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Abstract

We consider the problem of inferring the dynamics of a moving ball from sequences of
images. We assume that the observations are generated from a low-dimensional latent linear
Gaussian state-space model through a nonlinear mapping. We compare two variational
approximations in a controlled environment.

1. Introduction

Inferring the dynamics of moving objects from pixel observations has been the subject of
extensive study in recent literature. Deep recurrent neural networks have demonstrated
impressive results on prediction and related tasks (Babaeizadeh et al., 2018; Chiappa et al.,
2017; Denton and Birodkar, 2017; Finn et al., 2016; Oh et al., 2015; Srivastava et al.,
2015; Sun et al., 2016), and probabilistic extensions have enabled to additionally learn
interpretable internal representations and rich probabilistic reasoning capabilities (Archer
et al., 2015; Fraccaro et al., 2016; Gao et al., 2016; Krishnan et al., 2017).

Fraccaro et al. (2017) showed that, by treating positions as auxiliary variables, the dy-
namics can be described in the low-dimensional space of positions and velocities, e.g. by
using a state-space model representation of Newtonian laws. This approach used a varia-
tional autoencoder (VAE)-type approximation (Kingma and Welling, 2014; Rezende et al.,
2014) which typically requires annealing of evidence lower bound (ELBO) terms to ensure
that the dynamics are correctly accounted for during training.

In this paper, we evaluate whether a more explicit use of the state-space dynamics in
the variational distribution yields better posterior approximations while also using a more
relaxed annealing schedule when optimizing the ELBO. This work is in line with other recent
attempts to overcome the issue of decoupling between the generative model and variational
distribution (Lin et al., 2018; Rezende and Viola, 2018) in VAE-type approaches, which is
particularly severe for time-series.

2. A Generative Model for Videos of Physical Motion

Our observations are experimentally controlled sequences of images x1:T ≡ x1, . . . , xT rep-
resenting the movement of a ball in the two-dimensional plane, as white pixels on a black
background (Fig. 1a); see App. A.1 for details. As a generative model, we assume that each
xt is rendered from a noisy position at ∈ R2 using a neural network (NN) that returns a
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Figure 1: (a) An experimentally controlled video, with images overlaid over time. (b) The
generative model in (2). (c) The directed graph variational approximation of (3). (d) The
undirected graph variational approximation of (5).

Bernoulli probability for each pixel of a canvas, pθ(xt|at) = B(xt ; sigmoid(NN(at; θ))). We
assume that at is generated from a linear Gaussian state-space model (LGSSM):

zt+1 = Azt + u+ εt, εt ∼ N (εt; 0,Σz), at = Bzt + ηt, ηt ∼ N (ηt; 0,Σa) , (1)

with z1 = µ + ε1, ε1 ∼ N (z1; 0,Σ). We constrain the transition and emission matrices A
and B to describe Newtonian dynamics, so that the hidden state zt ∈ R4 represents the
position and velocity, at ∈ R2 the noisy position, and u ∈ R4 allows modelling of a constant
external force such as gravity. The joint distribution of all random variables factorizes as

pθ,γ(x1:T , a1:T , z1:T ) =
{∏T

t=1pθ(xt|at)
}

︸ ︷︷ ︸
NN pθ(x1:T |a1:T )

pγ(a1|z1)pγ(z1)
{∏T

t=2pγ(at|zt)pγ(zt|zt−1)
}

︸ ︷︷ ︸
LGSSM prior pγ(a1:T ,z1:T )

, (2)

where γ = {µ,Σ, A, u,Σz, B,Σa}, pγ(zt|zt−1) = N (zt;Azt−1 + u,Σz), and pγ(at|zt) =
N (at;Bzt,Σa) (see Fig. 1b).

Due to the nonlinearity in pθ(xt|at), the marginal likelihood pθ,γ(x1:T ) and posterior
distribution pθ,γ(a1:T , z1:T |x1:T ) are intractable. In Secs. 3 and 4, we introduce two different
approximating distributions qφ,γ(a1:T , z1:T |x1:T ) ≈ pθ,γ(a1:T , z1:T |x1:T ) for dealing with this
problem (full details are given in App. B).

3. Directed Graph Variational Approximation

The LGSSM formulation of the latent dynamics allows us to approximate the intractable
distribution pθ,γ(a1:T , z1:T |x1:T ) with the product of the tractable distribution pγ(z1:T |a1:T )

and an approximating distribution qDφ (a1:T |x1:T ) =
∏T
t=1 q

D
φ (at|xt) for pθ,γ(a1:T |x1:T ),

qDφ,γ(a1:T , z1:T |x1:T ) =
{∏T

t=1q
D
φ (at|xt)

}
pγ(z1:T |a1:T ) . (3)

Fig. 1c shows the approximation as a directed graphical model, which we distinguish with
superscripts D. The factors qDφ (at|xt) = N (at ; µφ(xt), Σφ(xt)) are diagonal Gaussians with
shared neural network parameters φ. The approximation in (3) enables us to write the
evidence lower bound (ELBO) LD to log pθ(x1:T ) as

LD(θ, γ, φ) = EqDφ
[∑

t log pθ(xt|at)
]
−EqDφ

[∑
t log qDφ (at|xt)

]
+ EqDφ

[
log pγ(a1:T )

]
︸ ︷︷ ︸

−KL(qDφ (a1:T |x1:T ) ‖ pγ(a1:T ))

, (4)
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where expectations are over qDφ (a1:T |x1:T ). Notice that γ does not appear in the distribution
over which expectations are computed. The first and last terms are computed using Monte-
Carlo while the middle term is computed analytically. This approach is similar to the one in
Fraccaro et al. (2017), but differs as the ELBO averages over qDφ (a1:T |x1:T ) rather than over

qDφ (a1:T , z1:T |x1:T ). The Kullback-Leibler (KL) term in (4) indicates how close the positions
that were estimated from the image sequence are to that of the LGSSM.

As the approximating distribution qDφ (a1:T |x1:T ) does not explicitly incorporate the
LGSSM distribution, we found that, to gives satisfactory results, it needs to be forced
to “listen” to the LGSSM through a carefully annealed high to low weighting of the KL
term. To alleviate this problem, in the next section we describe an alternative approach
which makes more explicit use of the LGSSM dynamics in the variational distribution.

4. Undirected Graph Variational Approximation

We enable the conditional distribution qUφ,γ(a1:T |x1:T ) to incorporate or marginalize over
plausible latent paths given by the LGSSM by allowing q∗φ(at|xt) to model uncertain “inputs”
to the LGSSM, as Gaussian factors in an undirected (U) graphical model,

qUφ,γ(a1:T , z1:T |x1:T ) =
1

ZU
φ,γ(x1:T )

{∏T
t=1q

∗
φ(at|xt)

}
pγ(a1:T |z1:T ) pγ(z1:T ) . (5)

In comparison to (3), we note that two distributions q∗φ(at|xt) and pγ(at|zt) are multiplied
together to yield a local belief for at. As is common to undirected graphical models, an
additional normalizing constant ZU

φ,γ(x1:T ) =
∫
a1:T

∫
z1:T

q∗φ(a1:T |x1:T ) pγ(a1:T |z1:T ) pγ(z1:T )
is required. The undirected approximation is shown in Fig. 1d. This approximation is
similar to the linear dynamical system approximation in Lin et al. (2018), but differs in the
inclusion of the auxiliary variables a1:T .

We write the ELBO as an average over qUφ,γ(z1:T |x1:T )1:

LU(θ, γ, φ) = EqUφ,γ
[∑

t log pθ,γ(xt|zt)
]

−EqUφ,γ
[∑

t logN (µ∗φ(xt);Bzt,Σa + Σ∗φ(xt))
]

+ logZU
φ,γ(x1:T )︸ ︷︷ ︸

−KL(qUφ,γ(z1:T |x1:T ) ‖ pγ(z1:T ))

. (6)

The expectations over qUφ,γ(zt|x1:T ) are found by integrating out a1:T and using Kalman
filtering and Rauch-Tung-Striebel smoothing over z1:T (Barber et al., 2011). The middle
term is the cross entropy of Gaussians which can be computed in closed form. More details
are given in App. B.2.

By modelling a1:T |x1:T jointly as an average over latent z1:T trajectories, (5) gives sub-
stantially better ELBOs than (3), which uses a factorized inference “layer” for at|xt. We
illustrate this next experimentally in Sec. 5. Numerous other results are presented in App. C.

1. We might equally write an ELBO by averaging over qUφ,γ(a1:T |x1:T ). This idea is revisited in App. B.2.2.
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Figure 2: Comparison of the inference models described in Secs. 3 and 4 for different
β0 → β = 1 KL annealing schedules. Top left. At the best local maximum, ELBO (5) is a
better bound than (3) by around 28 nats over 30 frames. Top right. The KL terms of (3)
and (5). Bottom left. The “reconstruction” terms of (3) and (5). Bottom right. Ground
truth recovery of latent dynamics. The mean squared error (MSE) is relative to the ground
truth (and scale invariant with respect to q(a1:T |x1:T )). Over various seeds, qUφ,γ(a1:T |x1:T )
recovers the ground truth latent dynamics much more robustly and consistently than the
factorized qDφ (a1:T |x1:T ). Samples from both these distributions were matched and compared
to ground truth trajectories; see App. A.3.

5. Experiments

We compared the inference models described in Secs. 3 and 4 on a synthesized dataset of
videos of a cannonball fired with a random speed and angle (see App. A.1 for details). We
multiplied the KL-term in the ELBO with a β-term, initialized at β0, and annealed down
to reach β = 1 at 10,000 gradient descent iterations (or annealed up, if β0 < 1). After that,
β was kept at one, so that the results highlight various local maxima which are not escaped
from.

Fig. 2 shows the results for different β0 → β = 1 annealing schedules after 100,0000
training iterations (each experiment was repeated 10 times with different random initial-
izations). We can see that the undirected inference model gives a substantially lower KL
divergence from the prior dynamics with better or comparable reconstruction error, and
that it is more robust to the annealing schedule.
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Appendix A. Experimental Setup

A.1. Dataset

The dataset used for the experiments was generated using the following LGSSM represen-
tation of Newtonian laws

A =

(
I δI
0 I

)
, u = −g(0 0.5δ2 0 δ)T , B = (I 0) , (7)

where I is the 2 × 2 identity matrix, δ = 0.015 is the sampling period, and g = 9.81 is
the gravitational constant. We used Σz = 0, and Σa = 0.001I. Each ball was shot with
random shooting angle in the interval (20◦, 70◦) from the left side of the x-axis in the interval
(−0.5,−0.1). The initial position on the y-axis was sampled in the interval (−0.5, 0.5). The
initial velocity was sampled in the interval (2, 4).

To render the positions into white patches of radius R = 2 in the image, a1:T were re-
scaled to the interval [R,H − 1−R]× [R,W − 1−R] where H = 32, W = 32 are the height
and width of the image respectively. This re-scaling ensured that each ball was always fully
contained in the image.

A.2. Network Architectures and Training

Both the encoder and decoder networks were fully connected networks with a single hidden
layer of 1024 nodes. For the decoder network pθ(xt|at) the initial layer had two nodes for at
and the final layer had 1024 nodes whose outputs were passed through the sigmoid function
to return a Bernoulli probability for each pixel of the 32× 32 canvas, xt,

xt ∼ pθ(xt|at) = B(xt ; sigmoid(NN(at; θ))) ,

NN(at; θ) = W θ
2 tanh(W θ

1 at + bθ1) + bθ2 .

The learned parameters were thus all weight and bias matrices θ = {W θ
1 ,W

θ
2 , b

θ
1, b

θ
2}.

The encoder networks, qDφ (at|xt) and q∗φ(at|xt), had the same architecture with initial
and final layers of 1024 and 4 nodes respectively, the final nodes outputting the mean and
log variance of the approximate posterior,

h = tanh(W φ
1 xt + bφ1 ), µφ(h) = W φ

µ h+ bφµ, σφ(h) = exp(W φ
σ h+ bφσ) ,

6
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Figure 3: Example training data. Left: individual frames. All others: 30 frames superim-
posed with time index indicated by shade.

where N (at;µφ(h), σ2φ(h)) is the factor in the respective inference models; and the learned

network parameters were φ = {W φ
1 , b

φ
1 ,W

φ
µ , b

φ
µ,W

φ
σ , b

φ
σ}. All weight matrices were randomly

initialized from N (·; 0, 1/d), where d is the number of matrix columns, and all biases were
initialized to zero.

We constrained the transition and emission matrices A and B as in (7), with δ initialized
to 0.015, except for Fig. 6, where we instead simply initialized A to the 4×4 identity matrix
and B to a 2× 4 random matrix with elements sampled from N (·; 0, 1). Σ, Σz and Σa were
constrained to be diagonal and initialized to identity matrices, and µ was initialized to a
random vector with elements sampled from N (·; 0, 1).

The KL divergence term of the ELBO was exponentially annealed using the following
schedule

βi =

{
1 + (β0 − 1) exp (−i/2000) i ≤ 10, 000

1 otherwise

(at iteration i = 0, we have β = β0; at iteration i = 10, 000, we have β = 1+(β0−1)e−5). We
performed ablation studies without annealing, in which case βi = β0 until 10,000 iterations
and βi = 1 thereafter.

All parameters were optimized end-to-end using the Adam optimizer with a learning rate
of 0.001 and default values β1 = 0.1, β2 = 0.999 (these two β’s being optimizer parameters,
not a KL annealing scalar) and ε = 10−8 with a minibatch size of 20 videos. Training was
stopped after 100,000 iterations.

With these settings, one training iteration typically took 150ms for the directed model
and 400ms for the undirected model on a Nvidia P100 GPU. We believe that this is due to
the extra Cholesky decompositions that are required.
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A.3. Ground Truth Mean Squared Error Computation

We measured the ability of the directed and undirected inference models to learn a physically
plausible latent domain by using a linear model to predict the ground truth trajectory of
the ball, agt1:T , using a sample from the approximate posterior â1:T .

For the directed model, we sampled the inference network directly, â1:T ∼
∏T
t=1 q

D
φ (at|xt).

For the undirected model, we approximated samples from qUφ,γ(a1:T |x1:T ) by computing the

marginals qUφ,γ(zt|x1:T ) = N (zt ; µzt , Σzt) with Kalman filtering and Rauch-Tung-Striebel
smoothing (with at averaged out). We then drew samples â1:T from the average of pγ(at|zt)
over this marginal: â1:T ∼

∏T
t=1N (at;Bµzt , B

TΣztB + Σa).
2

Using globally estimated parameters WMSE ∈ R2×2 and bMSE ∈ R2 to project (rotate,
scale, move) each model’s inferred trajectory onto the ground truth space. The mean
squared error in the ground truth domain is given by

MSE(â1:T ; agt1:T ) =
1

T

∑
t

∥∥∥WMSEât + bMSE − agtt
∥∥∥2 . (8)

Equation 8 is the squared error from a linear regression model using â1:T to predict the
ground truth agt1:T . The parameters were estimated from N videos {xn1:T }Nn=1 for which we

had the ground truth {agt,n1:T },

WMSE, bMSE = arg min
W,b

∑
n

∑
t

∥∥∥Wânt + b− agt,nt

∥∥∥2 , (9)

for each of the two models.

Appendix B. Approximations

The true posterior distribution from the generative model is given by

pθ,γ(a1:T , z1:T |x1:T ) =
pθ(x1:T |a1:T ) pγ(a1:T , z1:T )

pθ,γ(x1:T )

=
pθ(x1:T |a1:T ) pγ(a1:T )

pθ,γ(x1:T )

pγ(a1:T , z1:T )

pγ(a1:T )

= pθ,γ(a1:T |x1:T ) pγ(z1:T |a1:T ) . (10)

In the posterior factorization, the first factor is a function of both θ and γ, and hides an
average over z1:T . In App. B.1 and B.2 we consider the two approximations

pθ,γ(a1:T |x1:T ) pγ(z1:T |a1:T ) ≈ qDφ (a1:T |x1:T ) pγ(z1:T |a1:T )

=
{∏

t

qDφ (at|xt)
}
pγ(z1:T |a1:T ) , (11)

2. In truth, a forward filtering backward sampling pass is required to sample ẑ1:T ∼ qUφ,γ(z1:T |x1:T ) jointly.
These should then be used to sample â1:T ∼ qUφ,γ(a1:T |x1:T , ẑ1:T ), as node at includes a local potential
q∗φ(at|xt).

8
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and

pθ,γ(a1:T |x1:T ) pγ(z1:T |a1:T ) ≈ qUφ,γ(a1:T |x1:T ) pγ(z1:T |a1:T ) . (12)

The difference between these approximations is subtle but important: the first factor in
(11) factorizes, whilst the first factor in (12) incorporates an average over z1:T – just like
(10) – and doesn’t factorize. This simple observation summarizes why, in the experimental
results, LU(θ, γ, φ) from (6) yields a much tighter bound than LD(θ, γ, φ) from (4).

B.1. Directed Graph Variational Approximation: Derivations

B.1.1. Evidence Lower Bound

Using qDφ (a1:T |x1:T ) =
∏T
t=1 q

D
φ (at|xt) from (3), we bound the log marginal likelihood with

log pθ,γ(x1:T ) =

∫
a1:T

pθ(x1:T |a1:T ) pγ(a1:T )

≥
∫
a1:T

qDφ (a1:T |x1:T ) log
pθ(x1:T |a1:T ) pγ(a1:T )

qDφ (a1:T |x1:T )

= EqD(a1:T |x1:T )[log pθ(x1:T |a1:T )]−KL
(
qDφ (a1:T |x1:T )

∥∥ pγ(a1:T )
)

= LD(θ, γ, φ) (13)

to yield the ELBO in (4).

B.2. Undirected Graph Variational Approximation: Derivations

To obtain the undirected model of Sec. 4, we replace the pθ(xt|at) factors in the generative
model with Gaussian approximations q∗φ(at|xt) = N (at;µ

∗
φ(xt),Σ

∗
φ(xt)), where µ∗φ(xt) and

Σ∗φ(xt) are neural networks returning the mean and a diagonal covariance matrix.

Before deriving the ELBO, we first present an expression for ZU
φ,γ(x1:T ) in (3), and

describe how it is computed analytically:

ZU
φ,γ(x1:T ) =

∫
z1:T

pγ(z1)
T∏
t=2

pγ(zt|zt−1)
∫
a1:T

T∏
t=1

pγ(at|zt) q∗φ(at|xt)

=

∫
z1:T

pγ(z1)
T∏
t=2

pγ(zt|zt−1)
T∏
t=1

(∫
at

N (at;Bzt,Σa)N (at;µ
∗
φ(xt),Σ

∗
φ(xt))

)
(14)

=

∫
z1:T

pγ(z1)

T∏
t=2

pγ(zt|zt−1)
T∏
t=1

N (0;Bz − µ∗φ(xt),Σa + Σ∗φ(xt)) . (15)

The step from (14) to (15) is done by noting that the integral over at is the convolution
of two Gaussian distributions, the density of the difference of random variables, evaluated
at zero. By rewriting N (0;Bz − µ∗φ(xt),Σa + Σ∗φ(xt)) = N (µ∗φ(xt);Bz,Σa + Σ∗φ(xt)), (15)
is the directed graph probability distribution for an LGSSM where the µ∗φ(x1), .., µ

∗
φ(xT )

are treated as point observations with unique emission noise covariances for each time step
Σa + Σ∗φ(xt). The z1:T variables may be integrated out by one forward pass of Kalman

filtering to give ZU
φ,γ(x1:T ).

9
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B.2.1. Evidence Lower Bound

We lower bound log pθ,γ(x1:T ) using the marginal qUφ,γ(z1:T |x1:T ), as it is defined in (5). One

can also derive a lower bound using the marginal qUφ,γ(a1:T |x1:T ); we present this bound in
App. B.2.2.

We first integrate out a1:T from the inference model in (5):

qUφ,γ(z1:T |x1:T ) =

∫
a1:T

qUφ,γ(a1:T , z1:T |x1:T )

=
1

ZU
φ,γ(x1:T )

pγ(z1:T )

T∏
t=1

∫
at

q∗φ(at|xt) pγ(at|zt)

=
1

ZU
φ,γ(x1:T )

pγ(z1:T )

T∏
t=1

N (µ∗φ(xt);Bzt,Σa + Σ∗φ(xt)) . (16)

The evidence lower bound LU(θ, γ, φ) is given by:

log pθ,γ(x1:T ) = log

∫
z1:T

pθ,γ(x1:T |z1:T )pγ(z1:T )

≥
∫
z1:T

qUφ,γ(z1:T |x1:T ) log
pθ,γ(x1:T |z1:T )pγ(z1:T )

qUφ,θ(z1:T |x1:T )

=

∫
z1:T

qUφ,γ(z1:T |x1:T ) log
ZU
φ,γ(x1:T ) pθ,γ(x1:T |z1:T )pγ(z1:T )∏T

t=1N (µ∗φ(xt);Bzt,Σa + Σ∗φ(xt)) pγ(z1:T )

= EqUφ,γ

[∑
t

log pθ,γ(xt|zt)

]

−EqUφ,γ

[∑
t

logN (µ∗φ(xt);Bzt,Σa + Σ∗φ(xt))

]
+ logZU

φ,γ(x1:T )︸ ︷︷ ︸
−KL(qUφ,γ(z1:T |x1:T ) ‖ pγ(z1:T ))

= LU(θ, γ, φ) . (17)

The expectations in (17) are over qUφ,γ(zt|x1:T ), which are found by integrating out a1:T
and Kalman filtering and Rauch-Tung-Striebel smoothing over z1:T . Let the output of this
deterministic computation by represented with the shorthand

qUφ,γ(zt|x1:T ) = N
(
zt ; mt

φ,γ(x1:T ), V t
φ,γ(x1:T )

)
= N (zt ; mt, Vt) , (18)

where mt
φ,γ(x1:T ) denotes the output of the forward-backward computation for time step t

that produces the Gaussian mean of zt, and V t
φ,γ(x1:T ) denotes the same output that yields

the covariance of zt. Both take all observations x1:T as input, and are functions of φ and γ.
We use mt and Vt below for uncluttered notation.

Armed with this shorthand, the first term in (17) may be written in a form that is
amenable to the “reparameterization trick”:

EqUφ,γ(z1:T |x1:T )

[∑
t

log pθ,γ(xt|zt)

]
=
∑
t

EqUφ,γ(zt|x1:T )
[

log pθ,γ(xt|zt)
]

10
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=
∑
t

EqUφ,γ(zt|x1:T )

[
log

∫
at

pθ(xt|at) pγ(at|zt)
]

≈
∑
t

1

Nz

Nz∑
nz=1

log

(
1

Na

Na∑
na=1

pθ(xt|a
(nz ,na)
t )

)
(19)

where we set Nz = Na = 1 and the reparameterization trick is used for the samples in (19):

z
(nz)
t ∼ qUφ,γ(zt|x1:T ), z

(nz)
t = mt + chol(Vt)ε

(nz), (20)

a
(nz ,na)
t ∼ pγ(at|z(nz)t ), a

(nz ,na)
t = Bz

(nz)
t + chol(Σa)ε

(nz ,na) . (21)

All ε(·) values are independent N (ε(·); 0, I) samples.
Returning to (17), the last logZU

φ,θ(x1:T ) term is found analytically, as described in (15)
and the discussion around it; and the middle term is the cross entropy of Gaussians which
can be computed in closed form.

Finally, as an aside, we show below that the KL divergence between qUφ,γ(z1:T |x1:T ) and
pγ(z1:T ) corresponds to that annotated in (17):

KL
(
qUφ,γ(z1:T |x1:T )

∥∥∥ pγ(z1:T )
)

=

∫
z1:T

qUφ,γ(z1:T |x1:T ) log
qUφ,γ(z1:T |x1:T )

pγ(z1:T )

=

∫
z1:T

qUφ,γ(z1:T |x1:T ) log

∏T
t=1N (µ∗φ(xt);Bzt,Σa + Σ∗φ(xt)) pγ(z1:T )

ZU
φ,γ(x1:T ) pγ(z1:T )

= EqUφ,γ

[∑
t

logN (µ∗φ(xt);Bzt,Σa + Σ∗φ(xt))

]
− logZU

φ,γ(x1:T ) . (22)

Notice that pθ(z1:T ) cancels out in the second last line of (22).

B.2.2. Evidence Lower Bound II

One might also consider an alternative ELBO than LU(θ, γ, φ) from (6), by using the
marginal qUφ,γ(a1:T |x1:T ) to derive the ELBO in (24). (When qUφ,γ(a1:T , z1:T |x1:T ) is used
to construct an ELBO, the same bound as (24) is obtained.) We first marginalize (5) over
z1:T :

qUφ,γ(a1:T |x1:T ) =
1

ZU
φ,γ(x1:T )

{
T∏
t=1

q∗φ(at|xt)

}∫
z1:T

pγ(a1:T |z1:T ) pγ(z1:T )

=
1

ZU
φ,γ(x1:T )

{
T∏
t=1

q∗φ(at|xt)

}
pγ(a1:T ) . (23)

Another lower bound than the one we encountered in App. B.2.1 is obtained with

log pθ,γ(x1:T ) = log

∫
a1:T

pθ(x1:T |a1:T ) pγ(a1:T )

11
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≥
∫
a1:T

qUφ,γ(a1:T |x1:T ) log
pθ(x1:T |a1:T )pγ(a1:T )

qUφ,θ(a1:T |x1:T )

=

∫
a1:T

qUφ,γ(a1:T |x1:T ) log
ZU
φ,γ(x1:T ) pθ(x1:T |a1:T )pγ(a1:T )∏T

t=1 q
∗
φ(at|xt) pγ(a1:T )

= EqUφ,γ

[∑
t

log pθ(xt|at)

]
−EqUφ,γ

[∑
t

log q∗φ(at|xt)

]
+ logZU

φ,γ(x1:T )︸ ︷︷ ︸
−KL(qUφ,γ(a1:T |x1:T ) ‖ pγ(a1:T ))

= LU2(θ, γ, φ) . (24)

One can determine the marginals qUφ,γ(at|x1:T ) with a single forward-backward message pass-
ing procedure, as the graph is a tree. The first term of the three terms in (24) may be evalu-
ated using Monte-Carlo integration (employing the “reparameterization trick”) and the final
two terms are computed analytically. This ELBO has a pleasing interpretation: maximiz-
ing it maximizes the (approximate) marginal likelihood logZU

φ,γ(x1:T ) whilst simultaneously
minimizing the average local encoding-decoding cost

∑
t EqUφ,γ [log pθ(xt|at)− log q∗(at|xt)].

As an aside, again, we show below that the KL divergence between qUφ,γ(a1:T |x1:T ) and
pγ(a1:T ) corresponds to that annotated in (24):

KL
(
qUφ,γ(a1:T |x1:T )

∥∥∥ pγ(a1:T )
)

=

∫
a1:T

qUφ,γ(a1:T |x1:T ) log
qUφ,γ(a1:T |x1:T )

pγ(a1:T )

=

∫
a1:T

qUφ,γ(z1:T |x1:T ) log

∏T
t=1 q

∗
φ(at|xt) pγ(a1:T )

ZU
φ,γ(x1:T ) pγ(a1:T )

= EqUφ,γ

[∑
t

log q∗φ(at|xt)

]
− logZU

φ,γ(x1:T ) . (25)

Notice that pθ(a1:T ) cancels out in the second last line of (25).
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Appendix C. Further Experimental Results

C.1. Inferred Latent Positions

Figure 4: Column 1 : Observed video sequence. Columns 2, 3 : Directed model inferred
positions with β0 = 1 (standard training) (column 2) and annealed from β0 = 100 (column
3). The shaded regions represent two standard deviations. Columns 4, 5 : Undirected model
inferred positions with β0 = 1 (column 4) and β0 = 100 (column 5). The shaded regions
represent 20 standard deviations, posterior approximation variance is much much smaller
than for the directed model. We plot the rotated inferred position using the minimum
squared error linear transformation from (8). For both models, standard training leads to
learning a latent domain that does not follow the imposed Newtonian parabolic motion.
Annealing from β0 = 100 encourages the model to learn a mapping to the latent domain
that corresponds to reality.
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C.2. Varying β Annealing and LGSSM Parameters
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Figure 5: Each inference model was trained with and without annealing the β0 as described
in App. A.2. For all plots, within results for each model, left hand error bars are after
training with annealing (True), right hand are without annealing (False). Plot 1. The
directed model with annealing achieves the best lower bound when β = 10, 100, without
annealing, only β0 = 10 is best suggesting annealing reduces sensitivity on the training
hyper parameter β0. For the undirected model, with the exception of β0 = 100 where 3 of
the 10 seeds resulted in an unstable decoder, any value of β0 ≥ 10 yields the same bound
regardless of annealing. Plot 2. As above the reconstruction error for the directed model
depends on annealing and does not for the undirected model. Plots 3 and 4. The Prior KL
divergence and ground truth prediction are uniformly lower for the undirected model for all
training schedules.
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Figure 6: To evaluate the sensitivity of each inference model with respect to the LGSSM
transition and emission matrices, we repeated all the experimented learning both matrices.
Plot 1. As with fixed LGSSM parameters, annealing reduces the sensitivity of the directed
model upon β0 and the undirected model achieves a greater lower bound for all training
schedules and achieves best performance with β0 ≥ 10 regardless of annealing. Plot 2. For
all β0 ≤ 1, the directed model learns a more stable decoder. Plot 3. Comparing with
Plot 2, we see that the improvement in the lower bound for the undirected model comes
from matching the learned prior dynamics. Plot 4. For all values of β0, the undirected
model never learns to completely recover the ground truth. For the undirected model, fixed
dynamics and β0 ≥ 10 is required to learn a physical latent domain whereas for the directed
model, a narrower range of β0 and annealing is required but not fixed LGSSM parameters.

C.3. Variational Posteriors and Prior Divergence per Frame
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Figure 7: Both models were trained with annealing from β0 = 100. Top left. The directed
model posterior entropy per frame. Middle left. Per step likelihood from filtering. Bottom
left. The sum of above two plots is consistently positive leading to increasing divergence
over time. Top right. The per-frame cross-entropy term of the ELBO for the directed
model. Middle right. The normalizing constant per frame. Bottom right. Summing the
above plots leads to a series that shrinks over time. Bottom. The cumulative sum for each
video in the batch. The directed model divergence consistently increases with video length
unlike the undirected model that exploits dynamics.
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