
NIPS 2014 Workshop on Personalization: Methods and Applications. Montreal, Canada

A Scalable Bayesian Alternative to Density
Estimation with a Bilinear Softmax Function

Ulrich Paquet
Microsoft Research

Cambridge, United Kingdom

Noam Koenigstein
Microsoft R&D
Herzliya, Israel

Ole Winther
Technical University of Denmark

Lyngby, Denmark

Abstract

We present a novel, scalable and Bayesian approach to modelling the occurrence
of pairs (i, j) drawn from a large vocabulary. Our practical interest is in modelling
(user, item) pairs in a recommender system, for which we present state of the
art results on Xbox movie viewing data. The observed pairs are assumed to be
generated by a simple popularity based selection process followed by censoring
using a preference function. By basing inference on the well-founded principle
of variational bounding, and using new site-independent bounds, we show how
a scalable inference procedure can be obtained for large data sets. The model
is a plausible alternative to modelling discrete densities with a bilinear softmax
function.

1 Introduction

We present an new model for the occurrence of pairs of discrete symbols (i, j) from a finite set,
which can be used to predict the occurrence of symbol j given that the other symbol is i. These
pairs might be tuples of (user, item) purchase events, or a stream of (user, game) gameplay events.
From such a model, a recommender system can be tailored around the conditional probability of
item or game j, given user i. Alternatively, these tuples might be (word1,word2) bigrams in a
simple language model.

If there are I and J of each symbol, and ui,vj ∈ RK (where K � I, J) are associated with user i
and item j, an “ideal” model for the density of i and j is the bilinear softmax

p(i, j) = eu
T
i vj

/∑
i′,j′

eu
T
i′vj′ . (1)

Its normalizing constant sums over all I×J discrete options. When i is given, p(j|i) defines softmax
regression, the multi-class extension of logistic regression. The bilinear softmax function poses a
practical difficulty: the large sums from the normalizing constant appear in the likelihood gradient
through

∂ log p(i, j)

∂ui
= vj −

J∑
k=1

(
eu

T
i vk∑

i′,j′ e
uT

i′vj′

)
vk = vj −

J∑
j′=1

wij′vj′ , (2)

which requires a sum over all IJ pairs in its normalizer. These kinds of models appear often in neural
probabilistic language models, and gradients are estimated with noise contrastive estimation [4, 8] or
importance sampling [1]. The conditional density p(j|i) can also be redefined as a tree-based hierar-
chy of smaller softmax functions [9]. Alternatively, modelling can be done by formulating a simpler
objective function based on a classification likelihood, and including stochastically “negative sam-
pled” pairs during optimization. This was done for skip-gram models that consider (word1,word2)
pairs [7] and for (user, item) pairs [10].

1

T F

zdyd yd′ zd′

π ψ

biui vj bj

D D′

I J

Figure 1: A generative model for observing D pairs of symbols, assuming that D′ unknown pairs were cen-
sored.

1.1 An alternative view

Is it practically feasible to go beyond a point estimate and estimate parameter uncertainty when
I ≈ 107 and J ≈ 107? Can we tractably estimate posterior uncertainty in the regime where data is
scarce? In an recommender system with millions of users and items, we still have to reason about
users with only one to a few interactions.

Equations (1) and (2) have pleasing properties: (1) embeds each i and j in a K-dimensional space,
while (2) adjusts the embedding by pulling ui towards vj and pushes it further from all other vj′
when a pair (i, j) is observed. In the rest of this paper, we carefully construct a model that attempts
to bridge the gap to (1), so that a variational Bayesian algorithm can be derived which does not scale
with I × J , as (2) does, but still keeps properties of (1) and (2).

On observing D pairs, the model is specified by a parameter D′, the number of “censored” pairs,
and its choice depends onD. At the expense of a slightly unnatural generative model, a scalable and
computationally tractable approximate inference algorithm can be derived.1

2 Generative model for pairs with censoring

A pair (i, j) will be represented as a pair (y, z) of binary indicator vectors, where only bits i and j
are “on” in y ∈ {0, 1}I and z ∈ {0, 1}J respectively. We shall model the data set by appending a
binary variable o = T (true) to each pair: we did observe that symbols i and j co-occurred, user i
played game j today, and so on. We therefore observe a data set of D pairs, which takes the form
{od = T,yd, zd}Dd=1.

The censored approach assumes that there were a number of pairs that did not surface in the data
set, such that o = F (false). We do not know which pairs and how many they were, but in practice
we will allow the size of the censored set be specified as a hyperparameter D′, and assume that
{od′ = F}D′d′=1 is additionally provided. Let data D

.
= {{od = T,yd, zd}Dd=1, {od′ = F}D′d′=1}

denote all observations. The ratio D/D′ can be seen as a pre-specified positive to negative class
ratio; various settings of r in D′ = rD are investigated in Sec. 4. The censored set constitutes a
“negative background” against which the energy uTi vj will be fit, and it plays a role similar to that
of the softmax normalizer in the gradient of log p(i, j) from (1): on observing a pair (i, j), ui is
pulled towards vj and pushed further from all other vj′ .

As a bridge towards (1), we propose a model which combines popularity-based selection with a
personalized preference function to model (i, j):

1Detailed derivations follow in [11].

2

1. In a selection step a user i is chosen with probability πi, and an item j is chosen with
probability ψj .

2. In a censoring step the pair (i, j) is observed with probability σ(uTi vj + bi + bj) and
censored with probability 1−σ(uTi vj+ bi+ bj), where σ(a) = 1/(1+e−a) is the logistic
function.

The generative process is illustrated in Fig. 1, and is as follows: draw parameters ϑ from their
prior distributions (given explicitly below). Repeat drawing pairs (i, j) with indexes drawn from
Discrete(π) and Discrete(ψ) and observe the pairs with probability σ(uTi vj + bi + bj). D such
pairs are seen, while we assume that D′, the number of censored data points, is specified as a
hyperparameter.

Fixing notation, let U .
= {ui}Ii=1 and V

.
= {vj}Jj=1 denote all bilinear parameters and b

.
=

{{bi}Ii=1, {bj}Jj=1} denote biases, with ϑ .
= {U,V,b,π,ψ}. The density of an uncensored data

point d is therefore

p(od = T,yd, zd|ϑ) = p(od = T|yd, zd,U,V,b) p(yd|π) p(zd|ψ)

=
∏
i,j

[
πi ψj σ(u

T
i vj + bi + bj)

]ydizdj
while p(od′ = F|yd′ , zd′ ,U,V,b) =

∏
i,j(1− σ(uTi vj + bi + bj))

yd′izd′j is the odds of censoring
pair d′ if its indexes were known. The censored indexes yd′ and zd′ are unknown; by including their
prior and marginalizing over them, p(od′ = F|ϑ) is a mixture of IJ components.

The joint density of D and the unobserved variables θ
.
= {ϑ, {yd′ , zd′}D

′

d′=1} depends
on further priors on ϑ, for which we choose Dirichlet priors for p(π) = D(π;α0)
and p(ψ) = D(ψ;α0). The other priors are fully factorized Gaussians, with p(U) =∏
iN (ui;0, τ

−1
u I) and p(V) =

∏
j N (vj ;0, τ

−1
v I) and, with some overloaded notation, p(b) =∏

iN (bi; 0, τ
−1
b)

∏
j N (bj ; 0, τ

−1
b).

The joint density in Fig. 1 decomposes as

p(D ,θ) = p(D |{yd′ , zd′},ϑ) p({yd′ , zd′}|π,ψ) p(ϑ)

=
∏
i,j

σ(uTi vj + bi + bj)
cij [1− σ(uTi vj + bi + bj)]

∑
d′ yd′izd′j

·
∏
i

π
ci+

∑
d′ yd′i

i ·
∏
j

ψ
cj+

∑
d′ zd′j

j · p(U) p(V) p(b) p(π) p(ψ) , (3)

where the uncensored data likelihood was regrouped using observation counts cij
.
=
∑
d ydizdj ∈

{0, 1, 2, . . . , D} for each pair (i, j), and marginal counts ci
.
=
∑
d ydi and cj

.
=
∑
d zdj . Note that∑

i,j cij = D. Marginalizing p(D ,θ) over {yd′ , zd′} gives a mixture of
(
D′+IJ−1
IJ−1

)
components,

each representing a different way of assigning D′ indistinguishable F’s to IJ distinguishable bins,
or assigning nonnegative counts c′ij with

∑
i,j c
′
ij = D′ to a “negative class count matrix”.

At first glance of (3), it would seem as if inference would still scale with IJ , and that we have
done nothing more than match the bilinear softmax’s O(IJ) computational burden through the
introduction of D′. The following section is devoted to developing a variational approximation, and
with it a practically scalable inference scheme that relies on various “negative background” caches.

3 Variational Bayes

To find a scalable yet Bayesian inference procedure, we approximate p(θ|D) with a factorized sur-
rogate density q(θ), found by maximizing a variational lower bound to log p(D) [13]. First, we
lower-bound each logistic function in (3) by associating a parameter ξij with it [5]. Dropping sub-
scripts, each bound would be σ(±a) ≥ σ(ξ) exp(−λ(ξ)

(
a2 − ξ2

)
± a

2 −
ξ
2), where the lower

bound on 1 − σ(a) is that of σ(−a) above. The bound depends on the deterministic function
λ(ξ)

.
= 1

2ξ [σ(ξ) −
1
2]. Let ξ .

= {ξij} denote the set of logistic variational parameters, and sub-
stitute the bound into (3) to get p(D ,θ) ≥ pξ(D ,θ). Our variational objective Lξ[q], as a function

3

of ξ and functional of q, follows from

log p(D) ≥ log

∫
pξ(D ,θ) dθ ≥

∫
q(θ) log

pξ(D ,θ)

q(θ)
dθ

.
= Lξ[q] , (4)

which will be maximized with respect to q and ξ. Our choice of factorization of q is

q(θ)
.
=
∏
i

q(bi)
∏
k

q(uik) ·
∏
j

q(bj)
∏
k

q(vjk) ·
∏
d′

q(yd′) q(zd′) · q(π) q(ψ) . (5)

The factors approximating each symbol’s features in U, V, and b are chosen to be a Gaussian, for
example q(uik) = N (uik;µik, ω

−1
ik). The approximating factors q(π) and q(ψ) are both Dirichlet.

For the purpose of obtaining a scalable algorithm, the most important parameterizations are for the
categorical (discrete) factors q(yd′) and q(zd′). As D′ is potentially large, the parameters of q(yd′)
will be tied. This tying of parameters is the key to achieving a scalable algorithm. We let all q(yd′)
share the same parameter vector s on the probability simplex, such that q(yd′) =

∏
i s
yd′i
i for all d′.

Similarly, all q(zd′) share probability vector t, such that q(zd′) =
∏
j t
zd′j
j for all d′.

3.1 Scalable inference

Let graph G = {(i, j) : cij > 0} be the sparse set of all observed pair indexes. As there are IJ
logistic variational parameters ξij , we shall divide them into two sets, those with indexes in G, and
those without. Therefore ξij shall be optimized for when (i, j) ∈ G, while the ξij’s shall share
the same parameter value ξ∗ for (i, j) /∈ G. Even though the form of (3) suggests that we would
need two versions of ξij , one for the bounded σ-term, and one its opposite, this is not required,
as the optimization of the bound is symmetric. When ξij maximizes L on the bounded σ-term, it
simultaneously maximizes L on the bounded (1 − σ)-term. We’ll use the shorthand λij

.
= λ(ξij)

for (i, j) ∈ G; similarly, λ∗ denotes λ(ξ∗) when (i, j) /∈ G.

Below, we show how an update of
∏
k q(uik) only requires a sparse sum over j ∈ G(i), and not over

all indexes j. This tractable update is a result of using

1. ξij = ξ∗ (and hence λij = λ∗) for all j /∈ G(i);
2. cij = 0 for all j /∈ G(i);
3. Eq[yd′i] = si for all d′ = 1, . . . , D′;

4. Eq[zd′j] = tj for all d′ = 1, . . . , D′.

3.2 Gaussian updates for q(uik)

As an example of a scalable update, we present here a bulk update of
∏
k q(uik). The bulk update

is faster than sequentially maximizing Lξ[q] with respect to each of them in turn. For clarity, we
assume that bi = bj = 0 are clamped at zero.

We first solve for the maximum of L with respect to a full Gaussian (not factorized) approx-
imation q̃(ui) = N (ui;µi,P

−1
i). The fully factorized q(uik) can then be recovered from

the intermediate approximation q̃(ui) as those that minimize the Kullback-Leibler divergence
DKL(

∏
k q(uik)‖q̃(ui)): this is achieved when the means of q(uik) match that of q̃(ui), while their

precisions match the diagonal precision of q̃(ui). The updates rely on careful caching, which we’ll
first illustrate through q̃’s precision matrix. L is maximized when q̃(ui) has as natural parameters a
precision matrix

Pi =
∑
j∈G(i)

cij · 2λij · Eq
[
vjv

T
j

]
+

(a)︷ ︸︸ ︷∑
d′

∑
j

Eq[yd′i zd′j] · 2λij · Eq
[
vjv

T
j

]
+ τuI (6)

and a mean-times-precision vector mi, which we will state later. Looking at Pi in (6), a very
undesirable sum over all d′ and j is required in (a). We endeavoured that the update would be sparse,
and only sum over observed indexes in G(i) .

= {j : (i, j) ∈ G}. The benefit of the shared variational

4

parameters now becomes apparent. With Eq[yd′i zd′j] = sitj and λij = λ∗ when (i, j) /∈ G, the
sum in (a) decomposes as

(a) =
∑
j∈G(i)

sitjD
′ · 2(λij − λ∗)Eq

[
vjv

T
j

]
+ siD

′ · 2λ∗ ·

negative background P	︷ ︸︸ ︷∑
j

tjEq
[
vjv

T
j

]
.

Barring the “negative background” term, only a sparse sum that involves observed pairs is required.
This background term is rolled up into a global item-background cache, which is computed once
before updating all q(uik). Throughout the paper, the 	 symbol will denote an item-background
cache. The cache P	

.
=
∑
j tj Eq[vjvTj] is used in each precision matrix update, for example

Pi = siD
′ · 2λ∗ ·P	 +

∑
j∈G(i)

(
cij · 2λij + sitjD

′ · 2(λij − λ∗)
)
Eq
[
vjv

T
j

]
+ τuI .

We’ve deliberately laboured the above decomposition of an expensive update into a background
cache and a sparse sum over actual observations, as it serves as a template for other parameter
updates. Turning to the mean-times-precision vector mi

.
= Piµi of q̃(ui), we find that

mi = Eq

1
2

∑
j∈G(i)

cijvj −
1

2

∑
d′

∑
j

yd′i zd′jvj

 . (7)

To find mi, an additional cache is added to the item-background cache, and are computed once
before any q(uik) updates: m	

.
=
∑
j tjEq[vj]. The final mean-times-precision update is

mi =
1

2

 ∑
j∈G(i)

cijEq
[
vj
]
− siD′m	

 , (8)

and again only sums over j ∈ G(i) and not all j = 1, . . . , J . There are of course additional
variational parameters ξij , and they are computed and discarded when needed.

3.3 Bilinear softmax gradients

The connection between this model and a bilinear softmax model can be seen when the biases are
ignored. Consider the gradient of L with respect to mean parameter µi,

∇L(µi) = −Piµi +
1

2

(∑
j∈G(i)

cijEq
[
vj
]
−D′

∑
j

sitjEq
[
vj
])

. (9)

The gradient ∇L(µi) is zero at (7), which was stated, together with (6), in terms of natural param-
eters. As L(µi) is quadratic, it can be exactly maximized; furthermore, the maximum with respect
to Pi is attained at the negative Hessian Pi = −∇2L(µi), given in (6). The curvature of the bound,
as a function of µi, directly translates into our posterior approximation’s uncertainty of ui. The
log likelihood of a softmax model would be L =

∑
d log p(id, jd), with the likelihood of each pair

defined by (1). The gradient of the log likelihood is therefore

∇L(ui) =
∑
j∈G(i)

cijvj −D
∑
j

wijvj , (10)

with weights wij
.
= eu

T
i vj/

∑
i′,j′ e

uT
i′vj′ that sum to one over all IJ options. The weights in

(9) were simply sitj , and also sum to one over all options. The difference between (9) and (10)
is that sitj is used as a factorized substitute for wij . This simplification allows the convenience
that none of the updates described in Sec. 3.1 need to be stochastic, and substitute functions, as
employed by noise contrastive estimation to maximize L, are not required. (The Hessian ∇2L(ui)
contains a double-sum over indexes j.) Considering the two equations above, one might expect to
set hyperparameter D′ to D′ = D, and in Sec. 4 we show that this is a reasonable choice.

5

10
0

10
1

10
2

10
3

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

number of items per user

av
er

ag
e

ra
nk

Xbox movies

10
0

10
1

10
2

10
3

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

number of items per user

av
er

ag
e

ra
nk

Netflix (4 and 5 stars)

popularity
RG−like
RG−pop*like
BPR−uniform
BPR−pop
this paper

Figure 2: The rankR(i, j?) in (12), averaged over users and grouped logarithmically by ci. The top evaluation
is on the Xbox movies sample, while the bottom one is on the “implicit feedback” Netflix (4 and 5 stars) set.

4 Evaluation

A key application for modelling paired (user, item) symbols is large-scale recommendation systems
and we evaluate predictions from the model on two large data sets. The Xbox movies data is a
sample of 5.6× 107 views for 6.2× 106 users on a sub-catalogue of around 1.2× 104 movies [10].
To evaluate on data known in the Machine Learning community, the four- and five-starred ratings
from the Netflix prize data set were used to simulate a stream of “implicit feedback” (user, item)
pairs in the Netflix (4 and 5 stars) data. We refer the reader to [10] for a complete data set description.
Let’s first consider how predictions are made from the model.

4.1 Making predictions

Our original desideratum was to infer the probability of symbol j, conditional on the other symbol
being i, and the observed data. Bayesian marginalization requires us to average the predictions over
the model parameter posterior distribution. Here it is an analytically intractable task, which we
approximate by using q as a surrogate for the true posterior. Firstly,

p(o = T|y, z,D) ≈
∫
p(o = T|y, z,ϑ)q(ϑ) dϑ =

∫
σ(aij)N (aij ;µij , σ

2
ij) daij ≈ σ(xij)

if yi = zj = 1. The random variable aij was defined as aij
.
= uTi vj + bi + bj , with its density

approximated with its first two moments under q, i.e. µij
.
= Eq[aij] and σ2

ij
.
= Eq[(aij − µij)2].

With xij
.
= µij /(1 + πσ2

ij/8)
1/2, the final approximation of a logistic Gaussian integral follows

from [6]. Again using q, the posterior density of symbol j, provided that the first symbol is i, is
approximately proportional to (writing “T” for “o = T” for brevity)

p(zj = 1|T, yi = 1,D) ∝∼ p(T|yi = zj = 1,D)

∫
p(zj = 1|ψ)q(ψ) dψ = σ(xij)Eq[ψj] . (11)

Hence p(zj = 1|o = T, yi = 1,D) ≈ σ(xij)Eq[ψj]
/∑

j′ Eq[ψj′]σ(xij′), normalizing to one.

4.2 Ranking items

For each user, one item was randomly removed to create a test set. To mimic a real scenario in the
simplest possible way, each user’s non-viewed items were ranked, and the position of the test item
noted. We are interested in the rank of held out item j? for user i on a [0, 1] scale,

R(i, j?)
.
=

1

J − |G(i)|
∑
j /∈G(i)

I
[
fij? > fij

]
, (12)

where fij indicates the score given by (11) or any alternative algorithm. (In a real system q(θ)
would be employed in various utility functions that cater for diversity, freshness, exposure of tail
items, etc.)

6

10
0

10
1

10
2

10
3

0.92

0.93

0.94

0.95

0.96

0.97

0.98

number of items per user

av
er

ag
e

ra
nk

Xbox movies

r = 0.25
r = 0.5
r = 1
r = 2
r = 4

10
0

10
1

10
2

10
3

0.92

0.93

0.94

0.95

0.96

0.97

0.98

number of items per user

av
er

ag
e

ra
nk

Netflix (4 and 5 stars)

Figure 3: The average rankR(i, j?) in (12), grouped logarithmically by ci, for varying values of r inD′ = rD.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

σ(x
j*
)

em
pi

ric
al

 d
en

si
ty

r = 0.5

c
i
 = 1 (blue)

c
i
 = 40 (red)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

σ(x
j*
)

em
pi

ric
al

 d
en

si
ty

r = 1

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

σ(x
j*
)

em
pi

ric
al

 d
en

si
ty

r = 2

Figure 4: The empirical densities of σ(xj?), as defined in (11), over all held-out items j? in the Netflix (4 and
5 stars) set. The densities are sliced according to ci = 1, . . . , 40 for different values of r in D′ = rD.

In Fig. 2, we facet the average rank by ci, the number of movie views per user. As the evaluation
is over 6 million users, this gives a more representative perspective than reporting a single average.
Apart from ranking by popularity cj , which would be akin to only factorizing with sitj , we compare
against two other baselines. BPR-uniform and BPR-pop represent different versions of the Bayesian
Personalized Ranking algorithm [12], which optimizes a rank metric directly against either the data
distribution of items (BPR-uniform, with missing items are sampled uniformly during stochastic op-
timization), or a tilted distribution aimed at personalizing recommendations regardless of an item’s
popularity (BPR-pop, with missing items sampled proportional to their popularity). Their hyperpa-
rameters were set using cross-validation. For the Random Graph model [10], rankings are shown
with pure personalization (RG-like) and with an item popularity rate factored in (RG-pop*like). The
comparison in Fig. 2 is drawn using K = 20 dimensions, D′ = D and hyperparameters set to one.
For Xbox movies, the model outperforms all alternatives that we compared against. BPR-uniform,
optimizing (12) directly, performs slightly better on the less sparse Netflix set (the Xbox usage
sample is much sparser, as it is easier to rate many movies than to view as many).

We surmised in Section 3.1 thatD′ = D is a reasonable hyperparameter setting, and Fig. 3 validates
this claim. The figure shows the average held-out rank on the Netflix (4 and 5) set for various
settings of D′ through D′ = rD. The average rank improves beyond r = 1, but empirically slowly
decreases beyond r = 2. To provide insight into the “censoring” step, Fig. 4 accompanies Fig. 3,
and shows the empirical density of the Bernoulli variable σ(xj?) for held-out items j?. We break the
empirical density down over users that appear in ci = 1, 2, 3, . . . , 40 pairs. Given that the held-out
pairs were observed, the Bernoulli variable should be true, and the density of σ(xj?) shifts right as
ci becomes bigger. The effect of having to explain less (r = 1

2) or more (r = 2) censored pairs is
also visible in the figure. There is also a slight benefit in increasing K. The average rank R̂20 for
K = 20 is 0.9649, using r = 1. An increased latent dimensionality gives R̂30−R̂20 = 1.07×10−4,
R̂40 − R̂20 = 1.73× 10−4, and R̂50 − R̂20 = 0.87× 10−4.

Finally, careful caching and parallelization one could obtain a fast implementation. For Xbox movies,
updating all item-related parameters took 69 seconds on a 24-core (Intel Xeon 2.93Ghz) machine,
and updating all user-related parameters for 6 million users took 83 seconds.

7

5 Summary and outlook

We presented a novel model for pairs of symbols, and showed state of the art results on a large-scale
movies recommendation task. Scalability was achieved by factorizing the popularity or selection
step via πiψj , and employing “site-independent” variational bounds through careful parameter tying.
This approach might be too simplistic; an extension would be to use a N -component mixture model
to select pairs with odds

∑N
n=1 πinψjn, and perform inference with Gibbs sampling.

It is worth noting that Böhning [2] and Bouchard [3] provide lower bounds to the logarithm of (1).
We originally embarked on a variational approximation to a posterior with (1) as likelihood using
Bouchard’s bound, for which bookkeeping like Sec. 3.1’s was done. However, with realistically
large I and J , solutions were trivial, as the means of the variational posterior approximations for ui
and vj were zero. We leave Böhning’s bound to future work.

References
[1] Y. Bengio and J.-S. Senécal. Quick training of probabilistic neural nets by importance sampling. In

Artificial Intelligence and Statistics, 2003.

[2] D. Böhning. Multinomial logistic regression algorithm. Annals of the Institute of Statistical Mathematics,
44:197–200, 1992.

[3] G. Bouchard. Efficient bounds for the softmax and applications to approximate inference in hybrid mod-
els. In NIPS 2007 Workshop on Approximate Inference in Hybrid Models, 2007.

[4] M. U. Gutmann and A. Hyvärinen. Noise-contrastive estimation of unnormalized statistical models, with
applications to natural image statistics. Journal of Machine Learning Research, 13:307–361, 2012.

[5] T. Jaakkola and M. Jordan. A variational approach to Bayesian logistic regression problems and their
extensions. In Artificial Intelligence and Statistics, 1996.

[6] D. J. C. MacKay. The evidence framework applied to classification networks. Neural Computation,
4(5):698–714, 1992.

[7] T. Mikolov, I. Sutskever, K. Cheni, G. S. Corrado, and J. Dean. Distributed representations of words
and phrases and their compositionality. In Advances in Neural Information Processing Systems 26, pages
3111–3119. 2013.

[8] A. Mnih and Y. W. Teh. A fast and simple algorithm for training neural probabilistic language models. In
Proceedings of the 29th International Conference on Machine Learning, pages 1751–1758, 2012.

[9] A. Mnih and Y. W. Teh. Learning label trees for probabilistic modelling of implicit feedback. In Advances
in Neural Information Processing Systems 25, pages 2825–2833. 2012.

[10] U. Paquet and N. Koenigstein. One-class collaborative filtering with random graphs. In Proceedings of
the 22nd International Conference on World Wide Web, pages 999–1008, 2013.

[11] U. Paquet, N. Koenigstein, and O. Winther. Scalable Bayesian modelling of paired symbols.
arXiv:1409.2824, 2014.

[12] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: Bayesian personalized ranking
from implicit feedback. In Uncertainty in Artificial Intelligence, pages 452–461, 2009.

[13] S. R. Waterhouse, D.J.C. MacKay, and A. J. Robinson. Bayesian methods for mixtures of experts. In
Advances in Neural Information Processing Systems 8, pages 351–357. 1996.

8

	Introduction
	An alternative view

	Generative model for pairs with censoring
	Variational Bayes
	Scalable inference
	Gaussian updates for q(uik)
	Bilinear softmax gradients

	Evaluation
	Making predictions
	Ranking items

	Summary and outlook

