
A New Particle Swarm Optimiser for Linearly Constrained Optimisation

Ulrich Paquet
Department of Computer Science

University of Pretoria
South Africa

upaquet@cs.up.ac.za

Andries P. Engelbrecht
Department of Computer Science

University of Pretoria
South Africa

engel@driesie.cs.up.ac.za

Abstract- A new PSO algorithm, the Linear PSO
(LPSO), is developed to optimise functions constrained
by linear constraints of the form Ax = b. A crucial
property of the LPSO is that the possible movement
of particles through vector spaces is guaranteed by the
velocity and position update equations. This property
makes the LPSO ideal in optimising linearly constrained
problems. The LPSO is extended to the Converging Lin-
ear PSO, which is guaranteed to always find at least a
local minimum.

1 Introduction

Particle Swarm Optimisation (PSO) was originally intro-
duced by Kennedy and Eberhart [5], and has proved to be a
very useful algorithm to optimise unconstrained functions.
If a number of constraints is added to the objective func-
tion (the function that is optimised), the problem becomes
more complicated. A number of approaches has been taken
in the Evolutionary Computing field to do constraint han-
dling. The three main approaches are penalty, repair, and
constraint-preserving methods.

Penalty methods add a penalty to the objective function
to decrease the quality of infeasible solutions [3, 4, 11].
While penalty methods are very popular, they do not guar-
antee a solution where no constraints are violated, since the
search space still includes infeasible solutions, and success
depends on the penalty method.

Repair methods apply operators to move an infeasible
solution closer to the feasible space of solutions [9, 17]. Op-
erators designed to ‘correct’ infeasible solutions are usually
computationally intensive. Not all constraints can be easily
implemented to be corrected by these operators, which must
be tailored to the particular problem [1].

Constraint-preserving methods (feasible solutions meth-
ods) reduce the search space by ensuring that all candidate
solutions at all times satisfy the constraints [11]. Solutions
are initialised within the feasible domain, and transforma-
tions of candidate solutions are such that the resulting solu-
tions still lie within the feasible domain.

A new PSO algorithm, the Linear PSO (together with the
Converging Linear PSO), is introduced to optimise prob-

lems with linear equality constraints. The new algorithm is
a constraint-preserving method. It adds no extra cost of im-
plementation, except for initialising all particles to be fea-
sible solutions. Experimental results indicate its efficiency
and ease of implementation as an optimiser for linearly con-
strained problems.

The rest of this paper is organised as follows: Section 2
provides an overview of PSO, while Section 3 extends the
standard PSO to an algorithm suited for constrained opti-
misation. Finally, Section 4 shows experimental results to
substantiate the new algorithm’s success.

2 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) was originally intro-
duced by Kennedy and Eberhart [5], and has its roots in
swarm intelligence. The motivation behind the algorithm is
the intelligent collective behaviour of organisms in a swarm
(e.g. a flock of birds migrating), while the behaviour of a
single organism in the swarm may seem totally inefficient.

PSO represents an optimisation method where particles
collaborate as a population to reach a collective goal. Each
n-dimensional particle xi is a potential solution to the col-
lective goal, usually to minimise a function f . PSO differs
from traditional optimisation methods, in that a population
of potential solutions are used in the search. The direct fit-
ness information instead of function derivatives or other re-
lated knowledge is used to guide the search. This search is
based on probabilistic, rather than deterministic, transition
rules.

A particle xi has memory of the best solution yi that it
has found, called its personal best; it flies through the search
space with a velocity vi, which is dynamically adjusted ac-
cording to its personal best and the global best solution ŷ

found by the rest of the swarm (called the gbest topology).
Other topologies for information sharing have also been in-
vestigated [6, 7, 8].

Let i indicate a particle’s index in the swarm, such that
S = {x1, . . . ,xs} is a swarm of s particles. During each
iteration of the PSO algorithm, the personal best yi of each
particle is compared to its current performance, and set to
the better performance. If the objective function to be min-

ferland
Particle Swarm Optimisation (PSO) was originally introduced
by Kennedy and Eberhart [5],

imised is defined as f : R
n → R, then

y
(t)
i =

{
y

(t−1)
i if f(x

(t)
i) ≥ f(y

(t−1)
i)

x
(t)
i if f(x

(t)
i) < f(y

(t−1)
i)

(1)

The global best ŷ is updated to the position with the best
performance within the swarm, with

ŷ(t) ∈ {y(t)
1 ,y

(t)
2 , . . . ,y(t)

s }
∣∣ f(ŷ(t))

= min{f(y
(t)
1), f(y

(t)
2), . . . , f(y

(t)
s)} (2)

Traditionally, each particle’s velocity and position is up-
dated separately for each dimension j, with

v
(t+1)
ij = wv

(t)
ij + c1r

(t)
1j [y

(t)
ij − x

(t)
ij]

+ c2r
(t)
2j [ŷ

(t)
j − x

(t)
ij] (3)

x
(t+1)
ij = v

(t+1)
ij + x

(t)
ij (4)

The stochastic nature of the algorithm is determined by r
(t)
1j

and r
(t)
2j , two uniform random numbers between zero and

one. These random numbers are scaled by acceleration co-
efficients c1 and c2, where 0 ≤ c1, c2 ≤ 2. The inertia
weight w was introduced to improve the convergence rate
of the PSO algorithm [14]. It is possible to clamp the veloc-
ity vectors by specifying upper and lower bounds on vi, to
avoid too rapid movement of particles in the search space.

The standard PSO algorithm is summarised below:

Algorithm 1 – Standard Particle Swarm Optimiser

1. Set the iteration number t to zero, and randomly ini-
tialise swarm S within the search space.

2. Evaluate the performance f(x
(t)
i) of each particle.

3. Compare the personal best of each particle to its cur-
rent performance, and set y

(t)
i to the better perfor-

mance, according to equation (1).

4. Set the global best ŷ(t) to the position of the particle
with the best performance within the swarm, accord-
ing to equation (2).

5. Change the velocity vector for each particle, accord-
ing to equation (3).

6. Move each particle to its new position, according to
equation (4).

7. Let t := t + 1.

8. Go to step 2, and repeat until convergence.

The standard PSO algorithm described above does not
lend itself well to optimising constrained functions. In par-
ticular, PSO can very easily be extended to optimise func-
tions with linear equality constraints.

3 Linear Particle Swarm Optimisation

A new PSO algorithm, the Linear PSO, is developed specif-
ically with linear constraints in mind. Traditionally, the ve-
locity and position update equations, shown in equations (3)
and (4), are specified separately for each dimension of a par-
ticle. If the random numbers r

(t)
1 and r

(t)
2 are rather kept

constant for all vector dimensions, the velocity updates are
calculated as a linear combination of position and velocity
vectors.

v
(t+1)
i = wv

(t)
i + c1r

(t)
1 [y

(t)
i − x

(t)
i]

+ c2r
(t)
2 [ŷ(t) − x

(t)
i] (5)

x
(t+1)
i = v

(t+1)
i + x

(t)
i (6)

The above approach has the advantage that the flight of
particles is defined by standard linear operations on vec-
tors. The guaranteed movement of particles through vector
spaces becomes possible, and hence the PSO algorithm us-
ing update equations (5) and (6) is referred to as a Linear
Particle Swarm Optimiser (LPSO).

The LPSO ideally lends itself to optimising functions
constrained by a set of linear constraints




a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn







x1

x2

...
xn


 =




b1

b2

...
bm




thus solving problems of the form

Minimise f(x), x ∈ R
n

Subject to Ax = b, A ∈ R
m×n and b ∈ R

m (7)

The above problem is equivalent to minimising f in hyper-
plane C, the set of particular solutions of the linear system
Ax = b. That is, C = {x | Ax = b} defines the set of
feasible solutions. Three changes to Algorithm 1 make it
possible for the swarm of particles to only fly through C:

1. S is initialised such that the position x
(0)
i of each of

the s particles meets Ax
(0)
i = b. All initial velocity

vectors are initialised as v
(0)
i = 0;

2. Velocity update equation (5) is used; and

3. Position update equation (6) is used.

By implementing the above changes, the new PSO is
guaranteed to always meet the set of constraints [13], and
no more constraint handling is necessary. The LPSO algo-
rithm is, however, not yet ready for practical use. This is
because the problem of premature convergence has to be
overcome.

ferland
The inertia

ferland
weight w was introduced to improve the convergence rate

ferland
of the PSO algorithm [14].

Overcoming premature convergence

The LPSO algorithm discussed above has one property that
is very disadvantageous, and that is the possibility of pre-
mature convergence.

If v(0) is initialised to 0 and the position of the global
best particle does not change, searches will continue on
lines connecting each particle with the global best. Thus
the entire hyperplane C will not be searched, but only lines
connecting each particle to the global best.

In another scenario, consider xi = yi = ŷ, where ve-
locity updates will depend only on the value of wv

(t)
i , as

discussed in [15, 16]. If a particle’s current position co-
incides with the global best position, the particle will only
move away from this point if its previous velocity and w are
non-zero. Premature convergence will occur when previous
velocities are close to zero, and particles stop moving once
they catch up with the global best particle.

To overcome this premature convergence, the Guaran-
teed Convergence Particle Swarm Optimiser (GCPSO) was
developed [15, 16]. In this algorithm, the velocity update
for the global best particle is changed to force it to search
for a better solution in an area around the position of that
particle.

A variation of GCPSO, which alters particles only with
feasible directions (such that the search will remain in C),
is presented. The new algorithm, referred to as Converging
LPSO (CLPSO), ensures that the constraints from equation
(7) are still met. Let τ be the index of the global best parti-
cle, then

yτ = ŷ (8)

Change the velocity update equation (5) for the global best
particle τ , so that

v(t+1)
τ = −x(t)

τ + ŷ(t) + ρ(t)
υ

(t) (9)

where ρ(t) is a scaling factor and υ
(t) ∼ UNIF(−1, 1)n with

the property that Aυ
(t) = 0, or υ

(t) lies in the null space of
A. Since

x(t+1)
τ = v(t+1)

τ + x(t)
τ

= ŷ(t) + ρ(t)
υ

(t)

the new position of the global best particle will be its per-
sonal best ŷ(t), with a random vector ρ(t)

υ
(t) from the null

space of A added. It is only the global best particle that is
moved with the above velocity update (9), all other particles
in the swarm are still moved with the original equations (5)
and (6).

It can be formally shown that CLPSO is guaranteed, in
the limit, to always find at least a local minimum [13].

The difference between LPSO and CLPSO can be clearly
seen from Figures 1(a) and 1(b). Both figures illustrate
the average gbest values of the constrained parabola f1

10

100

1000

10000

100000

0 50 100 150 200 250
av

er
ag

e
gl

ob
al

 b
es

t f
itn

es
s

iteration number

LPSO - 5 particles
LPSO - 10 particles
LPSO - 15 particles
LPSO - 20 particles

(a) LPSO

10

100

1000

10000

100000

0 50 100 150 200 250

av
er

ag
e

gl
ob

al
 b

es
t f

itn
es

s

iteration number

CLPSO - 5 particles
CLPSO - 10 particles
CLPSO - 15 particles
CLPSO - 20 particles

(b) CLPSO

Figure 1: Average gbest results of LPSO and CLPSO on
the constrained parabola f1 defined in equation (11). It is
clearly shown how LPSO can converge prematurely, and
how CLPSO always converges to at least a local minimum
(which in this case is the actual minimum).

ferland
Guaranteed
Convergence Particle Swarm Optimiser (GCPSO) was
developed [15, 16]. 10

from equation (11). The averages are over 100 simula-
tions, and show how LPSO can converge prematurely, and
how CLPSO always converges to at least a local minimum
(which in this case is the actual minimum).

4 Experimental results

In order to test the performance of LPSO and CLPSO to
minimising problems constrained by a set of linear con-
straints Ax = b, let

A =




0 −3 −1 0 0 2 −6 0 −4 −2
−1 −3 −1 0 0 0 −5 −1 −7 −2
0 0 1 0 0 1 3 0 −2 2
2 6 2 2 0 0 4 6 16 4
−1 −6 −1 −2 −2 3 −6 −5 −13 −4




b =
(

3 0 9 −16 30
)T

(10)

Defining matrix A and vector b in the above way gives a set
of constraints for testing ten-dimensional functions.

In all experiments the inertia weight w was set to 0.7,
while the values of c1 and c2 were set to 1.4. The choice is
due to [2], where it was shown that parameter settings close
to these (w = 0.7298 and c1 = c1 = 1.49618) gave accept-
able results. The value of ρ(t) was kept constant at 1. In
each case, S was randomly initialised such that Ax(0) = b

holds for each particle. For test cases f1, f2, and f3 (defined
below), S was initialised in the interval [-100, 100]. For f4,
S was initialised in [2.56, 5.12], and S was initialised in
[300, 600] for f5.

Five constrained functions were chosen to be minimised,
and include both convex functions and functions with many
local minima. Function f1 is a parabola (11), f2 is a
quadratic function (12), f3 is a Rosenbrock function (13),
f4 is a Rastrigin function (14), and f5 is a Griewank func-
tion (15). The test problems, with x ∈ R

10, are to minimise

f1(x) =

n∑

i=1

x2
i (11)

f2(x) =
n∑

i=1

n∑

j=1

e−(xi−xj)
2

xixj +
n∑

i=1

xi (12)

f3(x) =
n−1∑

i=1

(100(xi+1 − x2
i)

2 + (1 − xi)
2) (13)

f4(x) =

n∑

i=1

(
x2

i − 10 cos(2πxi) + 10
)

(14)

f5(x) =
1

4000

n∑

i=1

x2
i −

n∏

i=1

cos
(xi√

i

)
+ 1 (15)

Table 1: Results of 100 Genocop II simulations, and 100
LPSO and CLPSO simulations, on the constrained parabola
f1 defined in equation (11), after 250 generations or itera-
tions. (‘chromosomes’ is abbreviated as chrms.)

Genocop II 10 chrms. 20 chrms.
Average 304.884 54.846

Maximum 1.168 × 103 107.584
Minimum 37.612 32.544

Standard Deviation 387.746 16.939

LPSO 10 particles 20 particles
Average 445.316 32.137

Maximum 4.505 × 103 32.137
Minimum 32.137 32.137

Standard Deviation 803.006 7.176 × 10−12

CLPSO 10 particles 20 particles
Average 32.139 32.137

Maximum 32.183 32.137
Minimum 32.137 32.137

Standard Deviation 6.689 × 10−3 3.016 × 10−6

subject to Ax = b, where A and b are defined in equation
(10).

The correctness of the results are tested against those
found by Genocop II, a genetic algorithm for optimising
constrained problems [10]. For purposes of comparison
with LPSO and CLPSO, Genocop II was evolved with the
same number of chromosomes (particles) and generations
(iterations) as LPSO and CLPSO.

One hundred simulations were done with Genocop II for
each test function, where the genetic algorithm was evolved
with a population size of 10 and 20 chromosomes. Experi-
mental results on LPSO and CLPSO are also taken form a
total of 100 simulations on swarm sizes of 10 and 20 parti-
cles.

The average best fitness values of Genocop II at the final
generation, over all 100 simulations, are shown respectively
for f1, f2, f3, f4, and f5 in Tables 1, 2, 3, 4, and 5. The
average gbest at the final iteration is similarly computed for
LPSO and CLPSO, and also shown in the Tables.

The final maximum and minimum values are also shown
for each test function, with the maximum being the largest
of the 100 best fitness (or gbest) values at the final iteration,
and the minimum being the smallest fitness (or gbest) value
of the 100 simulations at the final iteration.

The standard deviation of Genocop II’s best fitness (or
LPSO and CLPSO’s gbest) values at the final iteration, com-
puted over all 100 simulations, are also shown in the Tables.

The number of the final generation differs from problem
to problem, and is indicated in the Table corresponding to
each test function.

CLPSO’s convergence to at least a local minimum is

Table 2: Results of 100 Genocop II simulations, and 100
LPSO and CLPSO simulations, on the constrained quadratic
function f2 defined in equation (12), after 1000 generations
or iterations. (‘chromosomes’ is abbreviated as chrms.)

Genocop II 10 chrms. 20 chrms.
Average 49.945 39.500

Maximum 82.221 56.613
Minimum 35.393 35.410

Standard Deviation 10.996 6.785

LPSO 10 particles 20 particles
Average 758.525 59.762

Maximum 1.123 × 104 246.905
Minimum 35.400 35.377

Standard Deviation 1.496 × 103 39.831

CLPSO 10 particles 20 particles
Average 68.570 39.832

Maximum 196.067 71.380
Minimum 35.377 35.377

Standard Deviation 53.865 10.887

Table 3: Results of 100 Genocop II simulations, and 100
LPSO and CLPSO simulations, on the constrained Rosen-
brock function f3 defined in equation (13), after 2000 gen-
erations or iterations. (‘chromosomes’ is abbreviated as
chrms.)

Genocop II 10 chrms. 20 chrms.
Average 21630.020 21485.714

Maximum 22030.988 21486.646
Minimum 21490.840 21485.363

Standard Deviation 154.443 0.400

LPSO 10 particles 20 particles
Average 4.444 × 106 1.260 × 105

Maximum 2.177 × 108 1.045 × 107

Minimum 21554.158 21485.925
Standard Deviation 2.278 × 107 1.043 × 106

CLPSO 10 particles 20 particles
Average 7.446 × 105 21485.305

Maximum 7.112 × 107 21485.305
Minimum 21485.305 21485.305

Standard Deviation 7.120 × 106 9.401 × 10−8

Table 4: Results of 100 Genocop II simulations, and 100
LPSO and CLPSO simulations, on the constrained Rastrigin
function f4 defined in equation (14), after 1000 generations
or iterations. (‘chromosomes’ is abbreviated as chrms.)

Genocop II 10 chrms. 20 chrms.
Average 52.379 43.059

Maximum 67.564 59.959
Minimum 37.116 37.011

Standard Deviation 7.498 6.142

LPSO 10 particles 20 particles
Average 76.487 75.011

Maximum 232.979 184.226
Minimum 36.975 38.965

Standard Deviation 30.699 27.719

CLPSO 10 particles 20 particles
Average 69.039 76.896

Maximum 154.379 151.394
Minimum 36.975 36.975

Standard Deviation 21.591 27.304

Table 5: Results of 100 Genocop II simulations, and
100 LPSO and CLPSO simulations, on the constrained
Griewank function f5 defined in equation (15), after 1000
generations or iterations. (‘chromosomes’ is abbreviated as
chrms.)

Genocop II 10 chrms. 20 chrms.
Average 0.702 0.584

Maximum 0.971 0.843
Minimum 0.417 0.201

Standard Deviation 0.187 0.131

LPSO 10 particles 20 particles
Average 2.997 1.695

Maximum 15.805 14.401
Minimum 0.387 0.338

Standard Deviation 2.945 1.921

CLPSO 10 particles 20 particles
Average 3.049 1.900

Maximum 16.427 17.259
Minimum 0.236 0.236

Standard Deviation 3.101 2.379

clearly illustrated in Table 1 and Figure 1(b).
If the averages from all five tables are compared to the

minimum values from all simulations, then the following
can be deduced:

For convex functions, or functions without too many
local minima, CLPSO performs considerably better than
LPSO. This better performance can be ascribed to LPSO’s
possibility of premature convergence, without reaching a lo-
cal or global minimum (see Tables 1, 2, and 3). The aver-
age gbest is also very similar to the best function evalua-
tion found. The small standard deviation of gbest on the fi-
nal iteration (especially in Tables 1 and 3) indicates that the
swarms have converged to the same point in search space,
or the same minimum.

Test functions f4 and f5 have many local minima. In
this case, CLPSO’s guarantee to at least converge to a lo-
cal minimum implies that at least one of the numerous local
minima will be found (which may differ substantially from
the global minimum). The results in Tables 4 and 5 thus
show similarity between LPSO and CLPSO. The average
gbest also differs considerably from the best function eval-
uation found. The large standard deviation of gbest on the
final iteration indicates that the swarms have found different
local minima.

Genocop II, with a larger amount of mutation, performs
better than CLPSO on functions with many local minima
(see Tables 4 and 5), while CLPSO gives better performance
on convex functions, where less mutation is needed (see Ta-
ble 1).

To complete the experimental results, the best minimums
found by CLPSO are shown, together with the domain val-
ues that attain these minimums.

Best solutions – CLPSO

Let x? indicate the vector found that gives the smallest eval-
uation for each test function. The very best performance of
CLPSO over all 100 simulations, are shown here.

The minimum gbest of the constrained f1, found by
CLPSO, was f1(x

?) = 32.137 with

x? = (0.566,−0.485, 1.738,−1.181,−3.402, . . .

. . . 3.357, 0.900,−1.795,−0.528, 0.074)T

The minimum gbest of the constrained f2, found by
CLPSO, was f2(x

?) = 35.377 with

x? = (0.076,−0.281, 0.445,−0.373,−3.956, . . .

. . . 3.762, 1.120,−1.865,−0.538, 0.178)T

The minimum gbest of the constrained f3, found by
CLPSO, was f3(x

?) = 21485.305 with

x? = (0.840,−1.514, 2.359,−0.670,−3.352, . . .

. . . 2.991, 1.053,−1.949,−0.274,−0.028)T

The minimum gbest of the constrained f4, found by
CLPSO, was f4(x

?) = 36.975 with

x? = (1.993,−0.002, 1.004,−1.996,−3.997, . . .

. . . 3.002, 0.999,−1.004,−0.998, 3.732)T

The minimum gbest of the constrained f5, found by
CLPSO, was f5(x

?) = 0.236 with

x? = (0.076,−4.583, 10.670,−6.628, 0.225, . . .

. . . 0.919, 0.139,−0.818, 0.681,−0.821)T

The experimental results presented here underline the
simplicity with which PSO extends to the new linear PSO
algorithms. Thus far, CLPSO has also been tested as a suc-
cessful optimiser in Support Vector Machine training [12].
It also compares favourably to Genocop II, when linearly
constrained functions are optimised.

5 Conclusion

A new PSO algorithm, the Linear PSO (LPSO) was devel-
oped to optimise functions constrained by linear constraints
of the form Ax = b. The LPSO changes the velocity and
position updates of the traditional PSO algorithm, such that
the guaranteed movement of particles through vector spaces
becomes possible. The LPSO is a constraint-preserving
method, and adds almost no extra cost of implementation
to the traditional PSO. The probability of premature con-
vergence of the LPSO is remedied by the extension to the
Converging LPSO (CLPSO), which is guaranteed to always
find at least a local minimum. The success and simplicity of
LPSO and CLPSO in optimising linearly constrained func-
tions was experimentally verified.

Acknowledgment

The financial assistance of the National Research Founda-
tion towards this research is hereby acknowledged. Opin-
ions expressed in this paper and conclusions arrived at, are
those of the authors and not necessarily to be attributed to
the National Research Foundation.

Bibliography

[1] L. Davis. Genetic Algorithms and Simulated Annealing.
Pitman, London, 1987.

[2] R.C. Eberhart and Y. Shi. “Comparing inertia weights
and constriction factors in particle swarm optimiza-
tion,” in Proceedings of the Congress on Evolutionary
Computation, pages 84-88. 2000.

[3] D.E. Goldberg. Genetic Algorithms in Search Optimiza-
tion and Machine Learning. Addison-Wesley, 1989.

[4] S.B. Hamida and M. Schoenauer. “ASHEA: New re-
sults using adaptive segregational handling,” in IEEE
World Congress on Computational Intelligence, Pro-
ceedings of the Congress on Evolutionary Computing.
Honolulu, Hawaii, 2002.

[5] J. Kennedy and R.C. Eberhart. “Particle swarm opti-
mization,” in Proceedings of the IEEE International
Conference on Neural Networks, IV, pages 1942-1948.
1995.

[6] J. Kennedy. “Small worlds and mega minds: effects
of neighborhood topology on particle swarm perfor-
mance,” in Proceedings of the Congress of Evolutionary
Computation, Washington DC, USA, pages 1931-1938.
1999.

[7] J. Kennedy, R.C. Eberhart, and Y. Shi. Swarm Intelli-
gence. Morgan Kaufmann Publishers, 2001.

[8] J. Kennedy and R. Mendes. “Population structure
and particle swarm performance,” in IEEE World
Congress on Computational Intelligence, Proceedings
of the Congress on Evolutionary Computing. Honolulu,
Hawaii, 2002.

[9] Z. Michalewicz. Genetic Algorithms + Data Structures
= Evolution Programs. Springer Verlag, 1996.

[10] Z. Michalewicz and C.Z. Janikow. “GENOCOP: a ge-
netic algorithm for numerical optimization problems
with linear constraints,” in Communications of the
ACM, volume 39, article no. 175. 1996.

[11] Z. Michalewicz and M. Schoenauer. “Evolutionary al-
gorithms for constrained parameter optimization Prob-
lems,” in Evolutionary Computation, volume 4, pages
1-32. 1996.

[12] U. Paquet and A.P. Engelbrecht. “Training support
vector machines with particle swarms,” in Proceedings
of the International Joint Conference on Neural Net-
works. Portland, Oregon, 2003.

[13] U. Paquet and A.P. Engelbrecht. “Particle swarms for
equality-constrained optimization,” submitted to IEEE
Transactions on Evolutionary Computation.

[14] Y. Shi and R.C. Eberhart. “A modified particle swarm
optimizer,” in Proceedings of the IEEE Congress on
Evolutionary Computation, pages 69-73. Piscataway,
NJ, 1998.

[15] F. van den Bergh. An analysis of particle swarm opti-
mizers. PhD Thesis, Department of Computer Science,
University of Pretoria, 2002.

[16] F. van den Bergh and A.P. Engelbrecht. “A locally con-
vergent particle swarm optimiser,” accepted for IEEE
conference on Systems, Man, and Cybernetics. Tunisia,
2002.

[17] D. Whitley, V.S. Gordon, and K. Mathias. “Lamar-
cian evolution, the baldwin effect and function opti-
mization,” in Y. Davidor, H-P Schwefel, and R. Männer,
editors, Proceedings of the Third Conference on Paral-
lel Problem Solving from Nature. Springer, 1996.

ferland
[5] J. Kennedy and R.C. Eberhart. “Particle swarm optimization,”

ferland
in Proceedings of the IEEE International

ferland
Conference on Neural Networks, IV, pages 1942-1948.

ferland
1995.

ferland
[6] J. Kennedy. “Small worlds and mega minds: effects

ferland
of neighborhood topology on particle swarm performance,”

ferland
Proceedings of the Congress of Evolutionary
Computation, Washington DC, USA, pages 1931-1938.

ferland
1999.

ferland
[7] J. Kennedy, R.C. Eberhart, and Y. Shi. Swarm Intelligence.

ferland
Morgan Kaufmann Publishers, 2001.

ferland
[8] J. Kennedy and R. Mendes. “Population structure

ferland
and particle swarm performance,” in IEEE World

ferland
Congress on Computational Intelligence, Proceedings
of the Congress on Evolutionary Computing. Honolulu,

ferland
Hawaii, 2002.

ferland
[14] Y. Shi and R.C. Eberhart. “A modified particle swarm

ferland
optimizer,” in Proceedings of the IEEE Congress on
Evolutionary Computation, pages 69-73. Piscataway,

ferland
NJ, 1998.

ferland
[16] F. van den Bergh and A.P. Engelbrecht. “A locally convergent

ferland
particle swarm optimiser,” accepted for IEEE
conference on Systems, Man, and Cybernetics. Tunisia,

ferland
2002.

