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Abstract. We present a Bayesian approach to ordinal regression. Our
model is based on a hierarchical mixture of experts model and performs
a soft partitioning of the input space into different ranks, such that
the order of the ranks is preserved. Experimental results on benchmark
data sets show a comparable performance to support vector machine and
Gaussian process methods.

1 Introduction

Many applications in Machine Learning require the prediction of ordered cate-
gories, and thereby ask of us to bridge the gap between regression and classi-
fication problems. Ordinal regression, or ranking, often arise when a judgment
of preference is made. In collaborative filtering, for example, we seek to predict
a consumer’s rating of a novel item on an ordinal scale such as good > average
> bad, using past ratings of similar items. The problem shares properties with
classification since the targets are discrete and finite, but also with regression
estimation by the existence of an ordering in the target space.

In this paper we adopt a Bayesian approach to the ordinal regression problem,
based on the hierarchical mizture of experts (HME) model (Jordan & Jacobs,
1994; Waterhouse et al. 1996). The HME model consists of a hierarchy of ‘ex-
perts’, where each expert models some data-generating process on a subset of
the data. We simplify each expert to an indicator function, such that an expert
is responsible for labeling a pattern with a certain rank on a subset of the input
space. The ordering of the targets is imposed by a left-to-right assignment of
ranks to experts in a binary HME tree.

2 Learning From Examples

We are given a data set D of independent and identically distributed examples of
real-valued input vectors X = {x,}N_, and corresponding targets y = {y,})_,.
The targets come from a space ) consisting of a finite number of ranks, )} =
{1,...,R}s. The subscript > denotes that there is an ordering between the
ranks, and can be interpreted as ‘preferred to’. For simplicity we use integers to
indicate the ordered set of ranks, but any labels will do. Given a new example
x, and the observed data, we wish to determine the probability distribution of
its rank, P(y. = r|x., D).



Fig. 1. A binary mixture of experts tree for
Z ordinal regression. The expert (leaf) nodes
are indicator functions, each responsible for
labeling one possible rank. Here 14 is one
if A is true, and zero otherwise. The gating
1,_, nodes indicate the probability of following
’ the left—or conversely right—branch down
the tree to a rank. The structure of the
HME tree, with a left-to-right assignment
of ranks to the ‘experts’, encapsulates the

y=2 ordinal regression problem.

3 Hierarchical Mixture of Experts for Ordinal Regression

We formulate the distribution of the ordinal target variables with a binary mix-
ture of experts tree. Figure 1 illustrates such a tree, where the leaves, called
‘experts’, are component distributions of the targets. The non-leaf nodes, called
‘gates’, form coefficients that mix the experts. Each gate is conditioned on an
input variable and indicates the probability of following its left—or conversely
right—branch down the tree; consequently the gates perform a soft partitioning
of the input space. This soft partitioning is used as our ordinal regression model.

We associate a binary variable z; with each gate, and set it to one if the left
branch is followed from the ith gate. The parameters of the model are the real-
valued weight vectors of the gates, which we indicate with W = {w;}/_,. The
experts are labeled with discrete labels 1, ..., R, and we require the experts to be
indicator functions. Hence, given expert r, the probability that it labeled (x,y)
is one if y = r, and zero otherwise. With a left-to-right assignment of ranks
to the experts, the structure of the HME tree and the resulting partitioning
of the input space impose a natural ordering on the targets. In this paper we
restrict ourselves to complete binary trees, although a more judicious choice of
tree structure, based on evidence maximization, can be made.

The probability of y having rank r, given x, is equal to the probability that
expert r was responsible for generating the target. Equivalently it is equal to the
probability of correctly setting the binary indicator variables z; to form a path
from the root to the rth ‘expert’,

Ply=rlx, W)= [[ P(zlx,wi). (1)

iiroot—r

We use notation 4 : root — 7 to indicate that the product is taken over the gates
on the unique path from the root to the rth expert, and note that summing
(1) over all ranks give unity. By defining o(a) = 1/(1 + e~ ?), the probability of
following the left branch from the ith gate is

T

P(z; = 1|x,w;) = o(w; x).



Throughout this paper, we implicitly augment input vectors with a bias clamped
at 1. From (1), the likelihood of observing the entire data set is

N
POW)=Py|X,W)=]] [[ P(zinlxn,wi). (2)

n=1 i:root—y,

3.1 The Posterior

A probabilistic formulation—often prone to overfitting, as in the familiar case
of supervised learning—can be found by maximizing the likelihood (2) with
respect to the model parameters W. We rather use the usual Bayesian approach
of making predictions by computing the expected value of P(y. = r|x., W)
for a new example x, with respect to the posterior distribution of W. For the
purpose of obtaining this posterior distribution from Bayes’ theorem, we place
a Gaussian prior on each gate’s parameter vector,

N\ d/2 .
p(wila;) = (;—;) eXP{ - %WIWi},
and combine it with the likelihood (2), normalized by the evidence. The hyper-
parameter a; controls the width of the prior.

The weight vector of gate i, conditioned on the observed data, is independent
of the parameters of the other gates, and only dependent on the examples that
were labeled by its left and right subtrees. As a notational convenience, let 7;
indicate the set of experts that are leaves in the subtree with gate ¢ as root. Define
D; to be the subset of examples associated with 7;. From Bayes’ theorem, the
posterior distribution of each gate’s parameters is

P(Di|wi)p(wi|ai)
p(wi[Diy ) p(Dile) )

x H o(w] x,)%" (1 — o(w, x,)) % exp{ - %w?wi}. (4)
n:Yn €T;

The full posterior is simply the product over all individual gate posterior distri-
butions, p(W|D, &) = [T, p(w:|D;, a;).!

3.2 Inference
To determine the rank of a new example x,, we marginalize over the posterior

distribution of the weights, given the observed data:

Py, =r|x4,D, ) = /P(y* = r|x., W) p(W|D, o) dW

= H /P(Zi|x*,Wi)p(Wi|Diaai) dw;. (5)

iiroot—r

! Ideally we want p(W|D) = [ p(W|D, a)p(a|D) de, a matter that we shall touch on
in Section 3.3.



Fig. 2. An example showing four ranks. Shown from left to right is the expected rank;
most probable rank; posterior probabilities of ranks 1 to 4.

Figure 2 illustrates a toy problem with four ranks, and the respective posterior
probabilities of each rank.

It is not possible to perform the integration in (5) analytically, so we make a
Laplace approximation (MacKay, 1992) to each p(w;|D;, «;). Laplace’s method
involves a quadratic approximation of the log-posterior around its mode: the
negative logarithm of the posterior (3) is maximized over w; to give the most
probable weight vector wyp,. We find wyp, by setting the first derivative of
—Inp(w;|D;, a;) to zero and solving with a standard Newton-Raphson method.
The second-order Taylor expansion of — Inp(w;|D;, ;) around its maximum
wup,; allows us to approximate the posterior with a Gaussian distribution with
mean wyp; and variance-covariance matrix A} L. Here A, is the Hessian, the
matrix of second derivatives —V?2 In p(w;|D;, a;) evaluated at the most probable
parameter values wyrp,. This leads to an approximation of (5) with

Py, =r|x4,D,cx H /P (2i]%4, w;) Normal(w;; wyp,, A; 1) dw;. (6)
icroot—r

The probability P(z; = 1|x.,w;) = o(w, x.) has a linear dependence on the
weight parameter through the scalar a; = w; x., and hence the dimensionality
of the integral can be reduced by finding the probability density p(ai|x*,D) =
1/\/27rs exp{ a; —anp;)?/2s?} with the mean and variance given by avp, =
WMP x, and s7 = xTA 1x* respectively. The marginalized output, where each
of the 1ntegrals in the product (6) is effectively P(z;|x«,D;, ;), is therefore

P(z; = 1|x4, Di, ;) = l[](aMpi,S?) = /o(ai) Normal(a;; amp,, Z) da;.

The integral of a Slngld times a Gaussmn is approximated by ¢ (amp,, s7) ~

o(k(s?) - amp,), with k(s?) = 1/4/1 + ms? /8 (MacKay, 1992), so that we make
a final prediction with

P(y* = T|X*,D, a) =~ H U(KJ(S?) . aMPi)Zi []. - U(KJ(S?) - aMPi )]1721"
i:root—r
3.3 Finding Values for Hyperparameters «

The preferred Bayesian treatment for hyperparameters such as « is to integrate
them out of any predictions with p(w;|D;) = [ p(w;|D;, a;)p(e;|D;) de;. We



will assume rather that the hyperparameter posterior p(«;|D;) is sharply peaked
around its most probable value amp,, so that p(w;|D;) ~ p(w;|D;, amp,). The
hyperparameters which maximize the posterior p(a;|D;) need to be found; by
assuming a non-informative hyperprior over a;, this task amounts to maximizing
the likelihood term (or evidence: the denominator in (3)). The log of the evidence
as a function of a; is In p(Ds|a;) = 4 Ina;— S wip wyip, — 3 In |A;|+c. Following
MacKay (1992), maximizing the log-evidence with respect to «; leads to amp, =
(d — a;Trace(A]")) /Wyp, Wnip,, which we use as a re-estimation formula for
«;. The Hessian and most probable weights are recomputed, and the process
repeated until convergence of «;.

3.4 Nonlinear Decision Boundaries

Nonlinearity is introduced to the model with a fixed set of basis functions, and
we replace w'x by 2%21 W dm (X) = W' @d(x). For simplicity, we let the basis
functions be shared over all the gates. For practical results, we use radial basis
functions, ¢n,(x) = exp{—5rz|/x — wml/*}, and keep one basis function fixed
at unity (the bias). The basis function centres are set by a k-means clustering
on each rank. The M basis functions used in each gate are the collection of
all basis functions over the ranks. The width h of the basis functions is set to
twice the average spacing between the cluster centres. We defer other methods
of implementing the gates to Sec. 5.

4 Experimental Results

The proposed HME approach to ordinal regression was evaluated on benchmark
data sets from Chu & Ghahramani (2004), who have discretized the targets from
the data sets, normally used for metric regression, into 5 and 10 ordinal ranks
using equal-length binning. The data were partitioned into training and test sets,
with a repartitioning performed 20 times on each data set.>

We evaluate the accuracy by taking the most likely rank as the predicted
rank g,, and comparing it to the true rank y,. If there are N’ elements in the
test set, the mean zero-one error averages the number of incorrect predictions
with % Zn]\; 14,4y, . For the nonlinear case we added 10 basis functions per
rank to the set of basis functions used. Table 1 shows the averages over 20 trials,
along with the standard deviation. The first three columns are taken from Chu
& Ghahramani (2004), who have compared Gaussian processes with Gaussian
basis functions to the support vector machine (SVM) approach of Shashua &
Levin (2003). Both a MAP estimation with Laplace approximation (MAP) and
Expectation Propagation algorithm with variational bound (EP) was used as
inference techniques to implement the Gaussian process. The HME model with
both linear and nonlinear gates gives comparable performance.

2 The datasets and partitions are downloadable from
www.gatsby.ucl.ac.uk/~chuwei/ordinalregression.html.



Table 1. The test results of five algorithms. The data sets used, with (attributes,
training instances, test instances), are Di. Diabetes (2, 30, 13); Py. Pyrimidines (27,
50, 24); Tr. Triazines (60, 100, 86); Wi. Wisconsin Breast Cancer (32, 130, 64); St.
Stocks Domain (9, 600, 350); Ab. Abalone (8, 1000, 3177).

Mean zero-one error (5 equal-length bins)

Data SVM GP (MAP) GP (EP) HME (linear) HME (nonlinear)
Di. [57.31+12.09% 54.23+13.78% 54.23+13.78% 51.54+6.16% 57.69+15.28%
Py. |41.46+£8.49% 39.79+7.21% 36.46+6.47% 46.25+8.32%  47.71+£8.16%
Tr. |54.19+£1.48% 52.91+2.15% 52.62+2.66% 56.80+8.50%  55.12+4.55%
Wi. | 70.78+3.73% 65.00+4.71% 65.16+4.65% 74.61+4.83%  68.36+2.91%
St. |10.81+£1.70% 11.99+2.34% 12.00+2.06% 19.26+1.80%  14.43+2.16%
Ab. |21.584+0.32% 21.50+0.22% 21.56+0.36% 21.914+0.30%  21.9140.30%
Mean zero-one error (10 equal-length bins)
Di. [90.38+£7.00% 83.46+5.73% 83.08+5.91% 76.54+7.27%  80.77+9.50%
Py. [59.37+£7.63% 55.424+8.01% 54.38+7.70% 64.79+8.60% 60.83+9.21%
Tr. [67.91+£3.63% 63.72+4.34% 64.01+3.78% 68.37+5.65%  69.30+£4.37%
Wi. |85.86+3.78% 78.52+3.58% 78.52+3.51% 88.75+4.11%  79.53+4.53%
St. | 17.79+2.23% 19.90+1.72% 19.444+1.91% 32.00+3.82%  23.874+2.24%
Ab. |44.324+1.46% 42.60+0.91% 42.27+0.46% 43.14+0.52%  42.56+1.27%

5 Conclusion and Future Work

We have described a novel Bayesian approach to ordinal regression, based on a
hierarchical mixture of experts tree. The model was made analytically tractable
with a Laplace approximation to the parameter posterior: future work will in-
volve using Markov-chain Monte Carlo methods to average (integrate) predic-
tions over the posterior distribution. The gates can equally well be impemented
with Gaussian processes, a matter worthy of investigation.
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