Collaborative Learning of Preference Rankings

Tim Salimans
Erasmus School of Economics
Rotterdam, The Netherlands
salimans@ese.eur.nl

ABSTRACT

We propose a model for learning user preference rankings
for the purpose of making product recommendations. The
model allows us to learn from pairwise preference statements
or from (incomplete) rankings over more than two items.
We present two algorithms for performing inference in this
model, both with excellent scaling in the number of users
and items. The superior predictive performance of the new
method is demonstrated on the well-known sushi preference
data set. In addition, we show how the model can be used
effectively in an active learning setting where we select only
a small number of informative items for learning.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning

Keywords

Recommendation, Collaborative Learning, Preferences, Rank-

ing, Bayes, Active Learning, Approximate Inference

1. INTRODUCTION

Collaborative recommendation has mostly been studied
based on explicit feedback in the form of ratings, or based
on implicit binary feedback such as observed purchases or
clicks. Often real world data sources lie in between these ex-
tremes. Explicit ratings of items are rare and hard to obtain,
but often the information is richer than a simple binary sig-
nal such as click/non-click. For example, users may express
relative value judgments in comparing two different prod-
ucts, or they may provide a partial preference ranking over
available items. Such rankings can be explicit such as lists of
favorite songs, or inferred from implicit information such as
play counts for songs. To make efficient use of such informa-
tion we propose a new bilinear factor model that maps latent
user preferences to observed pairwise comparisons or rank-
ings over items. Since feedback is relative to other items,
this modeling approach is more robust than models of user

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Ulrich Paquet
Microsoft Research
Cambridge, UK
ulripa@microsoft.com

Thore Graepel
Microsoft Research
Cambridge, UK
thoreg@microsoft.com

preferences on an absolute scale. Yet it makes more efficient
use of available data compared to methods that only allow
for binary feedback. Research [2] also shows that people find
it easier to formulate their preferences in such a relative way.
An additional advantage is that modeling preference rank-
ings directly leads to a ranking of items to be recommended
to users, which is the end goal of many recommendation
systems.

We present the new user preference model in Section 2,
and develop two methods of performing inference in this
model in Section 3. In Section 4 we apply the new model to
learn correspondents’ preferences over sushi items and show
that the new method compares favourably to other existing
methods. In Section 5 we discuss the potential of the model
to guide a more active learning strategy, where we actively
and selectively ask the user for relative feedback on different
items. Finally, Section 6 concludes.

2. THE MODEL

Each of the N users and M items are represented with low-
rank factors: user ¢ with a K x 1 parameter vector w;, and
item j with a K x 1 parameter vector v;. As some items are
predominantly more popular than others, a univariate bias
parameter b; is added to each. One might also add similar
user-specific offsets to the model.

The user and item features are combined into a latent
score sij,

sig ~ N(ujvj +b5,1) (1
which represents how much user ¢ likes item j. This latent
score is generated by a bilinear model similar to the one used
in Matchbox [7] and many other papers in the collaborative
filtering literature.

The relative ordering of a set of scores determines a user’s
preference of one item over the next. If user ¢ prefers items
J1 > j2 (> meaning “is preferred to”), we require that s; ;, >
Si,jo- We then observe a number of pairwise comparisons
between the different latent scores s; ;. For each user, we
denote these by C¢, a sparsely filled matrix of dimension
M x M, with elements

i .

cj =1 if 55 > 855
i .

cj i =—1 if 5i5 < 85,5
7 _ .

c;,;» = empty if unknown . (2)

These observed preferences can be explicitly provided by
the user in the form of a ranking or a number of pairwise
preference statements, or they can be inferred from the be-
havior of the user, for example by ordering the time spent

interacting with different items. Section 4 gives an example
application, where we use the model to learn stated prefer-
ences over sushi items. Importantly, if the preferences are
expressed as a ranking of items, one might always find a set
{s:,;} that is consistent over the ranked items j, and hence
consistent with user #’s observations C?. The data likelihood
is therefore

p(C|S) = HH[

i=1(j,j")ect

(50 = 510) >0, (3)

where I[true] = 1 and I[[false] = 0. This is similar to the
TrueSkill model of [1].

We assign independent normal priors to the user and item
vectors, with

(wi)g ~ N@O,7), fori=1,...,N,k=1,...,K
(vj)k ~N@O,7), forj=1,...., M, k=1,....K
b; ~ N(0,7) , forj=1,...,M. (4)

The two hyperparameters m and 1 are set manually, but
can also be inferred from the data, as explained in [6]. For
brevity we do not consider this here. The full Bayesian net-
work of our model is given in Figure 1.

HH @ "
K

S

o w
M

| J M

| J

Figure 1: The proposed Bayesian factor model for
learning preference rankings

The next section discusses how to infer the posterior dis-
tribution of the parameters U, V', b conditional on the ob-
served preferences.

3. BAYESIAN INFERENCE

The model proposed in the last section does not admit a
closed form posterior distribution for the parameters U,V , b
that we need in order to make recommendations. We there-
fore propose two strategies for approximating this posterior
distribution: a Gibbs sampling algorithm to generate sam-
ples from the posterior distribution, and a hybrid message
passing algorithm to minimize local divergence measures be-
tween the posterior distribution and a factored approxima-
tion. The performance and scaling of these two algorithms
is evaluated on real world data in Section 4.

3.1 Gibbs Sampling

We can generate correlated samples from the posterior dis-
tribution using a Gibbs sampling algorithm that iteratively
samples from the conditional distributions p(u;|V, b, S),

p(v;,b;|U, S) and p(si ;|8 /5, wi, vj, by, C"), for all 4, j, where
s;,/; denotes the vector of all scores for user ¢ excluding
the j-th. The conditional distributions p(u;|V,b,S) and
p(v;,b;]U, S) are Gaussian and have been used by several
authors before. See [6] for their precise form. The full condi-
tional distributions p(s;;|s;,/;, ui, v;,b;, C*) are univariate
truncated normal, which follows from the Gaussian condi-
tional prior (1) and the truncating likelihood (3).

The s;,; are most efficiently updated by first performing
a forward pass over all scores for a given user i, sampling
the scores s;,; in the order of the observed preference rank-
ing, followed by a backward pass sampling in the reversed
order. (Observe that we do not have to sample those s;,;
for which we have no feedback.) We find that this updating
schedule does a good job of sampling the relative differences
between the scores, but that it is slow in changing the over-
all level of the scores. To further improve the mixing of
the Gibbs sampling algorithm we therefore follow the for-
ward and backward pass by an additional Monte Carlo step
that simultaneously shifts all scores for a given user, while
leaving the stationary distribution of the Markov chain in-
variant. The update equation for this step is given as

Sij 4 Sij+di, withyj=1,...,L;
di ~ (fz Si, L 1)7 (5)

with L; the number of items for which user ¢ has provided
feedback, f; the mean predicted score for those items, and
§; the mean sampled score.

Since sampling the scores using the steps outlined here is
relatively quick compared to sampling U,V and b, we find
that the most efficient implementation of Gibbs sampling
resamples S multiple times per iteration.

3.2 Hybrid VB/EP posterior approximation

The Gibbs sampling algorithm outlined in the last section
is relatively fast and can be applied at quite a large scale,
however for very large data sets a deterministic approxima-
tion of the posterior distribution may provide a better trade-
off between accuracy and computational cost. An additional
advantage of such a deterministic approximation is that it
converges to a single mode of the posterior distributions and
that it can be represented more compactly than the Gibbs
sampling approximation, which reduces the computational
cost of generating new recommendations for users given the
posterior approximation. We develop a new algorithm to
construct such a deterministic approximation, making use of
Expectation Propagation (EP) [5] for the ranking likelihood
(3) and Variational Bayes for the latent factor model. EP
provides an excellent approximation for the uni-modal pos-
terior resulting from the truncated Gaussian in (3), whereas
Variational Bayes picks and locally approximates the poste-
rior mode resulting from the product factor in (1).

We approximate the posterior distribution p(U, V', b|C)
with a fully factorized Gaussian

Hquzk qu]k Hq (6)

although our inference algorithm can also be used with a
Gaussian approximation that preserves some of these de-
pendencies, e.g. q(U,V,b) =[], q(v;,b;) [, q(ui). In or-
der to optimize this approximate posterior distribution we
first approximate the likelihood term p(C|S) by a product

q(U,V,b)

of univariate Gaussian density functions in s; j, i.e.

o(C|S) =[] ¢(si.s; magr o2.5), (7
i,
with ¢(-) a Gaussian pdf, which we initialize to have infinite
variance. The parameters of the likelihood approximation,
4,5 and 0112, ; are then set using EP. This EP step starts with
the construction of a 'pseudo prior’ on the s; j,

Q(si) o D805 1l gy 005) D(80.55 thig, 057),
pi; = Egsi; and 0‘,‘2; = Varg s;,j. (8)

Using this pseudo prior, the algorithm for determining the
approximate likelihood terms ¢(s;,;; (4,5, aij) is identical to
that used by the TrueSkill rating system [1], with the scores
s;,5 taking the place of the 'player skills’ in that system. We
refer the reader to [1] for the specifics on the EP step.

After the EP step, we optimize the posterior approxima-
tion using Variational Bayes, i.e., we choose our posterior
approximation to solve

max K, log q(C|S)p(U,V,b) —logq(U,V,b). (9)
q(U,V,b)

This step can be implemented efficiently using the Varia-
tional Bayes Expectation Maximization (VBEM) algorithm.
The resulting update equations can be found in [6]. How-
ever, note that for our application the expectations with re-
spect to s;; in (9) follow from ¢(U, V, b) rather than from
a separate posterior approximation on s; j, as is more com-
monly used (e.g. [6]). By avoiding this explicit approxi-
mation of p(S|C), the posterior approximation ¢(U, V', b)
gains in accuracy without increasing computational cost.
The VBEM and EP steps are repeated until convergence.

3.3 Parallel Computation

For many real world applications of recommendation al-
gorithms, both the number of users as well as the number
of items is very large, necessitating the use of parallel com-
putation to speed up inference. Both algorithms described
above can be completely parallelized over users when up-
dating S and U, and over items when updating V' and b,
which is an important advantage over the message passing
algorithm used in [7]. Since in our application the number
of items is quite small compared to the number of users, we
found it most efficient to distribute the users and their feed-
back over multiple threads. Within each thread, S and U
can then be updated without requiring any communication
across threads. Every update of V' and b then requires each
thread to submit the sufficient statistics for the update of
these variables and to receive the updated values. Since the
number of items is relatively low this adds very little over-
head and it allows us to speed up inference almost linearly
with the number of available computation nodes.

4. LEARNING SUSHI PREFERENCES

In order to compare the new algorithms to existing meth-
ods we evaluate them on the sushi preference data of [3].
This data set was generated by asking 5,000 survey corre-
spondents to order a subset of 100 sushi types according
to their preferences. Each correspondent provided two such
ordered lists containing 10 different sushi types. [3] evalu-
ate their collaborative ranking approach by training on list
B’ and using the model to predict the order of list ’A’.

They measure the performance of their method by the aver-
age Spearman correlation between the predicted and realized
ranking. We use this measure to compare the performance
of the new method to the "Nantonac’ algorithm of [3], and
also to compare our two inference algorithms against each
other. Using this measure, we found that the maximum pre-
dictive accuracy was reached after about 1000 draws of the
Gibbs sampler after a burn-in period of 100 draws, or after
50 iterations of the VB/EP algorithm. The corresponding
results are shown in Table 1 below.

Table 1: Prediction accuracy of different methods
on Sushi preference data

METHOD SPEARMAN COR. TEST
NEW FACTOR MODEL, GIBBS 0.56
NEW FACTOR MODEL, VB/EP 0.54
NANTONAC [3] 0.49

The results in Table 1 show that the new method com-
pares favorably to that of [3]: The Gibbs sampling version
of the new algorithm improves the Spearman correlation of
the predictions with the test set by 0.07 in comparison with
the Nantonac method, while the deterministic posterior ap-
proximation gives an improvement of 0.05. The relatively
small performance difference between the Gibbs sampling
inference algorithm and the deterministic posterior approx-
imation suggests that the latter is the more practical choice
for real world applications, taking into account its benefits
discussed in Section 3.2.

S. ACTIVE LEARNING

In order to improve our recommendations we may actively
ask users to provide explicit feedback on certain items. This
is most commonly done on an absolute rating scale, i.e. by
asking the users to rate items. However, some studies in-
dicate that people are better able to formulate their prefer-
ences in a relative way, by ranking multiple items, see e.g. [2].
Such relative preference statements can be used directly by
the model presented in Section 2.

Asking the user for feedback is costly as it will take time
for the user to think about his or her preferences. In ad-
dition, users may find it difficult to provide a full ranking
of a very large list of items, so the the number of items we
can enquire about is limited. When selecting this limited
number of items we should take into account that not ev-
ery item will be equally informative. A popular measure of
the amount of information contained in a data point is the
entropy reduction in our posterior distribution that we can
expect upon conditioning on that data point [4]. By max-
imizing the expected entropy reduction in our posterior we
can select the most informative items to present to the user
for feedback.

Since the posterior distribution of the model given in Sec-
tion 2 is not available in closed form, we cannot maximize
the expected entropy distribution exactly. However, we can
get an estimate of the amount of information in each possi-
ble observation by making use of posterior approximations.
In doing so we will focus on the entropy reduction in the
posterior distribution of the user parameters g(u;), which
— due to their greater number — are generally much more
uncertain than the parameters of the items. To derive an
expression for the approximate entropy reduction after ob-
taining a new observation, we assume a factorized posterior

approximation over U,V ,d and S, optimized using Varia-
tional Bayes. Note that this is not exactly the same as the
approximation presented in Section 3.2, where we integrated
out S in updating U,V and d. The Variational Bayes EM
algorithm then uses the following update equation for the
approximate posterior distribution on the user parameters:

q(u;) = N(p, %), with (10)

-1
1
o=k +> K, [”ﬂ’}]] p=3{> Eqlv; (si;— bj)}]
J J
The entropy of this approximate posterior distribution is
given by

H(q(u;)) o< 0.51og 2] . (11)

After adding a new item [to the ranking of the user we
can update the approximate posterior distribution g(u;) to
¢ (u;) = N(¢',%'), while keeping q(V,d) fixed. The new
entropy of ¢'(u;) is then given by

H(qd (uwi)) o 0.5log|Y| = —0.5log| " + E v
o H(q(u;)) —0.5log(1 +Eqv;Xv;) (12)

In order to maximize the information gain, or entropy re-
duction, we should thus ask the user to rank that item for
which the parameter vector v; has the highest expected Ma-
halanobis norm ||v;||x with respect to the covariance matrix
of the current posterior approximation. This has the effect
of selecting items that are most informative for exactly those
elements of the user vector u; of which we are most uncer-
tain. Note that for the approximate entropy (12) it does
not matter what other item we compare the new item [to,
or even whether we have a complete ranking with the new
item or just a partial ranking. While this is obviously a
very crude approximation, it still gives us a useful rule for
actively selecting training examples as shown below.

We evaluate this active selection strategy using the sushi
preference data, and we compare the resulting prediction
accuracy with that obtained under random selection of the
training examples. For each user the data set contains a
training set ranking of 10 items of sushi. We actively select
a subset of these items for each user by starting out with
an empty selection set and subsequently adding that sushi
item that minimizes the expected entropy in Equation (12).
We then use the resulting selection of training examples to
predict the ranking of the test set. For comparison, we do
the same while selecting randomly from the remaining sushi
items at each iteration. We display the accuracy of the re-
sulting predictions for different numbers of selected items
from a minimum of 3 to the maximum of 10. As can be seen
from Figure 2 the active selection method leads to faster
learning of the correct preferences than random selection of
training examples.

Note that the performance measures of the two selection
methods in Figure 2 converge as the number of training ex-
amples increases because both methods select from the same
limited set of 10 potential examples. For small numbers of
examples the performance of the active selection method im-
proves much faster than under random selection, indicating
the practical value of such an active learning strategy for
real life applications, where the user typically only provides
feedback on a relatively small fraction of items.

054

= L L T
% ///
H -
E nsatb — — —active selection //_/ |
= e
z -
o 0&f - B
=] ~
k5] -
(=
= | / |
E 0.45 o
a s
5 s
= D46} 4
w e
z -7
= -
S naf e |
= .
o
= e
§ 042r 7 4
T i
(% S
04 . L L L . .
3 4 a B 7 g 9 10

number of training examplas, selected out of 10 total examples

Figure 2: Prediction accuracy obtained using active
versus random selection of training examples

6. CONCLUSION

We have proposed a Bayesian factor model to learn users’
preference rankings for the purpose of product recommen-
dation. Learning preference rankings with this model can
be done quickly and efficiently at large scale, using the two
inference algorithms we have developed. The accuracy of
our model was demonstrated on a real world data set and
was shown to improve upon existing methods. In addition,
we have shown that the model can also be used effectively
for active preference elicitation. By actively selecting prod-
uct comparisons to present to the user, we can uncover the
user’s preferences without requiring large amounts of feed-
back. This makes the process of preference elicitation much
less burdensome on the user, and it can dramatically im-
prove prediction accuracy for real life applications.

7. REFERENCES

[1] P. Dangauthier, R. Herbrich, T. Minka, and
T. Graepel. Trueskill through time: Revisiting the
history of chess. Advances in Neural Information
Processing Systems, 20:931-938, 2008.

[2] S. R. Jaeger, A. S. Jorgensen, M. D. Aaslyng, and
W. L. Bredie. Best-worst scaling: An introduction and
initial comparison with monadic rating for preference
elicitation with food products. Food Quality and
Preference, 19(6):579 — 588, 2008.

[3] T. Kamishima and S. Akaho. Nantonac collaborative
filtering. In Proceedings of The International Workshop
on Data-Mining and Statistical Science, pages 117-124,
2006.

[4] D. J. MacKay. Information-based objective functions
for active data selection. Neural Computation,
4:590-604, 1992.

[5] T. P. Minka. Expectation propagation for approximate

Bayesian inference. In UAI °01: Proceedings of the 17th

Conference in Uncertainty in Artificial Intelligence,

pages 362-369, 2001.

U. Paquet, B. Thomson, and O. Winther. A

hierarchical model for ordinal matrix factorization.

Statistics and Computing, 21(3):1-13, 2011.

[7] D. H. Stern, R. Herbrich, and T. Graepel. Matchbox:
large scale online Bayesian recommendations. In
Proceedings of the 18th international conference on
World wide web, pages 111-120, 2009.

6

