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Abstra
t. We present a Bayesian approa
h to ordinal regression. Our

model is based on a hierar
hi
al mixture of experts model and performs

a soft partitioning of the input spa
e into di�erent ranks, su
h that

the order of the ranks is preserved. Experimental results on ben
hmark

data sets show a 
omparable performan
e to support ve
tor ma
hine and

Gaussian pro
ess methods.

1 Introdu
tion

Many appli
ations in Ma
hine Learning require the predi
tion of ordered 
ate-

gories, and thereby ask of us to bridge the gap between regression and 
lassi-

�
ation problems. Ordinal regression, or ranking, often arise when a judgment

of preferen
e is made. In 
ollaborative �ltering, for example, we seek to predi
t

a 
onsumer's rating of a novel item on an ordinal s
ale su
h as good > average

> bad, using past ratings of similar items. The problem shares properties with


lassi�
ation sin
e the targets are dis
rete and �nite, but also with regression

estimation by the existen
e of an ordering in the target spa
e.

In this paper we adopt a Bayesian approa
h to the ordinal regression problem,

based on the hierar
hi
al mixture of experts (HME) model (Jordan & Ja
obs,

1994; Waterhouse et al. 1996). The HME model 
onsists of a hierar
hy of `ex-

perts', where ea
h expert models some data-generating pro
ess on a subset of

the data. We simplify ea
h expert to an indi
ator fun
tion, su
h that an expert

is responsible for labeling a pattern with a 
ertain rank on a subset of the input

spa
e. The ordering of the targets is imposed by a left-to-right assignment of

ranks to experts in a binary HME tree.

2 Learning From Examples

We are given a data set D of independent and identi
ally distributed examples of

real-valued input ve
tors X = fx

n

g

N

n=1

and 
orresponding targets y = fy

n

g

N

n=1

.

The targets 
ome from a spa
e Y 
onsisting of a �nite number of ranks, Y =

f1; : : : ; Rg

>

. The subs
ript > denotes that there is an ordering between the

ranks, and 
an be interpreted as `preferred to'. For simpli
ity we use integers to

indi
ate the ordered set of ranks, but any labels will do. Given a new example

x

�

and the observed data, we wish to determine the probability distribution of

its rank, P (y

�

= rjx

�

;D).



Fig. 1. A binary mixture of experts tree for

ordinal regression. The expert (leaf) nodes

are indi
ator fun
tions, ea
h responsible for

labeling one possible rank. Here 1

A

is one

if A is true, and zero otherwise. The gating

nodes indi
ate the probability of following

the left|or 
onversely right|bran
h down

the tree to a rank. The stru
ture of the

HME tree, with a left-to-right assignment

of ranks to the `experts', en
apsulates the

ordinal regression problem.

3 Hierar
hi
al Mixture of Experts for Ordinal Regression

We formulate the distribution of the ordinal target variables with a binary mix-

ture of experts tree. Figure 1 illustrates su
h a tree, where the leaves, 
alled

`experts', are 
omponent distributions of the targets. The non-leaf nodes, 
alled

`gates', form 
oeÆ
ients that mix the experts. Ea
h gate is 
onditioned on an

input variable and indi
ates the probability of following its left|or 
onversely

right|bran
h down the tree; 
onsequently the gates perform a soft partitioning

of the input spa
e. This soft partitioning is used as our ordinal regression model.

We asso
iate a binary variable z

i

with ea
h gate, and set it to one if the left

bran
h is followed from the ith gate. The parameters of the model are the real-

valued weight ve
tors of the gates, whi
h we indi
ate with W = fw

i

g

I

i=1

. The

experts are labeled with dis
rete labels 1; : : : ; R, and we require the experts to be

indi
ator fun
tions. Hen
e, given expert r, the probability that it labeled (x; y)

is one if y = r, and zero otherwise. With a left-to-right assignment of ranks

to the experts, the stru
ture of the HME tree and the resulting partitioning

of the input spa
e impose a natural ordering on the targets. In this paper we

restri
t ourselves to 
omplete binary trees, although a more judi
ious 
hoi
e of

tree stru
ture, based on eviden
e maximization, 
an be made.

The probability of y having rank r, given x, is equal to the probability that

expert r was responsible for generating the target. Equivalently it is equal to the

probability of 
orre
tly setting the binary indi
ator variables z

i

to form a path

from the root to the rth `expert',

P (y = rjx;W) =

Y

i:root!r

P (z

i

jx;w

i

): (1)

We use notation i : root! r to indi
ate that the produ
t is taken over the gates

on the unique path from the root to the rth expert, and note that summing

(1) over all ranks give unity. By de�ning �(a) = 1=(1 + e

�a

), the probability of

following the left bran
h from the ith gate is

P (z

i

= 1jx;w

i

) = �(w

>

i

x):



Throughout this paper, we impli
itly augment input ve
tors with a bias 
lamped

at 1. From (1), the likelihood of observing the entire data set is

P (DjW) � P (yjX;W) =

N

Y

n=1

Y

i:root!y

n

P (z

in

jx

n

;w

i

): (2)

3.1 The Posterior

A probabilisti
 formulation|often prone to over�tting, as in the familiar 
ase

of supervised learning|
an be found by maximizing the likelihood (2) with

respe
t to the model parametersW. We rather use the usual Bayesian approa
h

of making predi
tions by 
omputing the expe
ted value of P (y

�

= rjx

�

;W)

for a new example x

�

with respe
t to the posterior distribution of W. For the

purpose of obtaining this posterior distribution from Bayes' theorem, we pla
e

a Gaussian prior on ea
h gate's parameter ve
tor,

p(w

i

j�

i

) =

�

�

i

2�

�

d=2

exp

n

�

�

i

2

w

>

i

w

i

o

;

and 
ombine it with the likelihood (2), normalized by the eviden
e. The hyper-

parameter �

i


ontrols the width of the prior.

The weight ve
tor of gate i, 
onditioned on the observed data, is independent

of the parameters of the other gates, and only dependent on the examples that

were labeled by its left and right subtrees. As a notational 
onvenien
e, let T

i

indi
ate the set of experts that are leaves in the subtree with gate i as root. De�ne

D

i

to be the subset of examples asso
iated with T

i

. From Bayes' theorem, the

posterior distribution of ea
h gate's parameters is

p(w

i

jD

i

; �

i

) =

P (D

i

jw

i

)p(w

i

j�

i

)

p(D

i

j�

i

)

(3)

/

Y

n:y

n

2T

i

�(w

>

i

x

n

)

z

in

(1� �(w

>

i

x

n

))

1�z

in

exp

n

�

�

i

2

w

>

i

w

i

o

: (4)

The full posterior is simply the produ
t over all individual gate posterior distri-

butions, p(WjD;�) =

Q

I

i=1

p(w

i

jD

i

; �

i

).

1

3.2 Inferen
e

To determine the rank of a new example x

�

, we marginalize over the posterior

distribution of the weights, given the observed data:

P (y

�

= rjx

�

;D;�) =

Z

P (y

�

= rjx

�

;W) p(WjD;�) dW

=

Y

i:root!r

Z

P (z

i

jx

�

;w

i

) p(w

i

jD

i

; �

i

) dw

i

: (5)

1

Ideally we want p(WjD) =

R

p(WjD;�)p(�jD)d�, a matter that we shall tou
h on

in Se
tion 3.3.



Fig. 2. An example showing four ranks. Shown from left to right is the expe
ted rank;

most probable rank; posterior probabilities of ranks 1 to 4.

Figure 2 illustrates a toy problem with four ranks, and the respe
tive posterior

probabilities of ea
h rank.

It is not possible to perform the integration in (5) analyti
ally, so we make a

Lapla
e approximation (Ma
Kay, 1992) to ea
h p(w

i

jD

i

; �

i

). Lapla
e's method

involves a quadrati
 approximation of the log-posterior around its mode: the

negative logarithm of the posterior (3) is maximized over w

i

to give the most

probable weight ve
tor w

MP

i

. We �nd w

MP

i

by setting the �rst derivative of

� ln p(w

i

jD

i

; �

i

) to zero and solving with a standard Newton-Raphson method.

The se
ond-order Taylor expansion of � ln p(w

i

jD

i

; �

i

) around its maximum

w

MP

i

allows us to approximate the posterior with a Gaussian distribution with

mean w

MP

i

and varian
e-
ovarian
e matrix A

�1

i

. Here A

i

is the Hessian, the

matrix of se
ond derivatives �r

2

ln p(w

i

jD

i

; �

i

) evaluated at the most probable

parameter values w

MP

i

. This leads to an approximation of (5) with

P (y

�

= rjx

�

;D;�) '

Y

i:root!r

Z

P (z

i

jx

�

;w

i

) Normal(w

i

;w

MP

i

;A

�1

i

) dw

i

: (6)

The probability P (z

i

= 1jx

�

;w

i

) = �(w

>

i

x

�

) has a linear dependen
e on the

weight parameter through the s
alar a

i

= w

>

i

x

�

, and hen
e the dimensionality

of the integral 
an be redu
ed by �nding the probability density p(a

i

jx

�

;D) =

1=

p

2�s

2

i

�expf�(a

i

�a

MP

i

)

2

=2s

2

i

g with the mean and varian
e given by a

MP

i

=

w

>

MP

i

x

�

and s

2

i

= x

>

�

A

�1

i

x

�

respe
tively. The marginalized output, where ea
h

of the integrals in the produ
t (6) is e�e
tively P (z

i

jx

�

;D

i

; �

i

), is therefore

P (z

i

= 1jx

�

;D

i

; �

i

) =  (a

MP

i

; s

2

i

) �

Z

�(a

i

) Normal(a

i

; a

MP

i

; s

2

i

) da

i

:

The integral of a sigmoid times a Gaussian is approximated by  (a

MP

i

; s

2

i

) '

�(�(s

2

i

) � a

MP

i

), with �(s

2

i

) = 1=

p

1 + �s

2

i

=8 (Ma
Kay, 1992), so that we make

a �nal predi
tion with

P (y

�

= rjx

�

;D;�) '

Y

i:root!r

�(�(s

2

i

) � a

MP

i

)

z

i

[1� �(�(s

2

i

) � a

MP

i

)℄

1�z

i

:

3.3 Finding Values for Hyperparameters �

The preferred Bayesian treatment for hyperparameters su
h as � is to integrate

them out of any predi
tions with p(w

i

jD

i

) =

R

p(w

i

jD

i

; �

i

)p(�

i

jD

i

) d�

i

. We



will assume rather that the hyperparameter posterior p(�

i

jD

i

) is sharply peaked

around its most probable value �

MP

i

, so that p(w

i

jD

i

) ' p(w

i

jD

i

; �

MP

i

). The

hyperparameters whi
h maximize the posterior p(�

i

jD

i

) need to be found; by

assuming a non-informative hyperprior over �

i

, this task amounts to maximizing

the likelihood term (or eviden
e: the denominator in (3)). The log of the eviden
e

as a fun
tion of �

i

is ln p(D

i

j�

i

) =

d

2

ln�

i

�

�

i

2

w

>

MP

i

w

MP

i

�

1

2

ln jA

i

j+
. Following

Ma
Kay (1992), maximizing the log-eviden
e with respe
t to �

i

leads to �

MP

i

=

(d � �

i

Tra
e(A

�1

i

))=w

>

MP

i

w

MP

i

, whi
h we use as a re-estimation formula for

�

i

. The Hessian and most probable weights are re
omputed, and the pro
ess

repeated until 
onvergen
e of �

i

.

3.4 Nonlinear De
ision Boundaries

Nonlinearity is introdu
ed to the model with a �xed set of basis fun
tions, and

we repla
e w

>

x by

P

M

m=1

w

m

�

m

(x) = w

>

�(x). For simpli
ity, we let the basis

fun
tions be shared over all the gates. For pra
ti
al results, we use radial basis

fun
tions, �

m

(x) = expf�

1

2h

2

kx � �

m

k

2

g, and keep one basis fun
tion �xed

at unity (the bias). The basis fun
tion 
entres are set by a k-means 
lustering

on ea
h rank. The M basis fun
tions used in ea
h gate are the 
olle
tion of

all basis fun
tions over the ranks. The width h of the basis fun
tions is set to

twi
e the average spa
ing between the 
luster 
entres. We defer other methods

of implementing the gates to Se
. 5.

4 Experimental Results

The proposed HME approa
h to ordinal regression was evaluated on ben
hmark

data sets from Chu & Ghahramani (2004), who have dis
retized the targets from

the data sets, normally used for metri
 regression, into 5 and 10 ordinal ranks

using equal-length binning. The data were partitioned into training and test sets,

with a repartitioning performed 20 times on ea
h data set.

2

We evaluate the a

ura
y by taking the most likely rank as the predi
ted

rank ŷ

n

, and 
omparing it to the true rank y

n

. If there are N

0

elements in the

test set, the mean zero-one error averages the number of in
orre
t predi
tions

with

1

N

0

P

N

0

n=1

1

ŷ

n

6=y

n

. For the nonlinear 
ase we added 10 basis fun
tions per

rank to the set of basis fun
tions used. Table 1 shows the averages over 20 trials,

along with the standard deviation. The �rst three 
olumns are taken from Chu

& Ghahramani (2004), who have 
ompared Gaussian pro
esses with Gaussian

basis fun
tions to the support ve
tor ma
hine (SVM) approa
h of Shashua &

Levin (2003). Both a MAP estimation with Lapla
e approximation (MAP) and

Expe
tation Propagation algorithm with variational bound (EP) was used as

inferen
e te
hniques to implement the Gaussian pro
ess. The HME model with

both linear and nonlinear gates gives 
omparable performan
e.

2

The datasets and partitions are downloadable from

www.gatsby.u
l.a
.uk/�
huwei/ordinalregression.html.



Table 1. The test results of �ve algorithms. The data sets used, with (attributes,

training instan
es, test instan
es), are Di. Diabetes (2, 30, 13); Py. Pyrimidines (27,

50, 24); Tr. Triazines (60, 100, 86); Wi. Wis
onsin Breast Can
er (32, 130, 64); St.

Sto
ks Domain (9, 600, 350); Ab. Abalone (8, 1000, 3177).

Mean zero-one error (5 equal-length bins)

Data SVM GP (MAP) GP (EP) HME (linear) HME (nonlinear)

Di. 57.31�12.09% 54.23�13.78% 54.23�13.78% 51.54�6.16% 57.69�15.28%

Py. 41.46�8.49% 39.79�7.21% 36.46�6.47% 46.25�8.32% 47.71�8.16%

Tr. 54.19�1.48% 52.91�2.15% 52.62�2.66% 56.80�8.50% 55.12�4.55%

Wi. 70.78�3.73% 65.00�4.71% 65.16�4.65% 74.61�4.83% 68.36�2.91%

St. 10.81�1.70% 11.99�2.34% 12.00�2.06% 19.26�1.80% 14.43�2.16%

Ab. 21.58�0.32% 21.50�0.22% 21.56�0.36% 21.91�0.30% 21.91�0.30%

Mean zero-one error (10 equal-length bins)

Di. 90.38�7.00% 83.46�5.73% 83.08�5.91% 76.54�7.27% 80.77�9.50%

Py. 59.37�7.63% 55.42�8.01% 54.38�7.70% 64.79�8.60% 60.83�9.21%

Tr. 67.91�3.63% 63.72�4.34% 64.01�3.78% 68.37�5.65% 69.30�4.37%

Wi. 85.86�3.78% 78.52�3.58% 78.52�3.51% 88.75�4.11% 79.53�4.53%

St. 17.79�2.23% 19.90�1.72% 19.44�1.91% 32.00�3.82% 23.87�2.24%

Ab. 44.32�1.46% 42.60�0.91% 42.27�0.46% 43.14�0.52% 42.56�1.27%

5 Con
lusion and Future Work

We have des
ribed a novel Bayesian approa
h to ordinal regression, based on a

hierar
hi
al mixture of experts tree. The model was made analyti
ally tra
table

with a Lapla
e approximation to the parameter posterior: future work will in-

volve using Markov-
hain Monte Carlo methods to average (integrate) predi
-

tions over the posterior distribution. The gates 
an equally well be impemented

with Gaussian pro
esses, a matter worthy of investigation.
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