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Abstrat. We present a Bayesian approah to ordinal regression. Our

model is based on a hierarhial mixture of experts model and performs

a soft partitioning of the input spae into di�erent ranks, suh that

the order of the ranks is preserved. Experimental results on benhmark

data sets show a omparable performane to support vetor mahine and

Gaussian proess methods.

1 Introdution

Many appliations in Mahine Learning require the predition of ordered ate-

gories, and thereby ask of us to bridge the gap between regression and lassi-

�ation problems. Ordinal regression, or ranking, often arise when a judgment

of preferene is made. In ollaborative �ltering, for example, we seek to predit

a onsumer's rating of a novel item on an ordinal sale suh as good > average

> bad, using past ratings of similar items. The problem shares properties with

lassi�ation sine the targets are disrete and �nite, but also with regression

estimation by the existene of an ordering in the target spae.

In this paper we adopt a Bayesian approah to the ordinal regression problem,

based on the hierarhial mixture of experts (HME) model (Jordan & Jaobs,

1994; Waterhouse et al. 1996). The HME model onsists of a hierarhy of `ex-

perts', where eah expert models some data-generating proess on a subset of

the data. We simplify eah expert to an indiator funtion, suh that an expert

is responsible for labeling a pattern with a ertain rank on a subset of the input

spae. The ordering of the targets is imposed by a left-to-right assignment of

ranks to experts in a binary HME tree.

2 Learning From Examples

We are given a data set D of independent and identially distributed examples of

real-valued input vetors X = fx

n

g

N

n=1

and orresponding targets y = fy

n

g

N

n=1

.

The targets ome from a spae Y onsisting of a �nite number of ranks, Y =

f1; : : : ; Rg

>

. The subsript > denotes that there is an ordering between the

ranks, and an be interpreted as `preferred to'. For simpliity we use integers to

indiate the ordered set of ranks, but any labels will do. Given a new example

x

�

and the observed data, we wish to determine the probability distribution of

its rank, P (y

�

= rjx

�

;D).



Fig. 1. A binary mixture of experts tree for

ordinal regression. The expert (leaf) nodes

are indiator funtions, eah responsible for

labeling one possible rank. Here 1

A

is one

if A is true, and zero otherwise. The gating

nodes indiate the probability of following

the left|or onversely right|branh down

the tree to a rank. The struture of the

HME tree, with a left-to-right assignment

of ranks to the `experts', enapsulates the

ordinal regression problem.

3 Hierarhial Mixture of Experts for Ordinal Regression

We formulate the distribution of the ordinal target variables with a binary mix-

ture of experts tree. Figure 1 illustrates suh a tree, where the leaves, alled

`experts', are omponent distributions of the targets. The non-leaf nodes, alled

`gates', form oeÆients that mix the experts. Eah gate is onditioned on an

input variable and indiates the probability of following its left|or onversely

right|branh down the tree; onsequently the gates perform a soft partitioning

of the input spae. This soft partitioning is used as our ordinal regression model.

We assoiate a binary variable z

i

with eah gate, and set it to one if the left

branh is followed from the ith gate. The parameters of the model are the real-

valued weight vetors of the gates, whih we indiate with W = fw

i

g

I

i=1

. The

experts are labeled with disrete labels 1; : : : ; R, and we require the experts to be

indiator funtions. Hene, given expert r, the probability that it labeled (x; y)

is one if y = r, and zero otherwise. With a left-to-right assignment of ranks

to the experts, the struture of the HME tree and the resulting partitioning

of the input spae impose a natural ordering on the targets. In this paper we

restrit ourselves to omplete binary trees, although a more judiious hoie of

tree struture, based on evidene maximization, an be made.

The probability of y having rank r, given x, is equal to the probability that

expert r was responsible for generating the target. Equivalently it is equal to the

probability of orretly setting the binary indiator variables z

i

to form a path

from the root to the rth `expert',

P (y = rjx;W) =

Y

i:root!r

P (z

i

jx;w

i

): (1)

We use notation i : root! r to indiate that the produt is taken over the gates

on the unique path from the root to the rth expert, and note that summing

(1) over all ranks give unity. By de�ning �(a) = 1=(1 + e

�a

), the probability of

following the left branh from the ith gate is

P (z

i

= 1jx;w

i

) = �(w

>

i

x):



Throughout this paper, we impliitly augment input vetors with a bias lamped

at 1. From (1), the likelihood of observing the entire data set is

P (DjW) � P (yjX;W) =

N

Y

n=1

Y

i:root!y

n

P (z

in

jx

n

;w

i

): (2)

3.1 The Posterior

A probabilisti formulation|often prone to over�tting, as in the familiar ase

of supervised learning|an be found by maximizing the likelihood (2) with

respet to the model parametersW. We rather use the usual Bayesian approah

of making preditions by omputing the expeted value of P (y

�

= rjx

�

;W)

for a new example x

�

with respet to the posterior distribution of W. For the

purpose of obtaining this posterior distribution from Bayes' theorem, we plae

a Gaussian prior on eah gate's parameter vetor,

p(w

i

j�

i

) =

�

�

i

2�

�

d=2

exp

n

�

�

i

2

w

>

i

w

i

o

;

and ombine it with the likelihood (2), normalized by the evidene. The hyper-

parameter �

i

ontrols the width of the prior.

The weight vetor of gate i, onditioned on the observed data, is independent

of the parameters of the other gates, and only dependent on the examples that

were labeled by its left and right subtrees. As a notational onveniene, let T

i

indiate the set of experts that are leaves in the subtree with gate i as root. De�ne

D

i

to be the subset of examples assoiated with T

i

. From Bayes' theorem, the

posterior distribution of eah gate's parameters is

p(w

i

jD

i

; �

i

) =

P (D

i

jw

i

)p(w

i

j�

i

)

p(D

i

j�

i

)

(3)
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(1� �(w
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i

x

n

))

1�z

in

exp

n

�

�

i

2

w

>

i

w

i

o

: (4)

The full posterior is simply the produt over all individual gate posterior distri-

butions, p(WjD;�) =

Q

I

i=1

p(w

i

jD

i

; �

i

).

1

3.2 Inferene

To determine the rank of a new example x

�

, we marginalize over the posterior

distribution of the weights, given the observed data:

P (y

�

= rjx

�

;D;�) =

Z

P (y

�

= rjx

�

;W) p(WjD;�) dW

=

Y

i:root!r

Z

P (z

i

jx

�

;w

i

) p(w

i

jD

i

; �

i

) dw

i

: (5)

1

Ideally we want p(WjD) =

R

p(WjD;�)p(�jD)d�, a matter that we shall touh on

in Setion 3.3.



Fig. 2. An example showing four ranks. Shown from left to right is the expeted rank;

most probable rank; posterior probabilities of ranks 1 to 4.

Figure 2 illustrates a toy problem with four ranks, and the respetive posterior

probabilities of eah rank.

It is not possible to perform the integration in (5) analytially, so we make a

Laplae approximation (MaKay, 1992) to eah p(w

i

jD

i

; �

i

). Laplae's method

involves a quadrati approximation of the log-posterior around its mode: the

negative logarithm of the posterior (3) is maximized over w

i

to give the most

probable weight vetor w

MP

i

. We �nd w

MP

i

by setting the �rst derivative of

� ln p(w

i

jD

i

; �

i

) to zero and solving with a standard Newton-Raphson method.

The seond-order Taylor expansion of � ln p(w

i

jD

i

; �

i

) around its maximum

w

MP

i

allows us to approximate the posterior with a Gaussian distribution with

mean w

MP

i

and variane-ovariane matrix A

�1

i

. Here A

i

is the Hessian, the

matrix of seond derivatives �r

2

ln p(w

i

jD

i

; �

i

) evaluated at the most probable

parameter values w

MP

i

. This leads to an approximation of (5) with

P (y

�

= rjx

�

;D;�) '

Y

i:root!r

Z

P (z

i

jx

�

;w

i

) Normal(w

i

;w

MP

i

;A

�1

i

) dw

i

: (6)

The probability P (z

i

= 1jx

�

;w

i

) = �(w

>

i

x

�

) has a linear dependene on the

weight parameter through the salar a

i

= w

>

i

x

�

, and hene the dimensionality

of the integral an be redued by �nding the probability density p(a

i

jx

�

;D) =

1=

p

2�s

2

i

�expf�(a

i

�a

MP

i

)

2

=2s

2

i

g with the mean and variane given by a

MP

i

=

w

>

MP

i

x

�

and s

2

i

= x

>

�

A

�1

i

x

�

respetively. The marginalized output, where eah

of the integrals in the produt (6) is e�etively P (z

i

jx

�

;D

i

; �

i

), is therefore

P (z

i

= 1jx

�

;D

i

; �

i

) =  (a

MP

i

; s

2

i

) �

Z

�(a

i

) Normal(a

i

; a

MP

i

; s

2

i

) da

i

:

The integral of a sigmoid times a Gaussian is approximated by  (a

MP

i

; s

2

i

) '

�(�(s

2

i

) � a

MP

i

), with �(s

2

i

) = 1=

p

1 + �s

2

i

=8 (MaKay, 1992), so that we make

a �nal predition with

P (y

�

= rjx

�

;D;�) '

Y

i:root!r

�(�(s

2

i

) � a

MP

i

)

z

i

[1� �(�(s

2

i

) � a

MP

i

)℄

1�z

i

:

3.3 Finding Values for Hyperparameters �

The preferred Bayesian treatment for hyperparameters suh as � is to integrate

them out of any preditions with p(w

i

jD

i

) =

R

p(w

i

jD

i

; �

i

)p(�

i

jD

i

) d�

i

. We



will assume rather that the hyperparameter posterior p(�

i

jD

i

) is sharply peaked

around its most probable value �

MP

i

, so that p(w

i

jD

i

) ' p(w

i

jD

i

; �

MP

i

). The

hyperparameters whih maximize the posterior p(�

i

jD

i

) need to be found; by

assuming a non-informative hyperprior over �

i

, this task amounts to maximizing

the likelihood term (or evidene: the denominator in (3)). The log of the evidene

as a funtion of �

i

is ln p(D

i

j�

i

) =

d

2

ln�

i

�

�

i

2

w

>

MP

i

w

MP

i

�

1

2

ln jA

i

j+. Following

MaKay (1992), maximizing the log-evidene with respet to �

i

leads to �

MP

i

=

(d � �

i

Trae(A

�1

i

))=w

>

MP

i

w

MP

i

, whih we use as a re-estimation formula for

�

i

. The Hessian and most probable weights are reomputed, and the proess

repeated until onvergene of �

i

.

3.4 Nonlinear Deision Boundaries

Nonlinearity is introdued to the model with a �xed set of basis funtions, and

we replae w

>

x by

P

M

m=1

w

m

�

m

(x) = w

>

�(x). For simpliity, we let the basis

funtions be shared over all the gates. For pratial results, we use radial basis

funtions, �

m

(x) = expf�

1

2h

2

kx � �

m

k

2

g, and keep one basis funtion �xed

at unity (the bias). The basis funtion entres are set by a k-means lustering

on eah rank. The M basis funtions used in eah gate are the olletion of

all basis funtions over the ranks. The width h of the basis funtions is set to

twie the average spaing between the luster entres. We defer other methods

of implementing the gates to Se. 5.

4 Experimental Results

The proposed HME approah to ordinal regression was evaluated on benhmark

data sets from Chu & Ghahramani (2004), who have disretized the targets from

the data sets, normally used for metri regression, into 5 and 10 ordinal ranks

using equal-length binning. The data were partitioned into training and test sets,

with a repartitioning performed 20 times on eah data set.

2

We evaluate the auray by taking the most likely rank as the predited

rank ŷ

n

, and omparing it to the true rank y

n

. If there are N

0

elements in the

test set, the mean zero-one error averages the number of inorret preditions

with

1

N

0

P

N

0

n=1

1

ŷ

n

6=y

n

. For the nonlinear ase we added 10 basis funtions per

rank to the set of basis funtions used. Table 1 shows the averages over 20 trials,

along with the standard deviation. The �rst three olumns are taken from Chu

& Ghahramani (2004), who have ompared Gaussian proesses with Gaussian

basis funtions to the support vetor mahine (SVM) approah of Shashua &

Levin (2003). Both a MAP estimation with Laplae approximation (MAP) and

Expetation Propagation algorithm with variational bound (EP) was used as

inferene tehniques to implement the Gaussian proess. The HME model with

both linear and nonlinear gates gives omparable performane.

2

The datasets and partitions are downloadable from

www.gatsby.ul.a.uk/�huwei/ordinalregression.html.



Table 1. The test results of �ve algorithms. The data sets used, with (attributes,

training instanes, test instanes), are Di. Diabetes (2, 30, 13); Py. Pyrimidines (27,

50, 24); Tr. Triazines (60, 100, 86); Wi. Wisonsin Breast Caner (32, 130, 64); St.

Stoks Domain (9, 600, 350); Ab. Abalone (8, 1000, 3177).

Mean zero-one error (5 equal-length bins)

Data SVM GP (MAP) GP (EP) HME (linear) HME (nonlinear)

Di. 57.31�12.09% 54.23�13.78% 54.23�13.78% 51.54�6.16% 57.69�15.28%

Py. 41.46�8.49% 39.79�7.21% 36.46�6.47% 46.25�8.32% 47.71�8.16%

Tr. 54.19�1.48% 52.91�2.15% 52.62�2.66% 56.80�8.50% 55.12�4.55%

Wi. 70.78�3.73% 65.00�4.71% 65.16�4.65% 74.61�4.83% 68.36�2.91%

St. 10.81�1.70% 11.99�2.34% 12.00�2.06% 19.26�1.80% 14.43�2.16%

Ab. 21.58�0.32% 21.50�0.22% 21.56�0.36% 21.91�0.30% 21.91�0.30%

Mean zero-one error (10 equal-length bins)

Di. 90.38�7.00% 83.46�5.73% 83.08�5.91% 76.54�7.27% 80.77�9.50%

Py. 59.37�7.63% 55.42�8.01% 54.38�7.70% 64.79�8.60% 60.83�9.21%

Tr. 67.91�3.63% 63.72�4.34% 64.01�3.78% 68.37�5.65% 69.30�4.37%

Wi. 85.86�3.78% 78.52�3.58% 78.52�3.51% 88.75�4.11% 79.53�4.53%

St. 17.79�2.23% 19.90�1.72% 19.44�1.91% 32.00�3.82% 23.87�2.24%

Ab. 44.32�1.46% 42.60�0.91% 42.27�0.46% 43.14�0.52% 42.56�1.27%

5 Conlusion and Future Work

We have desribed a novel Bayesian approah to ordinal regression, based on a

hierarhial mixture of experts tree. The model was made analytially tratable

with a Laplae approximation to the parameter posterior: future work will in-

volve using Markov-hain Monte Carlo methods to average (integrate) predi-

tions over the posterior distribution. The gates an equally well be impemented

with Gaussian proesses, a matter worthy of investigation.
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