoint subgraphs of basket-
item purchase patterns. This dataset serves to highlight
differences between DPPs and models based on matrix fac-
torization (MF). Collaborative filtering-based MF models –
which model each basket and item with a latent vector – will
perform poorly for this dataset, as the latent trait vectors
of baskets and items in one subgraph could be arbitrarily
rotated, without affecting the likelihood or predictive error
in any of the other subgraphs. MF models are invariant to
global rotations of the embedded trait vectors. However, for
the concatenated dataset, these models are also invariant
to arbitrary rotations of vectors in each disjoint subgraph,
as there are no shared observations between the three cate-
gories. A global ranking based on inner products could then
be arbitrarily affected by the basket and item embeddings
arising from each subgraph.

2. MS Store - This dataset is based on data from Mi-
crosoft’s web-based store 2. The dataset is composed of
243,147 baskets consisting of commonly purchased items
from a catalog of 2097 different hardware and software prod-
ucts. We randomly sampled of 80% of the data for training
and kept the remaining 20% for testing. Recall from Sec-
tion 2.1 that a low-rank DPP places zero probability mass
on subsets with more than K items, where K is the num-
ber of trait dimensions in V or the rank of L. With this
constraint in mind, we use K = 15 trait dimensions for the
low-rank DPP models trained on this data, since the largest
observed basket in this dataset is composed of 15 items.

3. Belgian Retail Supermarket - This public dataset
includes 88,163 baskets consisting of 16,470 unique super-
market items. It was collected in a Belgian retail supermar-
ket over three non-consecutive time periods, as described
in [3, 4]. Again, we randomly sampled 80% of the data
for training and kept the remaining 20% for testing. We
use K = 76 trait dimensions for the low-rank DPP model
trained on this data, since the largest observed basket in this
dataset is composed of 76 items.

Since we are interested in the basket completion task,
which requires baskets containing at least two items, we re-
move all baskets containing only one item from each dataset
before splitting the data into training and test sets.

3.2 Competing Methods
We evaluate against several baselines:

1. Full-rank DPP - This DPP model is parameterized
by a full-rank L matrix, and uses a fixed-point optimization
algorithm called Picard iteration [24] for learning L. As
described in [10], a full-rank DPP does not scale well to
datasets containing large item catalogs during training or
when computing predictions.

2microsoftstore.com



2. Low-rank DPP trained using stochastic gradi-
ent ascent (SGA) - This DPP model is parameterized by
a low-rank L matrix that is factorized using a V matrix
composed of latent item trait vectors, and has a likelihood
function identical to our Bayesian low-rank DPP. In contrast
to our Bayesian approach, this optimization-based model is
trained using stochastic gradient ascent, and uses regular-
ization based on item popularity. We selected the regular-
ization hyperparameter for this model using a line search
performed with the training set.

3. Poisson Factorization (PF) - Poisson factorization
(PF) is a prominent variant of matrix factorization designed
specifically for implicit ratings [13]. The likelihood of the
PF model is based on the Poisson distribution, which is use-
ful with implicit datasets (e.g. datasets based on click or
purchase events). The evaluations in this paper are based
on the publicly available implementation3 from [5]. In PF,
Gamma priors are placed on the trait vectors. Following [6,
13], we set the Gamma shape and rate hyperparameters to
0.3.

4. Reco Matrix Factorization (RecoMF) - RecoMF
is a matrix factorization model powering the Xbox Live rec-
ommendation system [27]. The likelihood term of RecoMF
uses a sigmoid function to model the odds of a user lik-
ing or disliking an item in the dataset. Unlike PF, Re-
coMF requires the generation of synthetic negative training
instances, and uses a scheme for sampling negatives based
on popularity. RecoMF places Gaussian priors on the trait
vectors, and gamma hyperpriors on each. We use the hyper-
parameter settings described in [27], which have been found
to provide good performance for implicit recommendation
data.

5. Associative Classifier (AC) - Since association
rules are often used for market basket analysis [2, 15], we
consider an associative classifier as a competing method. We
use the publicly available implementation [8] of the Classi-
fication Based on Associations (CBA) algorithm [22]. We
set minimum support and minimum confidence thresholds
of 1.0% and 20.0%, respectively.

We use a flexible prior in our Bayesian low-rank DPP
model by setting a0 =

√
K and b0 = 1, and find that the

model is not sensitive to these settings.
The matrix-factorization models are parameterized in terms

of users and items. Since we have no explicit users in our
data, we construct “virtual” users from the contents of each
basket for the purposes of our evaluation, where a new user
um is constructed for each basket bm. Therefore, the set
of items that um has purchased is simply the contents of
bm. Additionally, we use K = 40 trait dimensions for the
matrix-factorization models.

3.3 Metrics
In the following evaluation we consider three measures:

1. Mean Percentile Rank (MPR) - Computing the
Percentile Rank of an item requires the ability to rank the
item j against all other items in C. Therefore, the MPR
evaluation results don’t include the AC model, which ranks

3Note that [5] is actually an implementation of PF with a
social component, which was disabled in the course of our
evaluations since the data does not include a social graph.

only those items for which an association rule was found.
For other models we ranked the items according to their
probabilities of completing the missing set Yn−1. Namely,
given an item i from the candidates set C, we denote by pi
the probability P (Yn∪{i}|Yn−1). The Percentile Rank (PR)
of the missing item j is defined by

PRj =

∑

j′∈C I(pj ≥ pj′)

|C| × 100%

where I(·) is an indicator function and |C| is the number
of items in the candidates set. The Mean Percentile Rank
(MPR) is the average PR of all the instances in the test-set:

MPR =

∑

t∈T PRt

|T |
where T is the set of test instances. MPR is a recall-oriented
metric commonly used in studies that involve implicit rec-
ommendation data [14, 21]. MPR = 100 always places the
held-out item for the test instance at the head of the ranked
list of predictions, while MPR = 50 is equivalent to random
selection.

2. Precision@k - We define precision@k as

precision@k =

∑

t∈T I[rankt ≤ k]

|T |
where rankt is the predicted rank of the held-out item for
test instance t. In other words, precision@k is the fraction
of instances in the test set for which the predicted rank of
the held-out item falls within the top k predictions.

3. Popularity-weighted precision@k - Datasets used
to evaluate recommendation systems typically contain a pop-
ularity bias [28], where users are more likely to provide feed-
back on popular items. Due to this popularity bias, conven-
tional metrics such as MPR and precision@k are typically
biased toward popular items. Using ideas from [28], we de-
fine popularity-weighted precision@k:

popularity-weighted precision@k =
∑

t∈T wtI[rankt ≤ k]
∑

t∈T wt

where wt is the weight assigned to the held-out item for test
instance t, defined as wt ∝ 1

C(t)β
,where C(t) is the number

of occurrences of the held-out item for test instance t in the
training data, and β ∈ [0, 1]. The weights are normalized,
so that

∑

j∈Y wj = 1. This popularity-weighted precision@k
measure assumes that item popularity follows a power-law.
By assigning more weight to less popular items, for β > 0,
this measure serves to bias precision@k towards less popular
items. For β = 0, we obtain the conventional precision@k
measure. We set β = 0.5 in our evaluation.

Figures 2, 3, and 4 show the performance of each method
and dataset for our evaluation measures. Our Bayesian low-
rank DPP model is denoted as “SGHMC low-rank DPP” in
these figures, in reference to its learning algorithm. Note
that we could not feasibly train the full-rank DPP or AC
models on the Belgian dataset, since these models do not
scale to datasets with large item catalogs. The Bayesian
SGHMC low-rank DPP generally outperforms the optimiza-
tion-based SGA low-rank DPP by a moderate amount on
most metrics and datasets, which illustrates the advantage
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Figure 3: Precision@k

of our Bayesian approach. We attribute this improvement
to the more robust regularization provided by a Bayesian
model. By averaging over all settings of the parameters that
are compatible with both the observed data and the prior,
our Bayesian low-rank DPP model deals with uncertainty
more effectively than the SGA low-rank DPP model, which
commits to a single most probable setting for each param-
eter. An additional advantage of our Bayesian approach is
that it provides a predictive distribution instead of just a
single point estimate, which enables the confidence in the
prediction to be estimated according to its variance. We
can therefore make use of this predictive confidence when
making recommendations.

We see that the RecoMF model outperforms all other
models on all metrics for the Amazon Diaper dataset. For all
other datasets, the Bayesian low-rank DPP model outper-
forms non-DPP models on MPR by a sizeable margin, and
provides consistently provide high MPR across all datasets.
For the precision@k metrics, the Bayesian low-rank DPP of-
ten leads or provides good performance that is close to the
leader.

Limitations. The popularity-weighted precision@k re-
sults in Figure 4 highlight a limitation of the DPP models.
For this metric RecoMF generally provides the best perfor-
mance, with the DPP models in second place. This behavior
may result from the scheme for sampling negatives by popu-
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Figure 4: Popularity-weighted precision@k. These results show a limitation of the DPP models. Since this
metric biases precision@k towards less popular items, we see that the RecoMF model generally provides
better predictive performance for less popular items.

larity in RecoMF, which tends to improve recommendations
for less popular items [27]. We conjecture that a different
choice of prior for our Bayesian low-rank DPP model may
improve our performance on this metric. It is also impor-
tant to note the limitations of this metric, including the
assumption that item popularity follows a power-law, and
the power-law exponent β setting of 0.5 used when comput-
ing the metric for each dataset. Due to these limitations,
the popularity-weighted precision@k results we present here
may not fully reflect the empirical popularity bias actually
present in the data.

4. RELATED WORK
Several algorithms for learning the DPP kernel matrix

from observed data have been proposed. Ref. [12] presented
one of the first methods for learning a non-parametric form
of the full-rank kernel matrix, which involves an expectation-
maximization (EM) algorithm. This work also considers
using projected gradient ascent on the DPP log-likelihood
function, but finds that this is not a viable approach since
it usually results in degenerate estimates due to the projec-
tion step. In [24], a fixed-point optimization algorithm for
full-rank DPP learning is described, called Picard iteration.
Picard iteration has the advantage of being simple to imple-

ment and performing much faster than EM during training.
Ref. [10] shows that a low-rank DPP model can be trained
far more quickly than Picard iteration and therefore EM,
while enabling much faster computation of predictions than
is possible with any full-rank DPP model.

Ref. [1] presented Bayesian methods for learning a DPP
kernel, with particular parametric forms for the similarity
and quality components of the kernel. Markov chain Monte
Carlo (MCMC) methods are used for sampling from the pos-
terior distribution over kernel parameters. Furthermore, [1]
uses a full-rank DPP kernel and thus shares the scalability
issues common to any full-rank DPP model. In contrast to
this work, and similar to [10, 12, 24], our approach uses a
non-parametric form of the kernel and therefore does not
assume any particular parametrization.

A method for partially learning the DPP kernel is studied
in [17]. The similarity component of the DPP kernel is fixed,
and a parametric from of the function for the quality compo-
nent of the kernel is learned. This is a convex optimization
problem, unlike the task of learning the full kernel, which is
a more challenging non-convex optimization problem.

A number of approaches to the basket completion problem
that we focus on in this paper have been proposed. Ref. [25]
describes a user-neighborhood-based collaborative filtering



method, which uses rating data in the form of binary pur-
chases to compute the similarity between users, and then
generates a purchase prediction for a user and item by com-
puting a weighted average of the binary ratings for that item.
A technique that uses logistic regression to predict if a user
will purchase an item based on binary purchase scores ob-
tained from market basket data is described in [20]. Ad-
ditionally, other collaborative filtering approaches could be
applied to the basket completion problem, such as the one-
class matrix factorization model in [27] and Poisson factor-
ization [13], as we illustrate in this paper.

5. CONCLUSIONS
We have presented a Bayesian method for learning a low-

rank factorization of the DPP kernel from observed data.
Previous low-rank DPP approaches have focused on learn-
ing a point estimate of kernel using an optimization method,
which requires expensive tuning of regularization hyperpa-
rameters to prevent overfitting and provide good predictive
performance. We have shown that our Bayesian low-rank
DPPmodel generally provides better predictive performance
than an optimization-based low-rank DPP model without
the need for hyperparameter tuning. Our experimental eval-
uation using several real-world datasets in the domain of rec-
ommendations for shopping baskets also shows that in many
cases our model provides better predictive performance than
competing methods, including two state-of-the-art models
based on matrix factorization.
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