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Opsomming

Deelswerms kan met gemak gebruik word om 'n funksie, wat beperk word deur 'n stel lineêre

beperkings, te optimeer. 'n \Lineêre Deelswermoptimeerder" en 'n \Konvergente Lineêre

Deelswermoptimeerder" word ontwikkel om sulke beperkte funksies te optimeer. As die

hele swerm aanvanklik slegs uit geldige oplossings bestaan, dan kan die swerm die beperkte

funksie optimeer sonder om ooit weer die stel beperkings te oorweeg. Om 'n Ondersteu-

ningsvektormasjien te leer moet 'n beperkte kwadratiese programmeringsprobleem opgelos

word, en die Konvergente Lineêre Deelswermoptimeerder voldoen aan die behoeftes van 'n

optimeringsmetode vir Ondersteuningsvektormasjiene. Deelswerms is intu��tief en maklik om

te implementeer, en word aangebied as 'n alternatief tot huidige metodes om Ondersteu-

ningsvektormasjiene te leer.
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Abstrat

Partile swarms an easily be used to optimise a funtion with a set of linear equality

onstraints, and a \Linear Partile Swarm Optimiser" and \Converging Linear Partile

Swarm Optimiser" is developed to optimise suh onstrained funtions. It is shown that if

the entire swarm of partiles is initialised to onsist of only feasible solutions, then the swarm

an optimise the onstrained objetive funtion without ever again onsidering the set of

onstraints. Training a Support Vetor Mahine requires solving a onstrained quadrati

programming problem, and the Converging Linear Partile Swarm Optimiser ideally �ts the

needs of an optimisation method for Support Vetor Mahine training. Partile swarms

are intuitive and easy to implement, and is presented as an alternative to urrent numeri

Support Vetor Mahine training methods.
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Prefae

The question that originally spurred the researh in this thesis was - \an a Partile Swarm

Optimiser be used to train a Support Vetor Mahine, and to what extent will it be su-

essful?"

Training a Support Vetor Mahine (SVM) involves solving a quadrati programming

problem, with a single linear onstraint, and a set of non-negativity onstraints. At �rst

this problem seemed trivial - the objetive funtion that needs to be minimised is onvex,

and the Partile Swarm Optimiser (PSO) will not be trapped in any loal minima.

The diÆulty in the problem arose with developing a method to handle the linear on-

straint. This has led to the development of the Linear (and Converging Linear) PSO algo-

rithms (LPSO and CLPSO), whih both have unique properties needed not only for handling

the single linear onstraint, but any set of (feasible) linear onstraints. The non-negativity

onstraints have led to the extension of both new Partile Swarm algorithms to inlude

ases when onstraints appear as boxed onstraints. With the addition of slak variables to

an optimisation problem with linear onstraints, it beomes possible to solve any of these

problems.

The main ontributions made by this thesis are therefore:

1. An algorithm for SVM training, whih is based on analysis of a method for deompos-

ing the SVM quadrati programming problem.

2. The development of LPSO for general optimisation problems, and a proof of a ondition

on the initial swarm guaranteeing that any point in the searh spae an be reahed.

3. A proof that LPSO is ideally suited for linearly onstrained optimisation, with a pre-

ondition needed for LPSO to always satisfy linear equality onstraints.

4. The extension of LPSO to CLPSO to prelude premature onvergene, and a proof

that CLPSO will at least onverge to a loal minimum.

5. The addition of a method to LPSO and CLPSO needed for inequality onstraint han-

dling, and the implementation of CLPSO with inequality onstraints as an optimiser

in SVM training.

v
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In a sense this thesis has delivered more than its original aim. The new PSO algorithms

will probably be of greater importane to further milestones in the Swarm Intelligene om-

munity, than its appliation in SVM training.

Chapter 1 puts SVMs under the magnifying glass, and sets the main optimisation prob-

lem (a quadrati programming problem) that forms the bakbone of this thesis. SVM train-

ing has unique problems of its own, primarily beause the training problem shows quadrati

growth as the training set size inreases. Methods for SVM training are disussed in Chapter

2, and a training algorithm, based on standard methods of deomposing the main optimisa-

tion problem into subproblems, are used to onstrut a orret training algorithm. Chapter

3 introdues PSO as an optimisation algorithm, and disusses some of the reent advane-

ments to the PSO method itself. The PSO is extended to handle onstrained problems in

Chapter 4, and LPSO and CLPSO are developed. This extension inludes a rigorous analy-

sis of the newly developed algorithms. The suesses and failures of LPSO and CLPSO are

empirially shown in Chapter 5. It is also shown how the CLPSO an be used to train SVMs

from a very large harater reognition dataset. Finally, Chapter 6 provides an overview,

and gives some thoughts for further researh.

Many people have ontributed to the suessful ompletion of this thesis. Foremost, I

am greatly indebted to professor Andries Engelbreht for introduing me to the world of

arti�ial intelligene, and for his patient guidane throughout my researh.

Ulrih Paquet

Pretoria, South Afria

June 2003

Commit thy works unto the LORD, and thy thoughts shall be established. Proverbs 16:3
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Chapter 1

Support Vetor Mahines

This hapter disusses the development and basi theoreti building bloks of Support Vetor

Mahines. An overview of both linear and non-linear Support Vetor Mahines is given

from the viewpoint of pattern reognition. Kernel methods are introdued, and the hapter

onludes with the Support Vetor Mahine training problem that will play a key role in the

hapters to follow.

1.1 Introdution to Support Vetor Mahines

Support Vetor Mahines (SVMs) are a young and important addition to the mahine learn-

ing toolbox. Having been formally introdued at the 1992 Workshop on Computational

Learning Theory [6℄, SVMs have proved their worth. In the following deade there has

been a remarkable growth in both the theory and pratie of these learning mahines. The

original treatments of Support Vetor Mahines (SVMs) are due to [6, 13, 21, 56, 58℄.

Traditionally, a SVM is a learning mahine for two-lass lassi�ation problems, and

learns from a set of examples. The algorithm aims to do a separation between the two

lasses by reating a linear deision surfae between them. This surfae is, however, not

reated in input spae, but rather in a very high-dimensional feature spae. Beause the

feature spae is non-linearly related to the input spae, the resulting model is non-linear.

Speial properties of the deision surfae ensures high generalisation abilities of SVMs.

Although the Support Vetor (SV) algorithm appears to be a linear algorithm in a high-

dimensional spae, no omputations are done in that high-dimensional spae. All omputa-

tions are performed diretly in input spae by making use of kernel funtions. Due to the

use of Kernel Methods (KMs), a seemingly omplex algorithm for non-linear pattern reog-

nition or regression an be implemented and analysed as a simple linear algorithm. KMs are

very modular. Any kernel funtion an be used with any kernel-based learning algorithm,

1



Chapter 1. Support Vetor Mahines 2

and any kernel-based learning algorithm an work with any kernel funtion. By ombining

simple kernels to omplex ones, the kernel funtions themselves an also be derived in a

modular way.

The SV algorithm makes use of \support vetors" to de�ne the deision surfae. Support

vetors are a subset of the training patterns, or training vetors. These patterns an be

alled the most informative, and it is this subset of informative patterns that de�ne the

arhiteture of a SVM. If all non-support vetor training patterns (the \uninformative"

patterns) are removed, and the SVM retrained, the solution will be exatly the same.

SVMs are popular due to two main reasons. Firstly, an important harateristi of SVMs

is its mathematial tratability and geometri interpretation. The SV algorithm is based on

very theoretial and intuitive ideas. Seondly, SVMs have shown to be aurate in pratial

appliations, with suesses in �elds as diverse as text ategorisation, bioinformatis and

mahine vision.

The algorithm holds learning theory in one hand, and pratie in the other. Statistial

learning theory an be used to identify fators needed for ertain algorithms to learn su-

essfully. Complex models and algorithms { suh as neural networks { are often needed for

pratial real-world appliations. These models are, however, hard to analyse theoretially.

SVMs onstrut models that are omplex enough, with the advantage that the models are

relatively simple to analyse mathematially. These models inlude a large lass of neural

networks, radial basis funtion (RBF) networks, and speial ases of polynomial lassi�ers.

SVMs have beome an inreasingly popular alternative to neural networks. In ompar-

ison to neural networks, SVMs have only a small number of tuneable parameters. The SV

algorithm also de�nes the arhiteture of the learning mahine. The SVM training proess

is haraterised by solving a onvex quadrati programming problem. The solutions to the

training problem are global, and usually unique [9℄. A great bene�t of SVM training is the

absene of loal minima (or maxima), and the learning parameters onverge monotonially

toward the solution.

Appliations and theory of SVMs have been extended far beyond basi lassi�ation

tasks to handle pattern reognition, regression, operator inversion, density estimation, and

novelty detetion. For pattern reognition, SVMs have been suessfully applied in the

areas of isolated handwritten digit reognition [8, 13, 44, 45℄, speaker identi�ation [42℄,

text ategorisation [23℄, fae detetion in images [39℄ and objet reognition [4℄. In the ase

of regression estimation problems, SVMs have been ompared to benhmark time series

predition tests [34, 36℄. SVMs have also been used for density estimation [59℄ and ANOVA

deomposition [51℄.

Although the SV algorithm is �rmly rooted in statistial learning theory, learning theory

is not inluded in this work. An exellent explanation an be found in [56, 57℄. This hapter
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fouses on the reation of SVMs: The basi idea behind pattern reognition is explained,

whih is used in onstruting an optimal hyperplane and linear SVMs for linearly separable

data. The linear SVM is then adapted to handle nonseparable lassi�ation problems.

Finally, SVMs are extended to non-linear lassi�ation models by the use of kernel funtions.

1.2 Pattern reognition

By observing their environment, mahines an learn to distinguish interesting patterns.

These patterns an be any entity that an be given a name, for example a handwritten

harater or word, a �ngerprint, a fae, or a speeh signal. After learning, the mahine

should be able to make intelligent deisions about the ategories of similar patterns { this

proess is alled pattern reognition.

Pattern reognition algorithms an be divided into two prinipal groups. Identifying a

pattern as a member of a prede�ned lass is alled supervised learning and lassi�ation.

If the algorithm learns lasses of patterns based on a measure of similarity, the proess is

alled unsupervised learning, or lustering. Unsupervised lassi�ation assigns a pattern to

one of these determined lasses. A SVM is an example of supervised lassi�ation, learning

from example patterns with lass labels.

For a given pattern reognition problem, the objetive is to estimate a funtion f :

R

N

! f�1g using a �nite set of training data. The training data set onsists of a total of l

N -dimensional patterns x

i

and their respetive lass labels y

i

, i.e.

fx

1

; y

1

g; : : : ; fx

l

; y

l

g 2 R

N

� f�1g (1.1)

If a new pattern fx; yg is generated from the same underlying probability density funtion

P (x; y) as the training data, then f should orretly lassify this example { that is, f(x) = y.

1.3 Linear Support Vetor Mahines

When training data is linearly separable, a separating hyperplane (a hyperplane that sepa-

rates the positive from the negative examples) of the form

w � x+ b = 0 (1.2)

an be �tted to orretly lassify training patterns. Here the vetor w is normal to the

hyperplane, and de�nes its orientation. This hyperplane is shown in Figure 1.1. From

equation (1.2), a deision funtion

f(x) = sign(w � x+ b): (1.3)
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{ | + = -1 }x w x b.

{ | + = 0 }x w x b.

{ | + = +1 }x w x b.

y = +1i

y = -1i

x1

x2

Figure 1.1: An example of a lassi�ation problem in two dimensions, with the support vetors

enirled.

an be derived, with f lassifying both positive (y

i

= +1) and negative (y

i

= �1) patterns.

Let d

+

(d

�

) be the shortest distane from the separating hyperplane to the losest

positive (negative) example, then the margin of the hyperplane is de�ned as the sum d

+

+d

�

.

An optimal hyperplane for a linearly seperable set of training data is here de�ned as the

linear deision funtion with maximal margin between the vetors of the two lasses, as is

shown in Figures 1.2(a) and 1.2(b). The support vetor algorithm will onstrut this optimal

separating hyperplane.

It was shown in [55℄ that the optimal hyperplane will have good generalisation abilities,

and only a relatively small amount of training data is needed to onstrut this plane. The set

of margin-determining training vetors are alled the support vetors. It was also shown that

if the training vetors are separated without errors by an optimal hyperplane, the expeted

value of the probability of ommitting an error on a test example is bounded by the ratio

between the expeted number of support vetors and the number of training vetors:

E[P (error)℄ �

E[number of support vetors℄

number of training vetors

(1.4)

The bound given in equation (1.4) does not expliitly ontain the dimensionality of the spae

of separation. If the optimal hyperplane an thus be onstruted from a small number of

support vetors relative to the training set size, the generalisation ability will be high, even

in an in�nite-dimensional spae.

Assume all training data satisfy

w � x

i

+ b � +1 for y

i

= +1

w � x

i

+ b � �1 for y

i

= �1 (1.5)
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d+

d-

(a) Classi�ation with a

large margin

d-
d+

(b) Classi�ation

with a small margin

Figure 1.2: Construting an optimal hyperplane

as shown in Figure 1.1. This an be ombined into a single set of equalities:

y

i

(w � x

i

+ b)� 1 � 0 i = 1; : : : ; l (1.6)

where l is the training set size.

To �nd the optimal separating hyperplane, it is neessary to maximise the margin d

+

+d

�

.

Suppose x

1

and x

2

with y

1

= +1 and y

2

= �1 are positive and negative points losest to

the hyperplane. For maximal separation, the hyperplane should be as far away as possible

from eah of them. By letting jj � jj be the l

2

norm of a vetor, get

w � x

1

+ b = +1

w � x

2

+ b = �1

) w � (x

1

� x

2

) = +2

)

w

jjwjj

� (x

1

� x

2

) =

2

jjwjj

Maximising the margin is equivalent to maximising

2

jjwjj

, whih is in turn the same as solving

min

w;b

1

2

jjwjj

2

(1.7)

subjet to the onstraints in (1.6). Construting the optimal hyperplane is therefore a onvex

quadrati problem.

A standard optimisation tehnique, Lagrange multipliers [19℄, is used in onstruting

this optimal hyperplane. There are two main reasons for doing this. The �rst is that the

onstraints in (1.6) will be replaed by onstraints on the Lagrange multipliers themselves,

whih will be muh easier to handle. The seond reason is that, in the Lagrangian refor-

mulation, the training data will only appear as dot produts between vetors. This is the
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ruial property that allows generalisation to the non-linear ase. The Lagrange multipliers,

�

i

� 0, are introdued for eah of the onstraints in (1.6) to get the following Lagrangian:

L(w; b;�) =

1

2

jjwjj

2

�

l

X

i=1

�

i

(y

i

(w � x

i

+ b)� 1) (1.8)

The objetive is to minimise (1.8) with respet to w and b, under the requirement that

the derivatives of the Lagrangian with respet to all the �

i

vanish. This must be subjet to

the onstraint that the Lagrange multipliers �

i

remain non-negative.

Sine all the onstraints are linear and thus onvex, their intersetion is also onvex. Be-

ause the objetive funtion is also onvex, the problem is a onvex quadrati programming

problem. Thus it is possible to equivalently solve the dual optimisation problem of maximis-

ing (1.8), suh that the gradient of L with respet to w and b vanishes, and requiring that

�

i

� 0. That is,

�

�b

L(w; b;�) = 0;

�

�w

L(w; b;�) = 0 (1.9)

and thus

l

X

i=1

y

i

�

i

= 0; w =

l

X

i=1

�

i

y

i

x

i

(1.10)

By substituting (1.10) into (1.8), the dual form of the optimisation problem is derived.

Determine

max

�

W (�) =

l

X

i=1

�

i

�

1

2

l

X

i=1

l

X

j=1

�

i

�

j

y

i

y

j

x

i

� x

j

(1.11)

subjet to

�

i

� 0; i = 1; : : : ; l and

l

X

i=1

�

i

y

i

= 0 (1.12)

Thus, by solving the dual optimisation problem, the oeÆients �

i

are obtained. These

oeÆients are then used to alulate w from equation (1.10). The vetor w will be a

solution to problem (1.7). The deision funtion from equation (1.3) an be rewritten as

f(x) = sign

�

l

X

i=1

y

i

�

i

x � x

i

+ b

�

(1.13)

The deision surfae of (1.13) is determined by the l Lagrange multipliers �

i

. These

multipliers are either zero or positive. The subset of zero multipliers will have no e�et

on the deision funtion, and an be omitted. It is the subset of positive multipliers that
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-b
w

-î
w

w

Figure 1.3: An example of a linear separating hyperplane for the non-separable ase.

inuenes the lassi�ation, and their orresponding training vetors are alled the support

vetors.

The ideas presented in this setion only handle separable data. Real data are usually

non-separable data, and some examples might violate (1.6). In the following setion, SVMs

are extended to handle mislassi�ations.

1.4 Soft margin hyperplanes

In many ases it is impossible to separate the training data without errors, as illustrated in

Figure 1.3. If separation by a hyperplane is impossible, the margin between patterns of the

two lasses beomes arbitrarily small, and the onstrained dual Lagrangian (1.11) will grow

arbitrarily large.

In this ase the separation of the training set an be done with a minimal number of

errors (mislassi�ations), by relaxing the onstraints given in (1.6). Here the notion of

\soft margin lassi�ers" are introdued. Add l nonnegative slak variables �

i

to relax the

hard-margin onstraints:

y

i

(w � x

i

+ b) � 1� �

i

; �

i

� 0; i = 1; : : : ; l (1.14)

Thus for an error to our, the value of �

i

must exeed one. It is lear that

P

i

�

i

is an upper

bound on the number of training errors. The natural way to assign an extra ost for errors

is to hange to objetive funtion to be minimised from (1.7), to solving

min

w;b;�

1

2

jjwjj

2

+ C

l

X

i=1

�

i

(1.15)
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Here C > 0 is an arbitrarily hosen { and problem dependent { parameter. A larger

value of C assigns a greater penalty to errors, sine it onstrains

P

i

�

i

to a smaller value.

A smaller C allows

P

i

�

i

to be larger. The funtional in (1.15) desribes (for suÆiently

large C) the problem of onstruting a separating hyperplane whih minimises the sum of

deviations, �, of training errors and maximises the margin for the orretly lassi�ed vetors

[13℄.

The problem in (1.15) is also a onvex quadrati programming problem. Sine the values

of �

i

do not appear in the dual Lagrangian, (1.11) must again be maximised subjet to

0 � �

i

� C; i = 1; : : : ; l and

l

X

i=1

�

i

y

i

= 0 (1.16)

A ruial property of the quadrati programming problem in (1.11, 1.12) and the deision

funtion f(x) = sign(

P

i

y

i

�

i

x � x

i

+ b) is that they depend only on dot produts between

patterns. It is this property that allows generalisation to the non-linear ase.

1.5 Non-linear Support Vetor Mahines

A set of linear lassi�ers, as presented in the method above, is often not rih enough for

more diverse lassi�ation problems. What is needed is a method that handles non-linear

lassi�ation equally well. Linear SVMs an very easily be generalised to inlude these

non-linear deision funtions: Boser et al [6℄ showed that the so-alled kernel trik [1℄ an

aomplish this generalisation. Notie that the training patterns only appear in the form of

dot produts x

i

� x

j

in equations (1.11, 1.13). A non-linear transformation an be done on

the set of input vetors to a higher dimensional spae (where the dot produt is de�ned),

and the linear separation an be done in this higher dimensional spae. The data are thus

mapped into some other dot produt spae { a feature spae { F via the non-linear map

� : R

N

! F (1.17)

The only requirement on F is that it is equipped with the dot produt operator. No

assumptions are made on the dimensionality of F ; it an possibly be an in�nite-dimensional

spae. For a given training data set, the SVM is now onstruted in F instead of R

N

, i.e.

using the set of examples

f�(x

1

); y

1

g; : : : ; f�(x

l

); y

l

g 2 R

N

� f�1g (1.18)

From this mapped set of examples a deision funtion in F has to be estimated. In-

tuitively, the diÆulty of onstruting a deision funtion in input spae should grow with

the dimension of the patterns. Statistiians all this diÆulty the urse of dimensionality
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Ö:R R
2 3

x2
2

x
1

2

x2

x
1

x
1x2

2

Figure 1.4: An example of two-dimensional lassi�ation. The three-dimensional feature spae is

de�ned by monomials x

2

1

,

p

2x

1

x

2

, and x

2

2

, where a linear deision surfae is onstruted. This

onstrution orresponds to a non-linear ellipsoidal deision boundary in R

2

.

{ a funtion of dimension N needs exponentially many patterns to sample the spae prop-

erly. Considering the urse of dimensionality, mapping to a higher dimensional feature spae

seems like a dubious idea.

The ontrary an, however, be true. Statistial learning theory shows that learning in

F an be simpler if funtions of a lower omplexity are used. It is the omplexity of the

funtion lass, not the dimensionality, that matters. The rihness of a powerful funtion

lass is then introdued by the mapping �.

This idea an be understood by onsidering a simple lass of deision rules, namely linear

lassi�ers. Consider the toy example in Figure 1.4, where the training vetors are two-

dimensional. A ompliated non-linear deision surfae is needed to separate the training

examples in input spae. By de�ning the mapping

� : R

2

! R

3

(x

1

; x

2

)

T

7! (x

2

1

;

p

2x

1

x

2

; x

2

2

)

T

(1.19)

a linear hyperplane separates the mapped training vetors in a three-dimensional feature

spae. The feature spae is de�ned by the seond order monomials x

2

1

,

p

2x

1

x

2

, and x

2

2

.

This onstrution orresponds to a non-linear ellipsoidal deision boundary [35℄.

In the above example, both the statistial omplexity and the algorithmi omplexity

of the learning mahine were ontrolled. The statistial omplexity was ontrolled by us-

ing a simple linear hyperplane lassi�er. Using a three-dimensional feature spae kept the

algorithmi omplexity low.

A tehnial problem arises in real-world problems, sine the algorithmi omplexity an-

not be kept low. Patterns may be images of 16� 16 pixels, a 256-dimensional input spae.

When fourth order monomials are used as mapping �, the feature spae would ontain all

the fourth order produts of 256 pixels, and its dimension will be

�

4+256�1

4

�

� 200 million.

In 1992 it was shown that the problem of treating suh high-dimensional spaes ould be
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overome [6℄. Instead of making a non-linear transformation of the input vetors followed

by dot produts with support vetors in the feature spae F , the order of operations is

interhanged. A omparison is �rst done between two vetors in input spae (for example

by taking their dot produt or some distane measure), and then a non-linear transformation

of the value of the result is made. The omparison and transformation is done by a kernel

funtion.

In the toy example of Figure 1.4, the omputation of a dot produt between two feature

spae vetors an be reformulated in terms of a kernel funtion k:

�(x

i

) ��(x

j

) =

0

B

B

�

x

2

i1

p

2x

i1

x

i2

x

2

i2

1

C

C

A

�

0

B

B

�

x

2

j1

p

2x

j1

x

j2

x

2

j2

1

C

C

A

= x

2

i1

x

2

j1

+ 2x

i1

x

i2

x

j1

x

j2

+ x

2

i2

x

2

j2

=

0

�

0

�

x

i1

x

i2

1

A

�

0

�

x

j1

x

j2

1

A

1

A

2

= (x

i

� x

j

)

2

= k(x

i

;x

j

) (1.20)

Training a non-linear SVM thus requires the omputation of dot produts �(x

i

) � �(x

j

) in

the feature spae F , and an be redued by de�ning a suitable kernel funtion, k, suh that

k(x

i

;x

j

) = �(x

i

) � �(x

j

) (1.21)

The question, whih funtion k orresponds to a dot produt in some feature spae F ,

arises. In other words, how an a map � be onstruted suh that k omputes the dot

produt in the spae � maps to? This has been dealt with by [6, 56℄, and the answer is seen

from Merer's theorem of funtional analysis [14℄:

To guarantee that there exits a mapping � and an expansion

k(u;v) = �(u) � �(v) =

X

i

�(u)

i

�(v)

i

(1.22)

it is neessary and suÆient that the ondition

ZZ

k(u;v)g(u)g(v) du dv � 0 (1.23)

be valid for all g for whih

Z

g

2

(u) du <1 (1.24)
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As an example, onsider the toy example of Figure 1.4, with the kernel de�ned in equation

(1.20), and x a two-dimensional vetor. To show that Merer's ondition is satis�ed for

k(x

i

;x

j

) = (x

i

� x

j

)

2

, it must be shown that

ZZ

(x

i

� x

j

)

2

g(x

i

)g(x

j

) dx

i

dx

j

� 0 (1.25)

hold for all g with �nite L

2

norm, i.e. g must satisfy equation (1.24). Expanding and

fatorising the left-hand side of the above inequality gives the needed result.

ZZ

(x

2

i1

x

2

j1

+ 2x

i1

x

i2

x

j1

x

j2

+ x

2

i2

x

2

j2

)g(x

i

)g(x

j

) dx

i

dx

j

=

Z

x

2

i1

g(x

i

) dx

i

Z

x

2

j1

g(x

j

) dx

j

+ 2

Z

x

i1

x

i2

g(x

i

) dx

i

� � �

� � �

Z

x

j1

x

j2

g(x

j

) dx

j

+

Z

x

2

i2

g(x

i

) dx

i

Z

x

2

j2

g(x

j

) dx

j

=

�

Z

x

2

i1

g(x

i

) dx

i

�

2

+ 2

�

Z

x

i1

x

i2

g(x

i

) dx

i

�

2

+

�

Z

x

2

i2

g(x

i

) dx

i

�

2

� 0 (1.26)

In many spei� ases it is not as easy to hek Merer's ondition, sine equation (1.23)

must hold for every g with �nite L

2

norm. Merer's ondition does give information on

whether some kernel omputes a dot produt in some feature spae, but it does not tell

what the mapping � or the spae F is.

When a kernel funtion does not omply with Merer's ondition, training data may exist

that give rise to an inde�nite Hessian matrix in the dual Lagrangian (1.11). The objetive

funtion an beome arbitrarily large, and the quadrati programming problem will have no

solution. Many training sets an still result in a positive semi-de�nite Hessian, and a SVM's

onstrained objetive funtion an be maximised. The results, however, will not have the

usual geometri interpretation of support vetors.

By de�nition of the kernel funtion k(x

i

;x

j

) = �(x

i

) ��(x

j

), the SVM deision funtion

beomes

f(x) = sign

�

l

X

i=1

y

i

�

i

�(x) � �(x

i

) + b

�

= sign

�

l

X

i=1

y

i

�

i

k(x;x

i

) + b

�

(1.27)

The arhiteture of the above deision funtion de�nes the arhiteture of the SVM, as shown

in Figure 1.5. Examples of kernel funtions most ommonly used in pattern reognition

problems are:

k(x

i

;x

j

) = (x

i

� x

j

+ 1)

p

(1.28)

k(x

i

;x

j

) = e

�jjx

i

�x

j

jj

2

=2�

2

(1.29)

k(x

i

;x

j

) = tanh(�x

i

� x

j

� Æ) (1.30)
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k( , )x x1 k( , )x x2 k( , )x x3 k( , )x x4

Sy ka ( , )x xi i i
i

f( ) = sign(x + )b

y a1 1 y a2 2 y a3 3 y a4 4

Classification

Weights

Comparison

Support vectors ...x x

Input vector x

1 4

Figure 1.5: Arhiteture of a Support Vetor Mahine: The input vetor x and the support vetors

x

i

(in this example optial digits) are non-linearly mapped (by �) into a feature spae F , where dot

produts between their mapped representations are omputed. By the use of the kernel k, these two

steps are in pratie ombined. The results are linearly ombined by weights �

i

found by solving a

quadrati program. The linear ombination is then fed into a deision funtion f , whih determines

the lassi�ation of x.
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(a) A Gaussian kernel

e

�jjx

i

�x

j

jj

2

.

(b) A polynomial kernel (x

i

�

x

j

+ 1)

5

.

Figure 1.6: Classifying with di�erent kernel funtions. The support vetors, with nonzero �

i

, are

shown with a double outline, and de�ne the deision boundaries between the two lasses.

Equation (1.28) results in a lassi�er that is a polynomial of degree p. Equation (1.29)

results in a Gaussian radial basis funtion lassi�er, while (1.30) gives a partiular kind of

two-layer sigmoidal neural network. Figures 1.6(a) and 1.6(b) show the deision boundaries

arising from both Gaussian radial basis funtion and polynomial kernels. More sophistiated

kernels, like kernels generating splines or Fourier expansions, an be found in [43, 50, 57℄.

1.6 Conluding

This hapter presented the SVM optimisation problem: In training a non-linear SVM, the

following quadrati problem needs to be maximised:

W (�) =

l

X

i=1

�

i

�

1

2

l

X

i=1

l

X

j=1

�

i

�

j

y

i

y

j

k(x

i

;x

j

) (1.31)

subjet to

0 � �

i

� 0; i = 1; : : : ; l; and

l

X

i=1

�

i

y

i

= 0 (1.32)

By onstruting a matrix Q suh that (Q)

ij

= y

i

y

j

k(x

i

;x

j

) the problem at hand is to �nd

max

�

W (�) = �

T

1�

1

2

�

T

Q�

subjet to �

T

y = 0 (1.33)

� � 0

C1�� � 0
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The following hapter is devoted to solving the above linearly onstrained quadrati pro-

gramming problem (1.33). The problem often involves a matrix with an extremely large

number of entries, whih make o�-the-shelf optimisation pakages unsuitable. Several SVM

training methods are presented, and a detailed deomposition method of solving (1.33) is

disussed.



Chapter 2

Support Vetor Mahine

Training Methods

An overview of urrent methods of Support Vetor Mahine training is given in this hapter.

The method of deomposing the training problem into subproblems is disussed in detail,

and inludes onditions for optimality of the training problem, methods for seleting good

subproblems, and di�erent optimisations to the deomposition algorithm itself. The hapter

onludes with a omplete Support Vetor Mahine training algorithm.

2.1 Introdution to Support Vetor Mahine training

methods

Training a Support Vetor Mahine (SVM) involves solving a linearly onstrained quadrati

optimisation problem. The SVM �ts a deision funtion to a labelled set of l training

patterns, whih orrespond to the total of l free parameters in the optimisation problem.

The quadrati programming (QP) problem, from hapter one, is to �nd

max

�

W (�) = �

T

1�

1

2

�

T

Q�

subjet to �

T

y = 0 (2.1)

� � 0

C1�� � 0

In the QP problem, the objetive funtion { the funtion to be maximised { depends on

the �

i

quadratially, while the parameters �

i

only appear linearly in the onstraints. Q is

an l by l matrix that depends on both a kernel funtion of the training inputs, and their

respetive labels: (Q)

ij

= y

i

y

j

k(x

i

;x

j

).

15
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The QP problem is equivalent to �nding the maximum of a bowl-shaped objetive fun-

tion. The searh for the maximum ours in l dimensions, and is onstrained to lie inside a

hyperube and on a hyperplane. Due to the de�nition of the kernel funtion, the matrix Q

always gives a onvex QP problem. The onvexity of the optimisation problem implies that

every loal maximum is also a global maximum [19℄. A global maximum means that there is

no other point inside the feasible region at whih the objetive funtion takes a higher value.

When Q is positive de�nite, the objetive funtion will be bowl-shaped; when Q is positive

semi-de�nite, the objetive funtion will have at-bottomed troughs. The objetive fun-

tion will never be saddle-shaped. Thus there exists a unique maximum or a onneted set

of maximums. Certain optimality onditions { the Karush-Kuhn-Tuker (KKT) onditions

[19℄ { give onditions determining whether the onstrained maximum has been found.

The SVM QP problem is simple and well understood; yet solving the QP problem for real-

world ases an prove to be very diÆult. Analyti solutions are possible when the number

of training patterns is very small, or when the data is separable and it is known beforehand

whih vetors will be support vetors. In most real-world ases, numeri solutions are alled

for. Small problems an be solved with general-purpose optimisation pakages that solve

linearly onstrained onvex QPs. Larger problems, however, bring about diÆulties in both

the size and density of Q.

The matrix Q has a dimension equal to the number of training examples. A training

set of 60,000 vetors gives rise to a matrix Q with 3.6 billion elements, whih does not �t

into the memory of a standard omputer. For large learning tasks, o�-the-shelf optimisation

pakages and tehniques for general quadrati programming quikly beome intratable in

their memory and time requirements.

In general (Q)

ij

is nonzero, whih makes Q ompletely dense. Most mathematial ap-

proahes either assume that Q is sparse (i.e. most (Q)

ij

are zero), or are only suitable for

small problems.

Sine standard QP tehniques annot easily be used to train SVMs with several thousands

of examples, a number of other approahes have been invented. These algorithms allow for

fast onvergene and small memory requirements, even on large problems.

2.1.1 Chunking

The hunking algorithm is based on the fat that the non-support vetors play no role in the

SVM deision boundary. If they are removed from the training set of examples, the SVM

solution will be exatly the same.

Chunking was �rst suggested by V. Vapnik in [55℄. The large QP problem is broken

down into a number of smaller problems:

A QP routine is used to optimise the Lagrangian on an arbitrary subset of data. After
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this optimisation, the set of nonzero �

i

(the urrent support vetors) are retained, and all

other data points (�

i

= 0) are disarded. At every subsequent step, hunking solves the

QP problem that onsists of all nonzero �

i

, plus some of the �

i

that violates the KKT

onditions. These are in general the worst M violations, for some value of M . After

optimising the subproblem, data points with �

i

= 0 are again disarded. This proedure

is iterated until the KKT onditions are met, and the margin is maximised. Solving eah

subproblem still requires a numeri quadrati optimiser.

The size of the subproblem varies, but tends to grow with time. At the last step, hunking

has identi�ed and optimised all the nonzero �

i

, whih orrespond to the set of all the support

vetors. Thus the overall QP problem is solved.

Although this tehnique of reduing the Q matrix's dimension from the number of train-

ing examples to approximately the number of support vetors makes it suitable to large

problems, a limitation still exists. The number of support vetors may exeed the maximal

number of parameters �

i

that the quadrati optimiser an handle, and even the redued

matrix may not �t into memory.

2.1.2 Deomposition

Deomposition methods solve a sequene of smaller QP problems, and are similar in spirit to

hunking. The di�erene from hunking is in the size of the subproblems: the size remains

�xed.

Deomposition methods were introdued in 1997 by E. Osuna et al. [40℄. The large QP

problem is broken down into a series of smaller subproblems, and a numeri QP optimiser

solves eah of these problems. It was suggested that one vetor be added and one removed

from the subproblem at eah iteration, and that the size of the subproblems should be kept

�xed. The motivation behind this method is based on the observation that as long as at least

one �

i

violating the KKT onditions is added to the previous subproblem, eah step redues

the objetive funtion and maintains all of the onstraints. In this fashion the sequene of

QP subproblems will asymptotially onverge. For faster pratial onvergene, researhers

use di�erent unpublished heuristis to add and delete multiple examples.

While the strategy used in hunking takes advantage of the fat that the expeted number

of support vetors is small (< 3000), deomposition allows for training arbitrarily large data

sets.

Another deomposition method was introdued by T. Joahims in [24℄. Joahim's method

is based on the gradient of the objetive funtion. The idea is to pik �

i

for the QP

subproblem suh that the �

i

form the steepest possible diretion of asent on the objetive

funtion, where the number of nonzero elements in the diretion is equal to the size of the

QP subproblem. As in Osuna's method, the size of the subproblem remains �xed.



Chapter 2. Support Vetor Mahine Training Methods 18

2.1.3 Sequential Minimal Optimisation

The most extreme ase of deomposition is Sequential Minimal Optimisation (SMO) { where

the smallest possible optimisation problem is solved at eah step [41℄. Due to the fat that

the �

i

must obey the linear equality onstraint, the smallest set of �

i

that an be optimised

at eah step is two. At every step, SMO hooses two �

i

to jointly optimise, �nds the optimal

values for these �

i

, and updates the SVM to reet these hanges.

SMO avoids numerial QP optimisation and large matrix storage entirely: if the two

hosen �

i

are optimised and the rest of the parameters �

i

kept �xed, it derives an analyti

solution whih is exeuted in a few numerial operations. The method therefore onsists of a

heuristi step for �nding the best pair of parameters to optimise, and the use of an analyti

expression to ensure the objetive funtion inreases monotonially. Beause the smallest

possible subproblem is optimised at eah iteration of the algorithm, SMO solves more sub-

problems than other methods of deomposition. Optimising eah subproblem, however, is

so fast that the overall QP problem an be solved quikly. Due to the deomposition of the

QP problem and its speed, SMO is probably the method of hoie for training SVMs [10℄.

In this hapter a deomposition algorithm based on the ideas of [24℄ is disussed. This

algorithm makes no assumption on the expeted number of support vetors, and allows

training arbitrary large data sets. In onstruting the algorithm, onditions for optimal-

ity, deomposition and optimality onditions on the working set are disussed. Finally, a

omplete training algorithm is presented.

2.2 Conditions for optimality

In this setion, onditions for optimality of a solution � to problem (2.1) are introdued.

Sine Q is a positive semi-de�nite matrix (the kernel funtion used is positive de�nite), and

the onstraints are linear, the Karush-Kuhn-Tuker (KKT) onditions [19℄ are neessary and

suÆient for optimality.

The KKTmultipliers are introdued by letting � be the assoiated multiplier of �

T

y = 0,

�

T

= (�

1

; : : : ; �

l

) be the assoiated multiplier of �� � 0, and �

T

= (�

1

; � � � ; �

l

) be the

assoiated multiplier of � � C1 � 0. The following KKT onditions must then hold for

optimality:

rW (�)�r�

T

(�� C1)�r�

T

(��)�r�(�

T

y) = 0

) rW (�)� � + � � �y = 0 (2.2)

�

T

(�� C1) = 0 (2.3)

�

T

� = 0 (2.4)

� � 0 (2.5)
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� � 0 (2.6)

The Lagrange multipliers �

i

an have three possible values: The value of �

i

an be at zero,

at the upper bound C, or somewhere in the interval (0; C). By de�ning the lassi�er funtion

f

?

(x) =

l

X

i=1

y

i

�

i

k(x;x

i

) + b (2.7)

similar to (1.27), eah of these ases are now onsidered and expanded separately.

Case 1: 0 < �

i

< C

Consider a single value of �

i

, i.e. the Lagrange multiplier assoiated with some input vetor

i. Then, from equation (2.2),

1� (Q�)

i

� �

i

+ �

i

� �y

i

= 0

Sine this ase examines �

i

from the interval (0; C), the term (��C1)

i

from (2.3) must

be non-zero and negative. For equations (2.3) and (2.5) to hold, �

i

must be equal to zero.

By using a similar argument, onditions (2.4) and (2.6) imply that �

i

an only be zero.

This gives

1� (Q�)

i

� �y

i

= 0 (2.8)

Beause the equation

y

i

f

?

(x

i

) = y

i

�

l

X

j=1

y

j

�

j

k(x

i

;x

j

) + b

�

= 1 (2.9)

holds when 0 < �

i

< C, and given that

(Q�)

i

=

l

X

j=1

y

i

y

j

�

j

k(x

i

;x

j

)

= y

i

l

X

j=1

y

j

�

j

k(x

i

;x

j

)

= y

i

�

f

?

(x

i

)� b

�

equation (2.8) an be rewritten, and simpi�es as

1� (Q�)

i

� �y

i

= 1� y

i

�

f

?

(x

i

)� b

�

� �y

i

= 1� 1 + y

i

b� �y

i

= 0

From this the value of b is equal to the KKT multiplier �, i.e.

� = b (2.10)
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Case 2: �

i

= C

As in the previous ase, onsider equation (2.2) for a single Lagrange multiplier �

i

at the

upper bound C:

1� (Q�)

i

� �

i

+ �

i

� �y

i

= 0

Beause �

i

= C, onditions (2.4) and (2.6) imply that �

i

must be equal to zero. Then,

1� (Q�)

i

� �

i

� �y

i

= 0 (2.11)

Equation (2.5) spei�es that �

i

� 0, and thus

1� (Q�)

i

� �y

i

� 0

1� y

i

�

f

?

(x

i

)� b

�

� by

i

= 1� y

i

f

?

(x

i

) � 0

Thus for a value of �

i

= C to meet the KKT onditions, it must be true that

y

i

f

?

(x

i

) � 1 (2.12)

Case 3: �

i

= 0

In the ase of �

i

= 0, equation (2.2) beomes

1� (Q�)

i

� �

i

+ �

i

� �y

i

= 0

Conditions (2.3) and (2.5), with �

i

= 0, imply that �

i

= 0. Therefore,

1� (Q�)

i

+ � � �y

i

= 0 (2.13)

Using similar reasoning as the above ase of �

i

= C, it an be shown that a value of �

i

= 0

meets the KKT onditions if

y

i

f

?

(x

i

) � 1 (2.14)

Conluding on the KKT onditions

From the three ases presented above, a solution � of problem (2.1) is an optimal solution

if the following relations hold for eah �

i

:

�

i

= 0 ) y

i

f

?

(x

i

) � 1

0 < �

i

< C ) y

i

f

?

(x

i

) = 1

�

i

= C ) y

i

f

?

(x

i

) � 1 (2.15)

If, for some given stage in the proess of training a SVM, all Lagrange multipliers meet the

KKT onditions, an optimal solution to (2.1) is found and SVM training an stop.
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Computing the value of the threshold b

A value for the threshold b is needed for (2.7), and an be omputed for eah of the support

vetors. From (2.9),

b

i

= y

i

�

l

X

j=1

y

j

�

j

k(x

i

;x

j

) (2.16)

The average of these values is taken as the value for b.

2.3 A deomposition method

Deomposition methods break the large QP problem down to a series of smaller subproblems,

and these subproblems are optimised to improve the objetive funtion.

In the proess of deomposition, a subset of variables is hosen for optimisation. The

original set of Lagrange multiplier variables is divided into two sets, alled B and N . Set

B is alled the \working set," and is reated by piking q sub-optimal variables from all

l �

i

. The working set of variables is optimised while keeping the remaining variables (set

N) onstant. After subset B is optimised, it is \put bak" into the original set and a new

working set is seleted for optimisation.

Sine it is known when a solution � is an optimal solution (the solution satis�es all KKT

onditions), the problem an be deomposed and optimised until these onditions are met

with an adequate tolerane. The general deomposition algorithm is summarized as follows:

Algorithm 2.1 - General deomposition algorithm

1. While the optimality onditions (2.15) are violated

(a) Selet q variables for the working set B. The remaining l � q variables are �xed

at their urrent values.

(b) Deompose the problem and solve the quadrati program subproblem, i.e. opti-

mise W (�) on B.

2. Terminate and return �.

Conerns of the above algorithm are the reation of KKT riteria for knowing when the

working set B is optimised, and methods of piking the optimal working set.

Firstly, however, it is neessary to rewrite equation (2.1) as a funtion that is only

dependent on the working set. Let � be split into two sets �

B

and �

N

. If �, y and Q are

appropriately rearranged, one has
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� =

2

4

�

B

�

N

3

5

; y =

2

4

y

B

y

N

3

5

; Q =

2

4

Q

BB

Q

BN

Q

NB

Q

NN

3

5

Sine only �

B

is being optimised for the subproblem,W is rewritten from equation (2.1)

in terms of �

B

to give

W (�

B

) =

�

�

T

B

1+�

T

N

1

�

�

1

2

�

�

T

B

Q

BB

�

B

+�

T

B

Q

BN

�

N

+�

T

N

Q

NB

�

B

+�

T

N

Q

NN

�

N

�

(2.17)

If terms that do not ontain �

B

are dropped, the optimisation problem remains essentially

the same. Also, sine Q is a symmetri matrix, with Q

BN

= Q

T

NB

, the problem redues to

�nding

max

�

B

W (�

B

) = �

T

B

1�

1

2

�

T

B

Q

BB

�

B

��

T

B

Q

BN

�

N

subjet to �

T

B

y

B

+�

T

N

y

N

= 0 (2.18)

�

B

� 0

C1��

B

� 0

With jBj � jN j, the term �

T

B

Q

BN

�

N

onsumes the majority of omputing time when

determiningW (�

B

). As a performane optimisation, de�ne a vetor q

BN

= Q

BN

�

N

in the

following way:

(q

BN

)

i

= y

i

X

j2N

�

j

y

j

k(x

i

;x

j

) (2.19)

The vetor q

BN

is omputed one at the start of every subset optimisation. The omplex-

ity of the optimisation problem then beomes proportional to the size of the working set,

independent of l. Given that l an be very large and that q = jBj will be relatively small, it

is a vast improvement. The optimisation problem beomes equivalent to �nding

max

�

B

W (�

B

) = �

T

B

1�

1

2

�

T

B

Q

BB

�

B

��

T

B

q

BN

subjet to �

T

B

y

B

+�

T

N

y

N

= 0 (2.20)

�

B

� 0

C1��

B

� 0

2.3.1 Optimality of the working set

The optimisation problem in (2.20) has one partiularly useful property: one an omputa-

tionally determine if a solution is an optimal solution. This gives a stopping riterion for

optimising the working set B.
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The deomposed problem (2.20) onsists of a onvex objetive funtion (sine matrix

Q

BB

is positive semi-de�ne), and linear onstraints. The KKT onditions are thus neessary

and suÆient for optimality.

The KKT onditions must hold for eah element in �

B

, and by again onsidering the

possible values of (�

B

)

i

, as in Setion 2.2, the onditions are:

(�

B

)

i

= 0 ) (Q

BB

�

B

)

i

+ (q

BN

)

i

+ �(y

B

)

i

� 1

0 < (�

B

)

i

< C ) (Q

BB

�

B

)

i

+ (q

BN

)

i

+ �(y

B

)

i

= 1

(�

B

)

i

= C ) (Q

BB

�

B

)

i

+ (q

BN

)

i

+ �(y

B

)

i

� 1 (2.21)

When the Lagrange multiplier �

i

lies between zero and C, the value of � an be omputed

with

� = (y

B

)

i

�

1� (Q

BB

�

B

)

i

� (q

BN

)

i

�

The value of �, as it appears in the above KKT onditions (2.21), an be taken as the

average of � omputed for eah i where 0 < (�

B

)

i

< C.

Apart from the optimality onditions desribed here, a method for seleting good or

optimal working sets { a deomposition algorithm { is needed. Suh a method will hoose

the working set B, while the KKT onditions presented here determines the termination

riteria on optimising B.

2.3.2 Seleting the working set

One of the most important issues in a deomposition algorithm is the seletion of the working

set. The working set seleted plays a major role in the speed of the SVM training algorithm.

Seleting working sets at random auses the training algorithm (Algorithm 2.1) to onverge

very slowly, while ontinually seleting optimal variables auses the training algorithm to

yle. A method for seleting approximately optimal working sets is presented below.

The deomposition method presented in this setion is due to [24, 38℄. It works on the

lassial method of feasible diretions, proposed in the optimisation theory by [61℄. If 
 is

a feasible region of a general onstrained problem, then a vetor d is a feasible diretion at

the point � in 
, if there exists a

~

� suh that �+ �d lies in 
 for all 0 � � �

~

�.

The main idea of the method of feasible diretions is to start with an initial feasible

solution, and to �nd the optimal solution by making steps along feasible diretions. At

eah iteration of a feasible diretions algorithm, the optimal feasible diretion (the diretion

giving the largest rate of inrease of the objetive funtion) is found. The algorithm then

aims to maximise the objetive funtion along this diretion, by making a line searh to

determine a step length along the feasible diretion. The solution is moved by \stepping"
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along the feasible diretion to the better solution found. The algorithm terminates when no

feasible diretions an be found whih improve the objetive funtion.

The optimal feasible diretion of a general onstrained optimisation problem of the form

Maximise f(�) subjet to A� � b

is found by solving the diretion �nding linear program

Maximise rf

T

d subjet to Ad � 0; jjdjj

2

� 1

SVM training solves a onstrained quadrati optimisation problem, therefore the method

of feasible diretions is diretly appliable to training a SVM. Finding the optimal feasible

diretion when solving the SVM problem (2.1) an be stated as

Maximise rW (�)

T

d

subjet to y

T

d = 0

d

i

� 0 if �

i

= 0

d

i

� 0 if �

i

= C

jjdjj

2

� 1 (2.22)

Optimisation problem (2.22) is a full-sale linear program of dimension l, whih is omputa-

tionally expensive to solve at every iteration of the deomposition method of SVM training.

An approximate solution to this problem, whih an be obtained in linear time, was proposed

by T. Joahims [24℄.

A requirement is added to (2.22), speifying that only q omponents of d be non-zero.

The variables orresponding to these q non-zero omponents are inluded in the working

set. Sine this only gives an approximation to (2.22), d is only used to identify B, and not

as a searh diretion. Instead of doing a line searh on d, the optimum solution is found in

the entire subspae spanned by the non-zero omponents of d.

By speifying that only q omponents of d be non-zero, the problem beomes intratable.

This problem of intratability is overome by letting d

i

be equal to either �1, 0 or +1,

suh that the Lagrange multipliers �

i

orresponding to d

i

= �1 are inluded in B. An

approximation of (2.22) is thus found by

Maximise rW (�)

T

d

subjet to y

T

d = 0

d

i

� 0 if �

i

= 0

d

i

� 0 if �

i

= C

d

i

2 f�1; 0; 1g

jfd

i

: d

i

6= 0gj = q (2.23)



Chapter 2. Support Vetor Mahine Training Methods 25

-1 -2 +3 +4 +5 +1-4 0 -2 +5

+1 +1 -1 -1 +1 -1 +1 +1 -1 +1

0 0 0 +1 -1 +1 0 0 0 +1

0 0 0 -1 -1 -1 0 0 0 +1y d

d

y

g =

=

=

=

T

T

T

ii i
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j, and setting eah orre-
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i

to the sign of g

i

, max-

imises g

T

d, but the equality on-

straint y

T

d = 0 is not met.
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(b) Seleting the two smallest and

largest y

i

g

i

, and respetively letting

d

i

be of opposite and similar sign to

y

i

, g

T

d is maximised suh that the

equality onstraint y

T

d = 0 is also

met.

Figure 2.1: Seleting a working set of size four.

From this approximation the question arises: how is the diretion d determined? Firstly,

assume that the onstraints y

T

d = 0, d

i

� 0 if �

i

= 0, and d

i

� 0 if �

i

= C, are all absent.

Also, to simplify the notation used, let the shorthand g = rW (�) denote the diretional

derivative of W . With the equality and inequality onstraints absent, the maximum of the

objetive funtion is ahieved by seleting q points with the highest values of jg

i

j. Then d

i

will take the value of sign(g

i

).

As an example, onsider Figure 2.1(a), with q equal to four. The four largest values of

jg

i

j are hosen (jg

4

j = 4, jg

5

j = 4, jg

6

j = 5 and jg

10

j = 5), and eah orresponding d

i

is set

to the sign of g

i

. In this way g

T

d is maximised.

The �rst remark that an be made about the example in Figure 2.1(a), is that the

equality onstraint y

T

d = 0 is being violated. For y

T

d to be equal to zero, the number of

elements with sign mathes between d

i

and y

i

must be equal to the number of elements with

sign mismathes between d

i

and y

i

. This means that if a working set of size q is seleted,

with q being even, eah number must be equal to

q

2

. The working set an thus be seleted

by making two passes over the data. A \forward pass" will selet

q

2

sign mismathes, while

a \bakward pass" will selet

q

2

sign mathes. To implement seletion of the working set, let



k

denote the largest ontribution to the objetive funtion g

T

d by some point k, subjet to

the equality onstraint y

T

d = 0. The two passes over the data, eah seleting

q

2

variables,

are expanded in the following way:

\Forward pass"

The forward pass attempts to selet

q

2

variables suh that y

k

d

k

is negative. This implies

that the signs of y

k

and d

k

must be di�erent in maximising g

T

d. To maximise g

T

d, the
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minimum g

i

is hosen when d

i

is negative, while the maximum g

i

is seleted when d

i

is

positive, i.e.

y

k

= 1 ) d

k

= �1 ) 

k

= min

i:y

i

=1

(g

i

) ) 

k

= min

i:y

i

=1

(y

i

g

i

)

y

k

= �1 ) d

k

= 1 ) 

k

= max

i:y

i

=�1

(g

i

) ) 

k

= min

i:y

i

=�1

(y

i

g

i

)

If the subsripts are ombined, the largest ontribution to the objetive funtion (with y

k

and d

k

having di�erent signs), subjet to the equality onstraint, is



k

= min

i

(y

i

g

i

) (2.24)

\Bakward pass"

The bakward pass over the data selets a total of

q

2

variables, suh that y

k

d

k

is positive.

Thus the signs of y

k

and d

k

must be the same in maximising g

T

d, i.e.

y

k

= 1 ) d

k

= 1 ) 

k

= max

i:y

i

=1

(g

i

) ) 

k

= max

i:y

i

=1

(y

i

g

i

)

y

k

= �1 ) d

k

= �1 ) 

k

= min

i:y

i

=�1

(g

i

) ) 

k

= max

i:y

i

=�1

(y

i

g

i

)

If the subsripts are ombined, the largest ontribution to the objetive funtion (with y

k

and d

k

having the same signs), subjet to the equality onstraint, is



k

= max

i

(y

i

g

i

) (2.25)

The working set is thus seleted based on the equations (2.24, 2.25) de�ned above. The

example of Figure 2.1(a) seleted an optimal but useless working set, sine it does not inlude

the equality onstraint.

In Figure 2.1(b) the two smallest and largest y

i

g

i

(y

4

g

4

= �4, y

6

g

6

= �5, y

9

g

9

= +2 and

y

10

g

10

= +5) are seleted, suh that the example orretly meets the equality onstraint

y

T

d = 0.

It is lear that the quantity y

i

g

i

gives an indiation of an element's ontribution to

the objetive funtion subjet to the equality onstraint. This quantity is used to selet

the working set, by sorting the data elements aording to y

i

g

i

and seleting the top and

bottom

q

2

.

Aounting for the inequality onstraints in (2.23) then beomes a trivial task { when

seleting the top and bottom Lagrange multiplier variables �

i

from the sorted list, a variable

is skipped if the inequality onstraints are violated. Thus variables are skipped if d

i

= �y

i

(or in the ase of the bakward pass, if d

i

= y

i

) violates d

i

� 0 if �

i

= 0, and d

i

� 0 if

�

i

= C. Consider the forward pass: if d

i

= �y

i

, then variables should be hosen when

�y

i

� 0 if �

i

= 0, and �y

i

� 0 if �

i

= C. These onditions hold when y

i

= �1 and �

i

= 0,

or when y

i

= 1 and �

i

= C. A similar argument on the bakward pass states that variables

should be hosen when y

i

= 1 and �

i

= 0, or when y

i

= �1 and �

i

= C.
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The deomposition algorithm, whih selets variables with a forward and bakward pass

over the data, is implemented below:

Algorithm 2.2 - Deomposition algorithm

1. Let L be a list of all Lagrange multipliers.

2. While the optimality onditions (2.15) are violated

(a) sort L by y

i

g

i

in inreasing order

(b) selet

q

2

samples from the front of L suh that

� 0 < �

i

< C or

�

�

y

i

= �1 and �

i

= 0

�

or

�

y

i

= 1 and �

i

= C

�

() selet

q

2

samples from the bak of L suh that

� 0 < �

i

< C or

�

�

y

i

= 1 and �

i

= 0

�

or

�

y

i

= �1 and �

i

= C

�

(d) optimise the newly seleted working set

3. Terminate and return �.

2.3.3 Shortuts and optimisations to the deomposition algorithm

The speed of the deomposition algorithm is hampered by many redundant omputations.

This setion disusses some of these performane bottleneks, and ways minimise additional

omputations.

Let t de�ne a ertain iteration in Algorithm 2.2. At time t, a number of fators onsume

the algorithm's exeution time: Its eÆieny greatly depends on the amount of time taken to

ompute the vetor g = rW (�

(t)

) and matries Q

BB

and Q

BN

. Its speed is also inuened

by the time taken to ompute the KKT onditions at eah iteration, sine it too requires

the kernel matrix.

Due to the approah taken by the deomposition method, the quantities g = rW (�

(t)

)

(needed for seleting the working set) and y

i

f

?

(x

i

) (needed for KKT onditions), an be

de�ned using knowledge of only q rows of the Hessian Q. These q rows orrespond to the q

elements in the urrent working set.

For this purpose, de�ne a vetor s

(t)

, that is omputed diretly after working set seletion,

and is stored throughout the training iteration:

s

(t)

i

=

l

X

j=1

�

(t)

j

y

j

k(x

i

;x

j

) =

X

j2B

�

(t)

j

y

j

k(x

i

;x

j

) +

X

j2N

�

(t)

j

y

j

k(x

i

;x

j

) (2.26)
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As �

(t)

is re�ned, the objetive funtion W (�

(t)

) is inreased by eah iteration of the

deomposition method. The best vetor �

(t)

found in iteration t is therefore used as the

vetor �

(t+1)

, whih the deomposition method uses to selet a working set for iteration

t + 1. The vetor �

(t+1)

is therefore the vetor that maximises W (�

(t)

) over the working

set B from iteration t, i.e.

W (�

(t+1)

) = max

B

W (�

(t)

) (2.27)

and

W (�

(t)

) = (�

(t)

)

T

1�

1

2

(�

(t)

)

T

Q�

(t)

=

l

X

i=1

�

(t)

i

�

1

2

l

X

i=1

l

X

j=1

�

(t)

i

�

(t)

j

y

i

y

j

k(x

i

;x

j

)

=

l

X

i=1

�

(t)

i

�

1

2

l

X

i=1

�

(t)

i

y

i

l

X

j=1

�

(t)

j

y

j

k(x

i

;x

j

)

=

l

X

i=1

�

(t)

i

�

1

2

l

X

i=1

�

i

y

i

s

(t)

i

(2.28)

When a vetor �

(t)

has been found that maximises W (�

(t)

) over the working set B, the

starting vetor for the next iteration { whih is also the best solution � found thus far { is

updated with �

(t+1)

 �

(t)

. Beause � is updated, the value of s must also be updated.

Sine only the value of �

B

, or the working set of variables, has hanged from time t to time

t+ 1, s is updated with

s

(t+1)

i

= s

(t)

i

+

X

j2B

�

�

(t+1)

j

� �

(t)

j

�

y

j

k(x

i

;x

j

) (2.29)

Many optimisations an be implemented using de�nition (2.26) and simple update (2.29)

of vetor s. At the start of training of a new working set, the value of q

BN

from (2.19) is

omputed with

(q

BN

)

(t)

i2B

= y

i

�

s

(t)

i

�

X

j2B

�

(t)

j

y

j

k(x

i

;x

j

)

�

(2.30)

The derivative of W at time t (needed for seleting an optimal working set) is easily deter-

mined from s, i.e.

rW (�

(t)

)

i

= 1�

1

2

� 2y

i

l

X

j=1

�

(t)

j

y

j

k(x

i

;x

j

)

= 1� y

i

s

(t)

i

(2.31)
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By using s, the value of the threshold b (2.16) is rewritten for eah support vetor as

b

(t)

i

= y

i

�

l

X

j=1

y

j

�

(t)

j

k(x

i

;x

j

)

= y

i

� s

(t)

i

(2.32)

The value of b

(t)

is taken as the average over all the b

(t)

i

of all support vetors i.

Finally, the KKT optimality onditions spei�ed in (2.15) are also rewritten in terms of

s, and are omputed in linear time. A solution �

(t)

of (2.1) is an optimal solution if the

following relations hold for eah �

(t)

i

:

�

(t)

i

= 0 ) y

i

(s

(t)

i

+ b

(t)

) � 1

0 < �

(t)

i

< C ) y

i

(s

(t)

i

+ b

(t)

) = 1

�

(t)

i

= C ) y

i

(s

(t)

i

+ b

(t)

) � 1 (2.33)

2.4 The training algorithm

Almost all neessary tools are now gathered to reate a SVM training algorithm.

In this hapter the Karush-Kuhn-Tuker onditions have been used to speify whether

and optimal solution has been found and the training algorithm an terminate. A method

was developed to deompose the SVM problem into more workable subproblems. Optimi-

sations to redue the number of omputations were also introdued.

Finally, the detailed training algorithm is presented:

Algorithm 2.3 - SVM training algorithm

1. Pik an initial vetor �

(0)

2. Compute the initial value of s

(0)

:

s

(0)

i

=

l

X

j=1

�

(0)

j

y

j

k(x

i

;x

j

):

3. Compute the initial value of b with

b

(0)

=

1

SV s

X

i2SV s

(y

i

� s

(0)

i

);

where SV s is the total number of urrent support vetors.

4. Let L be a list of all l Lagrange multipliers �

i

.

5. While the Karush-Kuhn-Tuker onditions in (2.33) are not met
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(a) Let g 2 R

l

be de�ned by

g

i

= rW (�

(t)

)

i

= 1� y

i

s

(t)

i

:

(b) Sort L by y

i

g

i

in inreasing order.

() Selet

q

2

samples from the front of L suh that

� 0 < �

(t)

i

< C or

�

�

y

i

= �1 and �

(t)

i

= 0

�

or

�

y

i

= 1 and �

(t)

i

= C

�

(d) Selet

q

2

samples from the bak of L suh that

� 0 < �

(t)

i

< C or

�

�

y

i

= 1 and �

(t)

i

= 0

�

or

�

y

i

= �1 and �

(t)

i

= C

�

(e) After seletion of the elements �

B

in the working set B, ompute the Hessian

matrix Q

BB

.

(f) Determine the vetor q

BN

with

(q

BN

)

(t)

i2B

= y

i

�

s

(t)

i

�

X

j2B

�

(t)

j

y

j

k(x

i

;x

j

)

�

:

(g) Re-optimise the working set, using

W (�

B

) = �

T

B

1�

1

2

�

T

B

Q

BB

�

B

��

T

B

q

BN

;

and onstraints de�ned in (2.20). Replae the optimised �

B

into �

(t)

to get

�

(t+1)

.

(h) Update the vetor s

(t+1)

with

s

(t+1)

i

= s

(t)

i

+

X

j2B

�

�

(t+1)

j

� �

(t)

j

�

y

j

k(x

i

;x

j

):

(i) Reompute the value of b with

b

(t+1)

=

1

SV s

X

i2SV s

(y

i

� s

(t+1)

i

):

(j) Inrease time t with t := t+ 1.

6. Terminate and return �.

There is one tool needed to omplete the SVM training algorithm, and that is a routine

to optimise the working set, i.e. a routine that an solve (2.20). The following hapter

introdues Partile Swarm Optimisation (PSO) as a general optimisation method. Sine

(2.20) is a problem with linear and boxed onstraints, PSO is adapted to handle linear

equality and inequality onstraints, and the working set an be optimised using PSO, and

the SVM trained.



Chapter 3

Partile Swarm Optimisation

Partile Swarm Optimisation is disussed as an algorithm for optimising unonstrained prob-

lems. The hapter looks into standard topologies used in the algorithm, and touhes on a

number of improvements to Partile Swarm Optimisation.

3.1 Introdution to unonstrained optimisation

Numerial optimisation tehniques have their appliation in many �elds, inluding natu-

ral siene, engineering, �nane, mediine and teleommuniations. The objetive of suh

tehniques is to assign values from a given domain to a set of parameters suh that a spe-

i� funtion is optimised. The funtion that is minimised or maximised (optimised) is

alled the objetive funtion, and it depends on a set of solution-de�ning variables. Let

x = (x

1

; x

2

; : : : x

n

)

T

2 R

n

represent the domain of the objetive funtion, or the optimi-

sation (solution-de�ning) variable. Let f , the funtion that needs to be optimised, assign

values from R

n

to R suh that f : R

n

! R.

For minimisation problems, the ideal is to �nd a global minimum x

?

suh that

f(x

?

) � f(x); 8x 2 R

n

(3.1)

For some appliations, a loal minimum x

?

L

on a domain L � R

n

is an aeptable solution.

In suh ases

f(x

?

L

) � f(x); 8x 2 L (3.2)

In both ases, �nding a global minimum or a loal minimum, the searh spae an be

unonstrained or onstrained by a set of onstraints. This hapter fouses on Partile Swarm

Optimisation (PSO) for unonstrained optimisation, the onstrained ase is examined in

detail in Chapter 4.

31
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Traditionally, numerial optimisation tehniques have mainly been developed from the

operations researh ommunity [18, 37℄. The past deade has witnessed an inrease in on-

tributions from the arti�ial intelligene ommunity, most notably from the evolutionary

omputing �eld [3℄. Reently, PSO has been introdued as a suessful tehnique for nu-

merial optimisation [16, 25, 27℄. Other reent methods for optimisation inlude arti�ial

immune systems, di�erential evolution, memeti algorithms and satter searh [12℄.

3.2 Introdution to Partile Swarm Optimisation

Many eÆient optimisation algorithms an be onstruted from the study of ants working as

a olony, birds migrating in a ok toward some destination, or �sh swimming in a shool.

While the individual behaviour of an organism may seem ineÆient, the olletive e�ort of

individuals inside a swarm an beome omplex and intelligent [5℄.

One suh a method is Partile Swarm Optimisation (PSO), originally introdued by

Kennedy and Eberhart [25℄. PSO represents an optimisation method where individuals,

alled partiles, ollaborate as a population, or swarm, to reah a olletive goal, for example

minimising an n-dimensional funtion f .

Eah partile is n-dimensional, and is a potential minimum of f . A partile has memory

of the best solution that it has found, alled its personal best. The partiles y through the

searh spae with a veloity, whih is dynamially adjusted aording to its personal best

and the best solution found by a neighbourhood of partiles.

There is thus a sharing of information that takes plae. Partiles pro�t from the disov-

eries and previous experiene of other partiles during the exploration and searh for lower

objetive funtion values.

There exist a great number of shemes in whih this information sharing an take plae.

One of two soiometri priniples is usually implemented [27℄, with more reent tolopogies

investigated in [26, 28℄. The �rst, alled gbest (global best), oneptually onnets all the

partiles in the population to one another. Thus eah partile is inuened by the very

best performane of the entire population. The seond, alled lbest (loal best), reates a

neighbourhood for eah individual omprising itself and its k nearest neighbours in the pop-

ulation. Neighbourhoods are usually determined using partile indies, although topologial

neighbourhoods have also been used [52℄.

PSO di�ers from traditional optimisation methods, in that a population of potential

solutions are used in the searh. The diret �tness information instead of funtion derivatives

or other related knowledge is used to guide the searh. This searh is based on probabilisti,

rather than deterministi, transition rules.

Let i indiate a partile's index in the swarm. Then



Chapter 3. Partile Swarm Optimisation 33

S = fp

1

;p

2

; : : : ;p

s

g

is a swarm of s partiles. In PSO eah of the s partiles has a urrent position

p

i

= (p

i1

; p

i2

; : : : ; p

in

)

T

and y through the n-dimensional searh spae R

n

with a urrent veloity

v

i

= (v

i1

; v

i2

; : : : ; v

in

)

T

;

whih is dynamially adjusted aording to its own previous best solution

z

i

= (z

i1

; z

i2

; : : : ; z

in

)

T

and the urrent best solution
b
z of the entire swarm (gbest), or the partile's neighbourhood

(lbest).

At iteration time t of the PSO algorithm, the veloity and partile updates are spei�ed

seperately for eah dimension j of the veloity and partile vetors. A partile p

i

will interat

and move aording to the following equations [25℄:

v

(t+1)

ij

= v

(t)

ij

+ 

1

r

(t)

1

[z

(t)

ij

� p

(t)

ij

℄ + 

2

r

(t)

2

[bz

(t)

j

� p

(t)

ij

℄ (3.3)

p

(t+1)

ij

= v

(t+1)

ij

+ p

(t)

ij

(3.4)

Equation (3.3) takes three terms into onsideration to alulate the veloity of partile i:

the partile's previous veloity, the distane between the partile and its personal best, and

the distane between the partile and the best solution found by its neighbourhood, whih

may be the entire swarm.

The stohasti nature of the algorithm is determined by r

(t)

1

; r

(t)

2

� UNIF (0; 1), two

uniform random numbers between zero and one. In the seond and third terms these numbers

are saled by aeleration oeÆients 

1

and 

2

, where 0 � 

1

; 

2

� 2. CoeÆient 

1

has been

alled the ognitive learning rate [2℄, sine it sales the seond term in (3.3), the term that

de�nes the partile's movement in the diretion of its personal best. In the same way, 

2

is

alled the soial learning rate, saling the inuene of the neighbourhood's best solution on

the partile.

After determining partile i's veloity, it moves toward its new position, as shown in

(3.4).

At iteration time t of the PSO algorithm, the personal best of eah partile is ompared

to its urrent performane. The personal best z

(t)

i

is set to the better performane, i.e.

z

(t)

i

=

8

<

:

z

(t�1)

i

if f(p

(t)

i

) � f(z

(t�1)

i

)

p

(t)

i

if f(p

(t)

i

) < f(z

(t�1)

i

)

(3.5)
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The de�nition of a partile's neighbourhood determines the vetor
b
z, the best solution

found by either the entire swarm or the partile's neighbourhood. Information sharing takes

plae through the neighbourhood - the most ommon, gbest and lbest, are disussed below.

More reent tolopogies are investigated in [26, 28℄.

3.2.1 Global best (gbest)

The global best (gbest) PSO oneptually onnets all the partiles in the population to

one another, so that eah partile is inuened by the very best performane of the entire

population. The global best partile pulls all partiles towards itself, and partiles move in

its diretion. If the global best is not updated regularly, the entire swarm may onverge to

it, resulting in premature onvergene.

The global best
b
z

(t)

is set to the position of the partile with the best performane within

the swarm, i.e.

b
z

(t)

2 fz

(t)

1

; z

(t)

2

; : : : ; z

(t)

s

g

�

�

f(
b
z

(t)

)

= minff(z

(t)

1

); f(z

(t)

2

); : : : ; f(z

(t)

s

)g (3.6)

3.2.2 Loal best (lbest)

The lbest (loal best) version of the PSO reates a neighbourhood for eah individual om-

prising itself and its k nearest neighbours in the population. Neighbourhoods are usually

determined using partile indies, although topologial neighbourhoods have also been used

[26℄. Assuming that partile indies wrap around at s, let N

i

be the neighbourhood of

partile i.

N

i

= fz

(t)

i�k

; z

(t)

i�k+1

; : : : ; z

(t)

i

; : : : ; z

(t)

i+k�1

; z

(t)

i+k

g (3.7)

The neighbourhood best
b
z

(t)

N

i

at time t is de�ned as the best solution in partile i's neigh-

bourhood:

b
z

(t)

N

i

2 N

i

�

�

f(
b
z

(t)

N

i

) = maxff(z

(t)

j

)g 8 z

j

2 N

i

(3.8)

It is possible to let the neighbourhood size k be equal to zero, in whih ase eah partile

p

i

only ompares its urrent position with its own best position z

(t)

i

, and no information

sharing takes plae. A neighbourhood size of k equal to the swarm size s is equivalent to

the gbest version of the PSO.

It was shown by [16, 48℄ that, although lbest is slower in onvergene than gbest, lbest

results in better solutions and searhes a larger part of the searh spae.
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3.2.3 The PSO algorithm

All that is left to omplete from the above setions is the PSO algorithm itself. The def-

inition of a partile's personal and global or loal best position was de�ned. Using these

best positions to determine eah partile's veloity, the swarm of partiles an suessfully

traverse the searh spae, looking for an optimum solution to a problem. The standard PSO

algorithm, used to minimise a funtion

f : R

n

! R (3.9)

is presented below:

Algorithm 3.1 - Partile Swarm Optimisation

1. Set the iteration number t to zero, and initialise the swarm S of n-dimensional partiles

p

(0)

i

: eah omponent p

(0)

ij

of p

(0)

i

is randomly initialised to a value in the initial

domain of the swarm, an interval [p

min

; p

max

℄. Sine the partiles are already randomly

distributed, the veloities of partiles are initialised to the zero vetor 0.

2. Evaluate the performane f(p

(t)

i

) of eah partile.

3. Compare the personal best of eah partile to its urrent performane, and set z

(t)

i

to

the better performane, as shown in (3.5).

4. Use (3.6) to set the global best
b
z

(t)

to the position of the partile with the best

performane within the entire swarm (gbest). When a lbest PSO is implemented,

equation (3.8) is used to set the neighbourhood best
b
z

(t)

N

i

for eah partile i.

5. Change the veloity vetor for eah partile aording to equation (3.3).

6. Move eah partile to its new position, aording to equation (3.4).

7. Let t := t+ 1.

8. Go to step 2, and repeat until onvergene or t = t

max

.

The algorithm has onverged if the di�erene between the best solution found over a

spei�ed number of iterations remains within a ertain bound. The algorithm iterates until

either one of two onditions is met: the algorithm has onverged, or the maximum number

of iterations t

max

have been reahed.
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3.2.4 Improvements

A number of methods have been proposed to improve the onvergene and probability of

onvergene of the standard PSO algorithm, and are disussed in this setion. Apart from

hanges to the PSO update equation (3.3), most of these methods make no hanges to the

PSO algorithm itself.

Maximum veloity

The probability of partiles leaving the urrent searh spae an be redued by lamping

the veloity updates { the veloity update vetors in the �rst term of (3.3) an be restrited

by speifying upper and lower bounds v

max

and �v

max

on v

(t)

ij

. If v

(t)

ij

is greater than v

max

,

then v

(t)

ij

is set to v

max

. Similary, if v

(t)

ij

is smaller than �v

max

, then v

(t)

ij

is set to the value

of �v

max

. The value of v

max

is usually a funtion of the range of the problem. If the range

of eah omponent p

ij

of partile p

i

is between -10 and 10, v

max

will be proportional to 10.

Inertia weight

The previous veloity in the �rst term of (3.3) an be saled with an intertia weight w, i.e.

v

(t+1)

ij

= wv

(t)

ij

+ 

1

r

(t)

1

[z

(t)

ij

� p

(t)

ij

℄ + 

2

r

(t)

2

[bz

(t)

j

� p

(t)

ij

℄ (3.10)

The inertia weight was introdued to improve the rate of onvergene of the PSO algo-

rithm [47℄, and determines how muh the veloity at time t should inuene the veloity at

time t+1. A large inertia weight auses the PSO to explore larger parts of the searh spae,

while a smaller inertia weight results in exploitation of a smaller and more foussed region

of the searh spae. An inertia weight of one results in an update equation equivalent to

(3.3).

It is possible, through areful seletion of the inertia weight, to reate a balane between

loal and global exploration abilities, and therefore reate a faster rate of onvergene. The

balane an be ahieved with a linearly dereasing inertia weight

w = w

max

�

t

t

max

(w

max

� w

min

) (3.11)

where w

max

is the initial (starting) inertia weight, and w

min

is the �nal weight. The values

t

max

and t respetively indiate the maximum and urrent iteration number. Setting w

max

to 0.9 and w

min

to 0.4 has been shown to give good onversion, independent of the problems

tested [46, 47℄.
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Constrition oeÆient

Maurie Cler has introdued a onstrition fator to PSO, whih improves PSO's ability

to ontrol veloities [11℄. The onstrition fator analytially hooses values for w, 

1

and



2

suh that ontrol is allowed over the dynamial harateristis of the partile swarm, in-

luding its exploration versus exploitation abilities. Clamping the veloities is not neessary

when a onstrition oeÆient � is used in (3.3), hanging the veloity update to

v

(t+1)

ij

= �

�

v

(t)

ij

+ 

1

r

(t)

1

[z

(t)

ij

� p

(t)

ij

℄ + 

2

r

(t)

2

[bz

(t)

j

� p

(t)

ij

℄

�

(3.12)

with

� =

2

�

�

2� '�

p

'

2

� 4'

�

�

(3.13)

and ' = 

1

+ 

2

, ' > 4.

As the value of ' tends to 4 (from above), the value of � tends to 1 (from below), and the

partile's veloity is almost not damped at all; as ' grows larger, � tends to zero, and the

partile's veloity is more strongly damped. A orret hoie of the onstrition fator makes

veloity lamping unneessary, although it was found that �, ombined with onstraints on

v

max

, signi�antly improved PSO performane [17℄.

Guaranteed Convergene Partile Swarm Optimiser

The PSO desribed in this hapter, inluding the versions with an inertia weight (3.10) and

onstrition fator (3.12), all have a probability of onverging prematurely. This an be

learly seen by onsidering the ase when a partile's position and personal best oinide

with the global best. The veloity of the partile will only depend on v

(t)

ij

(or wv

(t)

ij

or �v

(t)

ij

),

and if it is lose to zero, or the position of the global best does not hange, the partile will

`ath up' with the global best. This does not mean that the swarm has onverged to a

minimum, but merely that it has onverged prematurely to the global best.

Van den Berg has introdued the Guaranteed Convergene PSO (GCPSO) [53, 54℄, whih

de�nes a di�erent veloity update for the global best partile. If � is the index of the global

best partile, suh that z

�

=
b
z, then the new veloity update ensures that a point is sampled

from the support of a probability measure ontaining
b
z or lose to

b
z:

v

(t+1)

�;j

= �p

(t)

�;j

+ bz

(t)

j

+ wv

(t)

�;j

+ �

(t)

(1� 2r

(t)

2

) (3.14)

The value � is a saling fator used to generate a random sample spae with � as its side

lengths, with r

(t)

2

again being uniformly distributed between zero and one. In essene the

veloity update resets the partile's position to that of the global best, and adds the urrent
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searh diretion. To this result a random vetor from �

(t)

(1� 2r

(t)

2

) is added. By ombining

equations (3.4) and (3.14), the position of the new partile will be

p

(t+1)

�;j

= bz

(t)

j

+ wv

(t)

�;j

+ �

(t)

(1� 2r

(t)

2

) (3.15)

The size of the random searh volume is hanged by expanding � when better funtion

evaluations are suessfully found. The sampling volume is dereased when no improvements

to the funtion evaluation is found over time; the smaller volume inreases the probability

of hoosing a variable that gives a better objetive funtion value. If a failure in dereasing

the objetive funtion is equivalent to f(
b
z

(t)

) = f(
b
z

(t�1)

), then the value of �

(t)

is adapted

after eah iteration of the GCPSO algorithm with

�

(t+1)

=

8

>

>

<

>

>

:

2�

(t)

if #s > s



1

2

�

(t)

if #f > f



�

(t)

otherwise

(3.16)

The terms #s and #f respetively denote the number of onseutive suesses and

failures, with s



and f



being threshold parameters. To ensure the orretness of (3.16), #f

is set to zero if #s inreases from iteration t to iteration t+1 of the algorithm. In a similar

fashion, #s is set to zero when #f inreases. A rigorous analysis of GCPSO an be found

in [53℄.

3.3 Conluding

The basi PSO algorithm was disussed in this hapter, and a (by no means exhaustive)

number of improvements were shown. In partiular, this hapter has foused on improve-

ments to the PSO that are relevant to the rest of this thesis. The GCPSO is of partiular

interest, sine it will be the basis for development of the Converging Linear PSO in Chapter

4. The interested reader is referred to [7, 27, 53℄, the proeedings of the Partile Swarm Opti-

mization Workshop (2001), and the proeedings of the IEEE Swarm Intelligene Symposium

(2003) for a thorough treatment of researh in Partile Swarm Optimisers.

An overview of unonstrained optimisation was given, but it will only serve as a platform

from whih PSO will be extended to optimise onstrained problems. The following hapter

takes are of this extension, by examining and analysing a method of linear onstraint

handling. Inequality onstraints are also taken are of, and �nally we not only have a PSO

that an train Support Vetor Mahines, but an also optimise general problems with both

linear equality and inequality onstraints.



Chapter 4

Constrained Partile Swarm

Optimisation

The standard Partile Swarm Optimiser is unable to easily optimise funtions bound by a

set of linear equality or inequality onstraints. The objetive of this hapter is to present two

new algorithms, the Linear Partile Swarm Optimiser (LPSO) and the Converging Linear

Partile Swarm Optimiser (CLPSO), designed spei�ally with onstrained optimisation in

mind. The properties and onvergene of these new algorithms are arefully analysed; a proof

for a set of initial onditions on LPSO, a proof of both algorithms' ability to searh within

the onstrained spae, and a onvergene proof for CLPSO, is given.

4.1 Introdution to onstrained optimisation

Optimisation problems have the goal of �nding the best value of some funtion. These

types of problems are generally omposed of three parts: an objetive funtion that needs

to be optimised (minimised or maximised), a set of solution-de�ning variables on whih the

objetive funtion depends, and a set of onstraints that restrits feasible values of these

variables. Constraints an be of two types: equality onstraints speify that a funtion

of the variables must be equal to a onstant, while inequality onstraints speify that a

ertain funtion of the variables must be greater than or equal to (or less than or equal to)

a onstant.

4.1.1 Terminology

Let x = (x

1

; x

2

; : : : ; x

n

)

T

2 R

n

represent the solution-de�ning variable. This vetor x 2 R

n

is alled the optimisation variable. The funtion that needs to be optimised is de�ned as

39
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f : R

n

! R, and is ommonly alled the objetive funtion or ost funtion. Let the

set of funtions g

i

: R

n

! R de�ne the inequality onstraint funtions, giving a set of

inequalities g

i

(x) � 0. De�ning h

i

(x) = 0 as equality onstraints, the funtions h

i

: R

n

! R

are the equality onstraint funtions. If there are no onstraints, the problem is alled an

unonstrained problem, as was examined in Chapter 3.

Using the above notation, a general optimisation problem an be stated as

Minimise f(x)

Subjet to g

i

(x) � 0; i = 1 : : : k

h

i

(x) = 0; i = 1 : : :m (4.1)

to desribe the problem of �nding an optimisation variable x that minimises f(x) over all

values of x that satisfy the onditions g

i

(x) = 0, i = 1 : : : k, and h

i

(x) = 0, i = 1 : : :m.

The maximum of f(x) an be found by minimising �f

?

(x). In a similar way, an inequal-

ity onstraint funtion g

i

(x) � 0 an be written in the standard form with �g

i

(x) � 0.

The domain 
 of the onstrained optimisation problem is the set of x-values for whih

the objetive and all onstraint funtions are de�ned. If dom(g

i

) denotes the set of x-values

for whih g

i

(x) � 0, and dom(h

i

) denotes the set of x-values for whih h

i

(x) = 0, then 
 is

the interseion of these domains.


 =

k

\

i=1

dom(g

i

) \

m

\

i=1

dom(h

i

) (4.2)

A point x 2 
 is feasible if it satis�es the onstraints g

i

(x) � 0 and h

i

(x) = 0.

If 
 is non-empty, there exists at least one feasible point, and the problem is feasible.

If no feasible point exists, the problem is infeasible. The domain is the set of all feasible

points, alled the feasible set. The problem of determining whether the problem is feasible

or not is alled the feasibility problem. The feasibility problem determines if the inequalities

are onsistent, and if so, �nds a point that satis�es them. It is written as

Find x

Subjet to g

i

(x) � 0; i = 1 : : : k

h

i

(x) = 0; i = 1 : : :m (4.3)

If x is feasible and g

i

(x) = 0, the onstraint g

i

(x) � 0 is ative at x. If g

i

(x) < 0, the

onstraint g

i

(x) � 0 is inative. The equality onstraint h

i

(x) = 0 is ative at all feasible

points. Redundant onstraints are onstraints that are implied by other onstraints, and

deleting them will not hange the set of feasible solutions.

The optimal or minimal value f

?

of problem (4.1) is de�ned as
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f

?

= infff(x)

�

�

g

i

(x) � 0; i = 1 : : : k; and h

i

(x) = 0; i = 1 : : :mg (4.4)

The values of f

?

are allowed to take on the extended values �1. If the problem is

infeasible, and the standard onvention that the in�mum of the empty set is +1 is used,

the optimal value f

?

is equal to +1.

It is also possible that the problem is unbounded from below, suh that f

?

= �1. A

problem unbounded from below ontains a sequene of feasible points fx

j

g

j�1

with f(x

j

)!

�1 as j !1.

For x 2 R

n

to be an optimal point, it must be feasible and have f(x) = f

?

. The problem

may ontain more than one feasible x that minimises f(x), and the set of these optimal

points is denoted by

X = fx

�

�

g

i

(x) � 0; i = 1 : : : k; and

h

i

(x) = 0; i = 1 : : :m; and f(x) = f

?

g (4.5)

If X is not empty, the optimal value an be found and the problem is solvable. If X is

empty, an optimal value an not be found.

An approximate solution to the problem is very often suÆient if a numeri method is

used to �nd it. This approximate solution must lie within an error margin � > 0 from the

true solution. The solution x with f(x) � f

?

+ � is alled �-suboptimal and the set of all

�-suboptimal points is alled the �-suboptimal set for the problem.

A loal solution to the optimisation problem is a feasible point x whih will minimise f

on the set of nearby feasible solutions within a ertain radius from x. A feasible point x is

thus loally optimal if there is an R > 0 suh that

f(x) = infff(z)

�

�

g

i

(z) � 0; i = 1 : : : k; and

h

i

(z) = 0; i = 1 : : :m; and kz� xk � Rg (4.6)

The term `globally optimal' is used for `optimal' to distinguish between `loally optimal' and

`optimal.'

4.1.2 Expressing problems in the standard form

Optimisation problem (4.1) is referred to as a standard form optimisation problem. The

onvention is hosen that the right-hand side of the inequality and equality onstraints

are zero. This an always be arranged by subtrating any nonzero right-hand side: for

example, the equality onstraint h

(1)

i

(x) = h

(2)

i

(x) is written as h

i

(x) = 0, where h

i

(x) =

h

(1)

i

(x) � h

(2)

i

(x). In a similar way inequalities of the form g

i

(x) � 0 are expressed as

�g

i

(x) � 0.
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4.1.3 Slak variables

Problem (4.1),

Minimise f(x)

Subjet to g

i

(x) � 0; i = 1 : : : k

h

i

(x) = 0; i = 1 : : :m

an be rewritten so that all inequalities involve only a single variable, instead of an entire

funtion g

i

(x). These single variables are alled slak variables and replaes eah inequality

onstraint with an equality onstraint, and a non-negativity onstraint. There is one slak

variable s

i

assoiated with eah original inequality onstraint g

i

(x) � 0. Optimisation

problem (4.1) is rewritten as

Minimise f(x)

Subjet to g

i

(x) + s

i

= 0; i = 1 : : : k

h

i

(x) = 0; i = 1 : : :m

s

i

� 0; i = 1 : : : k (4.7)

where the variables are x 2 R

n

and s 2 R

k

. This problem has n+ k variables, k inequality

onstraints (the non-negativity onstraints on s

i

), and k +m equality onstraints.

The problem is equivalent to the original standard form problem. If (x; s) is feasible

for the above problem, then x is feasible for the original problem, sine s

i

= �g

i

(x) � 0.

Conversely, if x is feasible for the original problem, then (x; s) is feasible for the above

problem, where s

i

= �g

i

(x). Similarly, x is optimal for the original problem if and only if

(x; s) is optimal for the above problem, where s

i

= �g

i

(x).

4.1.4 Convex optimisation

A onvex optimisation problem is one of the form

Minimise f(x)

Subjet to g

i

(x) � 0; i = 1 : : : k

Ax = b; A 2 R

m�n

and b 2 R

m

(4.8)

where both f and g

1

; : : : ; g

k

are onvex funtions. The onvex problem has three additional

requirements ompared to the general standard form problem (4.1): the objetive is onvex,

the inequality onstraint funtions are onvex, and the equality onstraint funtions h

i

(x) =

a

T

i

x� b

i

are aÆne.
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The additional requirements give rise to an important property: the feasible set of a

onvex optimisation problem is onvex, sine it is the domain of the problem


 =

k

\

i=1

dom(g

i

) \ fx j Ax = bg (4.9)

whih is a onvex set, with k (onvex) sublevel sets fx j g

i

(x) � 0g and m hyperplanes

fx j a

T

i

x = b

i

g.

An important property of onvex optimisation problems is that any loally optimal point

is also globally optimal. To see this, suppose that (feasible) x is loally optimal for a onvex

optimisation problem, and

f(x) = infff(z)

�

�

g

i

(z) � 0; i = 1 : : : k; and

a

T

i

x = b

i

; i = 1 : : :m; and kz� xk � Rg (4.10)

for some R > 0. Now suppose that x is not globally optimal, suh that there is a feasible

y with f(y) < f(x). As a result ky � xk > R, sine otherwise f(x) � f(y). Consider the

point z given by

z = (1� �)x+ �y; � =

R

2ky� xk

(4.11)

It follows that kz � xk =

R

2

< R, and by onvexity of the feasible set, z is feasible. By

onvexity of f it follows that

f(z) � (1� �)f(x) + �f(y) < f(x) (4.12)

whih ontradits (4.10). Hene there exists no feasible y with f(y) < f(x), and it follows

that x is globally optimal.

4.1.5 Duality

Consider the standard optimisation problem (4.1), with a non-empty domain 
, also alled

a `primal problem.' The onstraints in (4.1) an be introdued to the objetive funtion by

augmenting it with a weighted sum of the onstraint funtions. Let the vetor � 2 R

k

be

assoiated with the set of k inequality onstraints, and � 2 R

m

be assoiated with the set of

m equality onstraints. These vetors are alled the Lagrange multiplier vetors, and de�ne

the Lagrangian L : R

n

� R

k

� R

m

! R assoiated with (4.1) as

L(x;�;�) = f(x) +

k

X

i=1

�

i

g

i

(x) +

m

X

i=1

�

i

h

i

(x) (4.13)
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The dual problem assoiated with the primal problem is written as

Maximise L(x;�;�) with respet to � and �

Subjet to � � 0 (4.14)

If the problem (4.1) is onvex, then the solution of the primal problem is the vetor x

?

of

the saddle point (x

?

;�

?

;�

?

) of (4.13) suh that

L(x

?

;�;�) � L(x

?

;�

?

;�

?

) � L(x;�

?

;�

?

) (4.15)

The vetor x

?

that solves the primal problem, as well as the two Lagrange multiplier

vetors � and �, an be found by solving the min-max problem

min

x

max

�;�

L(x;�;�) (4.16)

4.1.6 Equality-onstrained optimisation

The �nal optimisation problem introdued, is the problem of minimising f under a set of

linear equality onstraints. This problem is written as

Minimise f(x)

Subjet to Ax = b; A 2 R

m�n

and b 2 R

m

(4.17)

and will from the basis of PSO developments to follow. In the following setions, a PSO

algorithm is developed to suessfully handle the above equality onstrained optimisation

problem. The method is extended to handle inequality onstraints as well.

4.2 Linear Partile Swarm Optimisation

The Partile Swarm Optimisation (PSO) algorithm disussed in Chapter 3 is an algorithm

suited for unonstrained optimisation. This setion introdues a new PSO algorithm, the

Linear Partile Swarm Optimiser, that is spei�ally developed with linear onstraints in

mind. The update equations for a partile's veloity and position, with inertia weight w, is

repeated here:

v

(t+1)

ij

= wv

(t)

ij

+ 

1

r

(t)

1

[z

(t)

ij

� p

(t)

ij

℄ + 

2

r

(t)

2

[bz

(t)

j

� p

(t)

ij

℄ (4.18)

p

(t+1)

ij

= v

(t+1)

ij

+ p

(t)

ij

(4.19)

Traditionally, the above veloity and position update steps are spei�ed separately for eah

dimension of a partile, as is done in [25, 27, 48, 53℄. If the random numbers r

(t)

1

and r

(t)

2
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are rather kept onstant for all vetor dimensions, the veloity updates are alulated as a

linear ombination of position and veloity vetors.

v

(t+1)

i

= wv

(t)

i

+ 

1

r

(t)

1

[z

(t)

i

� p

(t)

i

℄ + 

2

r

(t)

2

[
b
z

(t)

� p

(t)

i

℄ (4.20)

p

(t+1)

i

= v

(t+1)

i

+ p

(t)

i

(4.21)

The above approah has the advantage that the ight of partiles is de�ned by standard

linear operations on vetors. The guaranteed movement of partiles through subspaes and

subsets beomes possible, as stated in Theorem 4.1 (to follow). The PSO algorithm using

update equations (4.20, 4.21) is referred to as a \Linear Partile Swarm Optimiser" (LPSO),

due to the way the update equations are formulated. The LPSO algorithm, used to minimise

a funtion

f : R

n

! R (4.22)

is presented below:

Algorithm 4.1 - Linear Partile Swarm Optimisation (LPSO)

1. Set the iteration number t to zero, and randomly initialise the swarm S of n-dimensional

partiles p

(0)

i

to a value in the initial domain of the swarm. Initialise all veloity vetors

v

i

= 0.

2. Evaluate the performane f(p

(t)

i

) of eah partile.

3. Compare the personal best of eah partile to its urrent performane, and set z

(t)

i

to

the better performane:

z

(t)

i

=

8

<

:

z

(t�1)

i

if f(p

(t)

i

) � f(z

(t�1)

i

)

p

(t)

i

if f(p

(t)

i

) < f(z

(t�1)

i

)

(4.23)

4. Set the global best
b
z

(t)

to the position of the best performane in the swarm:

b
z

(t)

2 fz

(t)

1

; z

(t)

2

; : : : ; z

(t)

s

g

�

�

f(
b
z

(t)

)

= minff(z

(t)

1

); f(z

(t)

2

); : : : ; f(z

(t)

s

)g (4.24)

5. Change the veloity vetor for eah partile aording to equation (4.20).

6. Move eah partile to its new position, aording to equation (4.21).

7. Let t := t+ 1.

8. Go to step 2, and repeat until onvergene or t = t

max

.
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Figure 4.1: Comparing the possible searh spaes resulting from di�erent initial swarms in LPSO,

with v

(0)

i

= 0.

The algorithm has onverged if the di�erene between the best solution found over a

spei�ed number of iterations remains within a ertain bound. The algorithm iterates until

either one of two onditions is met: the algorithm has onverged, or the maximum number

of iterations t

max

have been reahed. In essene the onvergene and stopping onditions

are therefore the same as for the standard PSO.

4.2.1 Criteria on the initial swarm

If a PSO is onsidered in the traditional sense, with random numbers r

(t)

1

and r

(t)

2

generated

for eah dimension in a partile's update equations (4.18, 4.19), any point in the searh

spae an possibly be reahed with a swarm of arbitrary size. It is even possible to reah

any point in the searh spae with a swarm of size two [27℄.

This generalisation does not work for the LPSO, where the update equations (4.20) and

(4.21) are in fat linear ombinations of position and veloity vetors. The initial swarm

will thus inuene whih positions an and annot be found.

In fat, if all veloities are initialised to zero (like in the LPSO algorithm above), only

positions in the span of the set of vetors reated by subtrating the initial global best
b
z

(0)

from eah initial position vetor, will be found. A similar idea is true if the initial veloities

are non-zero, where the initial veloity vetors are added to the previous set of vetors

(reated by subtrating the global best
b
z

(0)

from eah initial position vetor) to span the

set of possible solutions found.

Consider the example illustrated in Figures 4.1(a) and 4.1(b), and say f(x) is minimized

at a point (or vetor) x

?

. If the LPSO algorithm is able to �nd x

?

, vetor x

?

should be

deomposable into a linear ombination of the initial veloity vetors.

It is easy to see from Figure 4.1(a) that a swarmwith initial population f(1; 2); (2; 1); (3; 0)g
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will never be able to reah x

?

= (2; 2). This is due to the way the partiles are moved with

veloities whih are initialised to the zero vetor. v

(t)

1

and v

(t)

2

will ause the partiles to y

on a straight line, sine all possible veloities will be of the form �[(1; 2)� (2; 1)℄ = �(�1; 1),

with � 2 R. All personal and global bests will also lie on this line, and thus searhes will

be in R

1

and not in R

2

. If
b
z

(0)

= (2; 1), then the set of vetors

f(1; 2)�
b
z

(0)

; (2; 1)�
b
z

(0)

; (3; 0)�
b
z

(0)

g = f(�1; 1); (0; 0); (1;�1)g

as shown in Figure 4.1(a), will only span R

1

. The optimal value x

?

at (2; 2) an not be

reahed. In omparison, Figure 4.1(b) shows that the set of vetors

fp�
b
z

(0)

j p 2 S

(0)

g = f(�1; 1); (0; 0); (2; 2)g

from the initial swarm S

(0)

= f(1; 2); (2; 1); (4; 3)g will span R

2

, and x

?

at (2; 2) an

possibly be reahed.

This leads us to a �rst important theorem, whih makes the following assumptions from

Algorithm 4.1 (LPSO):

1. v

(0)

i

= 0

2. z

(0)

i

= p

(0)

i

Theorem 4.1

If f needs to be optimized in R

n

, a swarm of s partiles S

(0)

= fp

(0)

1

; p

(0)

2

; : : : ;p

(0)

s

g will

be able to �nd the optimal value x

?

if and only if there exists a subset S

?

� S

(0)

�
b
z

(0)

=

fp�
b
z

(0)

j p 2 S

(0)

g that forms a basis for R

n

.

Proof

Say the optimal value x

?

an be found. Then x

?

an be written as some p

(0)

k

2 S

(0)

plus a

linear ombination of the set of initial veloity vetors

�

wv

(0)

i

+ 

1

r

(0)

1

[z

(0)

i

� p

(0)

i

℄ + 

2

r

(0)

2

[
b
z

(0)

� p

(0)

i

℄

�

�

i = 1 : : : s

	

Sine v

(0)

i

= 0, z

(0)

i

= p

(0)

i

and �

2

r

(0)

2

is a non-zero salar, x

?

� p

(0)

k

an be written as a

linear ombination of

S

(0)

�
b
z

(0)

=

�

p

(0)

1

�
b
z

(0)

; p

(0)

2

�
b
z

(0)

; : : : ;p

(0)

s

�
b
z

(0)

	

Beause any vetor x

?

� p

(0)

k

2 R

n

an be written as a linear ombination of S

(0)

�
b
z

(0)

,

it is true that S

(0)

�
b
z

(0)

spans R

n

. Thus there exits a subset S

?

� S

(0)

�
b
z

(0)

of linearly

independent vetors that also spans R

n

. This subset S

?

will form a basis for R

n

.
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To prove the onverse, assume S

?

� S

(0)

�
b
z

(0)

forms a basis for R

n

. Then any vetor

in R

n

an be written as a linear ombination of S

(0)

�
b
z

(0)

. The optimal value an thus be

written as p

(0)

k

2 S

(0)

plus some linear ombination of S

(0)

�
b
z

(0)

, and an thus be reahed.

�

Sine one of the partiles will be the global best partile with p

(0)

i

�
b
z

(0)

= 0, the set of

vetors S

(0)

�
b
z

(0)

will ontain the zero vetor, and so S

(0)

needs to ontain a minimum of

n+ 1 vetors for S

(0)

�
b
z

(0)

to span R

n

, namely

inf jS

(0)

j = n+ 1 (4.25)

To explore the ase when initial veloities are non-zero, onsider the LPSO update equa-

tions (4.20) and (4.21). Assuming that the initial personal best z

(0)

i

is set to p

(0)

i

, two vetors

play a role in partile i's update equations: the initial veloity vetor v

(0)

i

and the di�erene

between the initial global best
b
z

(0)

and the initial position p

(0)

i

. It follows that the set of

vetors

�

v

(0)

1

;
b
z

(0)

� p

(0)

1

; v

(0)

2

;
b
z

(0)

� p

(0)

2

; : : : ;v

(0)

s

;
b
z

(0)

� p

(0)

s

	

must span R

n

, and the minimum swarm size for LPSO of S

(0)

will be

�

n

2

�

+ 1.

4.3 Equality-onstrained optimisation

The LPSO algorithm lends itself perfetly to solving equality-onstrained optimisation prob-

lems, as was disussed in Setion 4.1.6. This setion summarises urrent methods from the

Evolutionary Computing and PSO �elds, and disusses and proves the usefulness of LPSO

to equality-onstrained optimisation.

4.3.1 Current methods

Many methods for onstraint handling have been proposed in the Evolutionary Computation

�eld [32℄. These an be broadly lassi�ed into penalty, repair and onstraint-preserving

methods.

Penalty methods add a penalty to the objetive funtion to derease the quality of infea-

sible solutions [20, 22, 32℄. While penalty methods are very popular, they do not guarantee

a solution where no onstraints are violated, sine the searh spae still inludes infeasible

solutions, and suess depends on the penalty method.

Repair methods apply operators to move an infeasible solution loser to the feasible

spae of solutions [30, 60℄. Operators designed to `orret' infeasible solutions are usually
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Figure 4.2: Progressive redution of the feasible domain.

omputationally intensive. Not all onstraints an be easily implemented to be orreted by

these operators, whih must be tailored to the partiular problem [15℄.

Constraint-preserving methods (feasible solutions methods) redue the searh spae by

ensuring that all andidate solutions at all times satisfy the onstraints [32℄. Solutions are

initialised within the feasible domain, and transformations of andidate solutions are suh

that the resulting solutions still lie within the feasible domain.

Hamida and Shoenauer introdued a hybrid approah for Evolutionary Algorithms to

handle equality onstraints [22℄. In this approah, equalities h

j

(x) = 0 are written as double

inequalities �"

(t)

� h

j

(x) � "

(t)

. The idea is to start, for eah equality, with a large feasible

domain, and so tolerate high violation degrees. This domain is then gradually redued

along evolution, in order to bring it as lose as possible to a null measure feasible domain,

as illustrated in Figure 4.2. The value of " is progressively redued with the aim of reahing

0 � h

j

(x) � 0.

Feasible solutions methods, on the other hand, are based on transforming feasible indi-

viduals into other feasible individuals. In the Evolutionary Algorithm sense, it is done by

operators that are losed on the feasible part of the searh spae. These methods assume

linear onstraints only and a feasible starting point, or a feasible initial population [32℄.

Mihalewiz and Janikow developed a geneti algorithm alled Genoop, named after

\GEneti algorithm for Numerial Optimisation for COnstrained Problems" [31℄. The ap-

proah, fousing on linear onstrains, �rstly eliminates the equalities in the set of onstraints,

and seondly uses arefully designed `geneti' operators that guarantee to keep all `hromo-

somes' of the geneti algorithm within the onstrained spae.

Shi and Krohling developed a method using two o-evolving PSOs, and duality from

Setion 4.1.5, to solve a onstrained optimisation problem [49℄. The min-max problem

(4.16) is solved by evolving two simultaneous PSOs. The �rst PSO freezes the Lagrange

multipliers � and �, and minimises the Lagrangian L(x;�;�) over x. The seond PSO

freezes the variable vetor x, and maximises L(x;�;�) over the Lagrange multipliers � and

�. However, if the optimisation problem is non-onvex, the solution of the primal and dual

problems do not oinide. In this ase a penalty, determined by the inequality and equality
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onstraint funtions, is added to the Lagrangian.

The LPSO falls in the onstraint-preserving lass of onstraint handling algorithms.

Linear onstraints are assumed, and if the initial swarm ontains only feasible starting

points, transitions to new solutions through veloity updates ensure feasible solutions to be

generated.

4.3.2 PSO for equality-onstrained optimisation

Let the objetive be to �nd the minimum of some funtion f(x), where x 2 R

n

, subjet to

a set of linear onstraints,
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It is assumed that the problem is feasible, or the solution set for the linear onstraints is

non-empty. Then, in simple terms, the problem is de�ned as

Minimise f(x); x 2 R

n

Subjet to Ax = b; A 2 R

m�n

and b 2 R

m

(4.26)

It an be said that f needs to be optimised in the hyperplane C, the set of partiular

solutions of the linear system Ax = b. That is,

C = fx j Ax = bg

de�nes the set of feasible solutions to (4.26), and eah point in C will be a feasible point. Fig-

ure 4.3 illustrates a one-dimensional hyperplane (or line) C that onstrains two-dimensional

solutions x = (x

1

; x

2

).

The approah presented below ies the swarm through the set of feasible solutions, in

this ase hyperplane C.
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x1
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Figure 4.3: Minimising f under a linear equality onstraint.

Feasible diretions

Given a feasible point x (a partile's position, for instane), it will be neessary to y from

x to other feasible points. This an be done with feasible diretions. Let

H = fx j Ax = 0g

de�ne the set of solutions of the homogeneous system Ax = 0. H is a subspae of R

n

, and

sine H is losed under vetor addition and salar multipliation, it is also a vetor spae.

If 

0

is any element of C, then H is de�ned by C minus some o�set 

0

, or the set of vetors

C � 

0

= f� 

0

j  2 Cg.

If x is feasible and h 2 H , the point x + �h is also feasible for every value of �, sine

A(x+ah) = Ax+�Ah = b+�0 = b. Any move from a feasible point along h will produe

another feasible point. Any nonzero diretion h 2 H is alled a feasible diretion for the

onstraints Ax = b in (4.26).

If the initial swarm is feasible, and the partiles y with only feasible diretions as their

veloity vetors, then the swarm will stay within the searh spae. This is summarized in

Theorem 4.2, whih an be proved by a simple indutive argument:

Theorem 4.2

If all initial veloity vetors v

(0)

i

are solutions to the homogeneous system Ax = 0, and all

initial partiles p

(0)

i

lie in the hyperplane de�ned by Ax = b, then for any time t
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I) Av

(t)

i

= 0

II) Ap

(t)

i

= b

III) Az

(t)

i

= b

IV) A
b
z

(t)

= b

i.e. the swarm will y through the hyperplane de�ned by the onstraints.

Proof

Without losing generality, subsript i, denoting a spei� partile in the swarm, is dropped.

Basis step:

I) v

(0)

= 0 (by initialisation) is the trivial solution to Ax = 0

II) p

(0)

is initialised on the hyperplane Ax = b

III) z

(0)

= p

(0)

) Az

(0)

= b

IV)
b
z

(0)

2 fz

(0)

1

; z

(0)

2

; : : : ; z

(0)

s

g

j f(
b
z

(0)

) = minf f(z

(0)

1

); f(z

(0)

2

); : : : ; f(z

(0)

s

)g

) A
b
z

(0)

= b

Indutive step:

Suppose Av

(k)

= 0, Ap

(k)

= b, Az

(k)

= b and A
b
z

(k)

= b. Then

I) Av

(k+1)

= A

�
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(k)

+ 

1

r

(k)

1
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(k)

� p

(k)

℄ + 

2

r

(k)

2

[
b
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� p

(k)

℄

�

= wAv

(k)
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1
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(k)

1

(Az
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(k)
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2
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(k)

�Ap
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)
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1

r
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1
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2
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(k)
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1
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2
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This shows that the swarm will y through the solution hyperplane C de�ned by the set

of feasible solutions.

Change of PSO for onstrained optimisation

It is lear from the above that, if the swarm is initialised to a set of feasible solutions, all

solutions found will be feasible. However, this does not mean that the optimum solution

an be found.

Theorem 4.1 provides a ondition on the initial swarm that guarantees that any point

inside the searh spae an be found. This searh spae was R

n

. With the given onstraints,

the searh spae will be some hyperplane inside R

n

. The initial swarm an be hosen suh

that any point in this hyperplane an be found.

By de�nition, any diretion h satisfying Ah = 0 lies in the null spae of A. If the rank

of A is r, let

S

?

=

�

p

(0)

1

�
b
z

(0)

; p

(0)

2

�
b
z

(0)

; : : : ; p

(0)

n�r

�
b
z

(0)

	

denote a generi set of n � r linearly independent vetors, suh that A(p

(0)

i

�
b
z

(0)

) =

Ap

(0)

i

� A
b
z

(0)

= b � b = 0. This implies that S

?

forms a basis for the n � r dimensional

null spae of A. S

?

provides a onvenient way to represent all feasible points. Given any

point p

(0)

suh that Ap

(0)

= b, every feasible point an be written as p

(0)

plus some linear

ombination of S

?

.

For onstrained optimisation, f is optimised in an n � r dimensional hyperplane inside

R

n

, with r = rank(A). Thus a swarm of s partiles S

(0)

= fp

(0)

1

; p

(0)

2

; : : : ; p

(0)

s

g will

be able to �nd the optimal value if and only if there exists a subset S

?

� S

(0)

�
b
z

(0)

=

fp�
b
z

(0)

j p 2 S

(0)

g that forms a basis for R

n�r

. In this ase the minimum swarm size will

be

inf jS

(0)

j = n� r + 1 (4.27)

If the whole swarm is thus initialised to lie within the hyperplane Ax = b, and S

?

�

S

(0)

�
b
z

(0)

de�nes a basis for R

n�r

, then f an be optimised in the standard way. It is due

to this property that Linear Partile Swarm Optimisation is ideally suited to solving these

kinds of optimisation problems.

Initialising partiles within the searh plane

The next task is to �nd a way to initialise suh a swarm with s partiles. Most importantly,

all partiles should lie within the searh plane. This an be done by reduing the augmented

matrix [Ajb℄ to row-ehelon form [A

0

jb

0

℄ with Gauss-Jordan redution, and hoosing vetors

in the hyperplane by using this matrix, as summarized below:
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Algorithm 4.2 - Initialising partiles within the searh plane

1. Redue the augmented matrix [Ajb℄ to transform the oeÆient matrix A of the given

onstraints to row-ehelon form. The number of pivots in this form will be equal to r,

the rank of A.

[Ajb℄ � [A

0

jb

0

℄ =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 : : : 0 a

0

1r+1

: : : a

0

1n

b

0

1

0 1 : : : 0 a

0

2r+1

: : : a

0

2n

b

0

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : 1 a

0

rr+1

: : : a

0

rn

b

0

r

0 0 : : : 0 0 : : : 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : 0 0 : : : 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(No pivots appear after olumn r)

2. Use [A

0

jb

0

℄ to generate a total of n� r linearly independent random vetors suh that

Ap

(0)

i

= b for i = 1 : : : n� r.

A random vetor p = (p

1

; p

2

; : : : ; p

n

)

T

satisfying Ap = b an be onstruted by

hoosing values for p

k

randomly, with k = r + 1; : : : ; n (k 2 non-pivot olumns). Now

for eah j = 1; : : : ; r (j 2 pivot olumns), let

p

j

= b

0

j

�

n

X

k=r+1

a

0

jk

p

k

3. Generate one more vetor p

(0)

n�r+1

=

P

n�r

i=1

1

n�r

p

(0)

i

. Now,

Ap

(0)

n�r+1

= A

n�r

X

i=1

1

n� r

p

(0)

i

=

n�r

X

i=1

1

n� r

Ap

(0)

i

=

n�r

X

i=1

1

n� r

b = b

This vetor is a ombination of all other vetors and is linearly dependent on all vetors

1; : : : ; n� r. Any S

(0)

�
b
z

(0)

will form a basis for R

n�r

, sine subtrating any hoie

of
b
z

(0)

will give a linearly independent set.

4. Choose the initial positions of partiles n� r+2 to s at random by using the method

desribed in Step 2 to reate a swarm of size s.

4.3.3 Overoming premature onvergene

The LPSO algorithm (Algorithm 4.1) disussed above has one property that is very disad-

vantageous, and that is the possibility of premature onvergene.
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If v

(0)

is initialised to 0 and the position of the global best partile does not hange,

searhes will ontinue on lines onneting eah partile with the global best. So the whole

hyperplane is not searhed, but only lines.

In another senario, onsider p

i

= z

i

=
b
z, where veloity updates will depend only on

the value of wv

(t)

i

, as disussed in [53, 54℄. If a partile's urrent position oinides with the

global best position, the partile will only move away from this point if its previous veloity

and w are non-zero. Premature onvergene will our when previous veloities are lose to

zero, and partiles stop moving one they ath up with the global best partile.

To overome this premature onvergene, the Guaranteed Convergene Partile Swarm

Optimiser (GCPSO) was developed [53, 54℄. In this algorithm, the veloity update for the

global best partile is hanged to fore it to searh for a better solution in an area around the

position of that partile. A onvergene proof for the GCPSO, and results to substantiate

its suess an be found in [53, 54℄.

The GCPSO annot be used as given in [53, 54℄, sine unonstrained random adjustments

may generate infeasible solutions. A variation is neessary beause partiles annot be

altered with any random vetor, but only with feasible diretions. The new algorithm,

referred to as Converging LPSO (CLPSO), ensures that the onstraints from equation (4.26)

are still met.

Let � be the index of the global best partile, then

z

�

=
b
z (4.28)

Change the veloity update equation (4.20) for the global best partile � , so that

v

(t+1)

�

= �p

(t)

�

+
b
z

(t)

+ �

(t)

�

(t)

(4.29)

where �

(t)

is a saling fator and �

(t)

� UNIF (�1; 1)

n

with the property that A�

(t)

= 0,

or �

(t)

lies in the null spae of A. The vetor �

(t)

an be onstruted from the redued

augmented matrix [A

0

jb

0

℄, with A in row-ehelon form. Suh a method is desribed in Step

2 of Setion 4.3.2. Now,

Av

(t+1)

�

= A

�

� p

(t)

�

+
b
z

(t)

+ �

(t)

�

(t)

�

= �Ap

(t)

�

+A
b
z

(t)

+ �

(t)

A�

(t)

= �b+ b+ 0

= 0

and so the swarm will still y through the hyperplane as desribed in Theorem 4.2. Sine

p

(t+1)

�

= v

(t+1)

�

+ p

(t)

�

=
b
z

(t)

+ �

(t)

�

(t)
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the new position of the global best partile will be its personal best
b
z

(t)

, with a random

vetor �

(t)

�

(t)

from the null spae of A added. It is only the global best partile that is

moved with the above veloity update (4.29), all other partiles in the swarm are still moved

with the original equations (4.20) and (4.21).

Removal of initial onditions for CLPSO

Adding random vetors to the algorithm hanges the initial onditions: Theorem 4.1 is based

on LPSO whih does not make any allowane for random hanges to partile positions. Sine

�

(t)

is random, the ondition that some S

?

� S

(0)

�
b
z

(0)

that de�nes a basis for R

n�r

(with

rank(A) = r) should exist, an be dropped for CLPSO.

4.3.4 Proof of onvergene for CLPSO

To prove the onvergene of CLPSO to at least a loal minimum, a more general ondition

for onvergene of a random searh algorithm is �rst disussed and proved. Consider the

following problem and oneptual algorithm:

P Given a measurable funtion f : R

n

! R and S � R

n

. We seek a point x 2 S whih at

least �nds a loal minimum of f on S or yields an approximation of a loal minimum of f

on S.

Algorithm 4.3 - Coneptual algorithm

1. Find x

(0)

2 S and set k = 0

2. Generate �

(k)

from (R

n

;B; �

k

)

3. x

(k+1)

= D(x

(k+1)

; �

(k)

), hoose �

k+1

, k := k + 1, go to step 1

The probability spae (R

n

;B; �

k

) is suh that B is the �-�eld of Borel subsets of R

n

, and �

k

is a probability measure on B suh that �

k

(R

n

) = 1. The algorithm starts with an initial

solution x

(0)

, and at eah iteration a possible new solution �

(k)

is generated from (R

n

;B; �

k

).

The funtion D, explained below, maps S � R

n

to S.

It is suÆient to show that if the random searh algorithm satis�es two onditions { the

algorithm ondition and the onvergene ondition { then it will at least onverge to a loal

minimum. Eah of these ondisions are presented below.

Algorithm ondition The mapping D : S � R

n

! S should satisfy f(D(x; �)) � f(x)

and if � 2 S, then f(D(x; �)) � f(�).
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Let M

k

be the support of �

k

, the smallest losed subset of R

n

with measure of one. Al-

most all random searh algorithms are adaptive, implying that �

k

depends on the solutions

x

(0)

; : : : ;x

(k�1)

generated by the previous iterations of the algorithm. The �

k

are then

viewed as onditional probability measures. Let m be the Lebesgue measure of a set. The

searh method disussed here is a alled a loal searh method, whih means that the �

k

with

bounded support M

k

have, for all exept a possibly �nite k, m(S \M

k

) < m(S). Methods

alled global searh methods have m(S \M

k

) = m(S) for all k.

To avoid having to searh for an element in a set of null measure, the searh will be

for the essential in�mum of f . This assures that, for a pathologial ase like f(x) = x

2

for

x 6= 0, and f(x) = �1 for x = 0, the true minimum at -1 need not be found, but simply an x

for whih f(x) is arbitrarily lose to zero. Thus the searh for the in�mum will be replaed

by a searh for the essential in�mum. De�ne the minimum of f on S as

� = ess inf f = supfz : f(x) � z a.e.g

and assume that � is �nite.

1

Sine the nature of the searh is for the essential in�mum and therefore may prelude

the atual minimum, it is neessary to establish onvergene to a small region of values

surrounding the minimum. Let the optimality region for the (global) minimum be de�ned

as

R

�;0

= fx 2 S : f(x) < �+ �g

Funtion f has an essential loal minimum at 

i

2 S if there exists an n-dimensional

interval I

i

� S around 

i

, suh that f(

i

) � f(x) a.e. for all x 2 I

i

. For eah of the

(possibly in�nite) loal minima 

i

with i � 1, de�ne the optimality region (that is suÆient

for the searh algorithm to �nd) as

R

�;i

= fx 2 I

i

: f(x) < f(

i

) + �g

Now let R

�

=

S

i

R

�;i

be the optimality region for problem P.

Convergene ondition SuÆient ondition for onvergene to at least a loal minimum

(of a loal searh algorithm): For any x

(k)

2 S, there exists a  > 0 and a 0 < � � 1 suh

that

�

k

�

f(x

(k+1)

) � f(x

(k)

)�  or x

(k)

2 R

�

�

� � (4.30)

1

Thus the minimum is de�ned as the supremum of all z values suh that f is greater than or equal to z

almost everywhere (a.e.), i.e. everywhere exept possibly on some null set. Letting � = �1 will not alter

the spirit of the algorithm, if a very large negative value is taken as a suÆient `approximation' of �1.
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Proof Take the omplement of (4.30) to get

�

k

�

f(x

(k+1)

) > f(x

(k)

)�  and x

(k)

=2 R

�

�

� 1� �

for all  > 0.

From the de�nition of D, f(x

(k+1)

) > f(x

(k)

)�  for all  > 0 is not possible, and so

�

k

(x

(k)

=2 R

�

) � 1� �

Let fx

(k)

g

k�0

be the sequene generated by D. Therefore it needs to be shown that

lim

k!1

P (x

(k)

2 R

�

) = 1. De�ne A to be the event that x

(k)

2 R

�

before iteration p. Then,

P (A) = 1� P (

�

A)

= 1�

p�1

Y

i=0

�

i

(x

(i)

=2 R

�

)

� 1� (1� �)

p

and so P (A)! 1 as p! +1.

To omplete the proof, onsider the ase when x

(p)

2 R

�

, and �

p

(f(x

(p+1)

) � f(x

(p)

)�

) > 0. Then there is a positive probability that x

(p+1)

=2 R

�

, and if that is the ase, the

above argument assures us that x

(k)

will onverge to R

�

one again. From the de�nition

of R

�

and D, this will be to a loal or possibly global minimum less than x

(p)

. (When

�

p

(f(x

(p+1)

) � f(x

(p)

) � ) = 0, the sequene will remain in R

�

at a loal or the global

minimum.)

�

To prove that CLPSO onverges at least to a loal minimum, and does not stagnate

and onverge prematurely, it needs to be shown that both the algorithm ondition and the

onvergene ondition de�ned above will hold. Let S = R

n

.

Algorithm ondition The global best
b
z

(t)

is set to the position of the best performane

in the swarm, i.e.

b
z

(t)

2 fz

(t)

1

; z

(t)

2

; : : : ; z

(t)

s

g

�

�

f(
b
z

(t)

)

= maxff(z

(t)

1

); f(z

(t)

2

); : : : ; f(z

(t)

s

)g

and

z

(t)

i

=

8

<

:

z

(t�1)

i

if f(p

(t)

i

) � f(z

(t�1)

i

)

p

(t)

i

if f(p

(t)

i

) < f(z

(t�1)

i

)

The above update equations imply that the algorithm ondition holds.
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Convergene ondition Partile update equations are

p

(t+1)

i

= p

(t)

i

+ wv

(t)

i

+ 

1

r

(t)

1

[z

(t)

i

� p

(t)

i

℄ + 

2

r

(t)

2

[
b
z

(t)

� p

(t)

i

℄

and for the global best partile

p

(t+1)

�

=
b
z

(t)

+ �

(t)

�

(t)

Sampling a new point (that might be better than
b
z

(t)

) will be done for eah of s partiles,

and thus we will de�ne M

t

, the support for �

t

at iteration t, as the set from whih eah

of these s values an be piked. For eah partile p

i

(exept for the global best partile �)

de�ne M

t;i

as the onvex hull de�ned by

�

p

(t)

i

�

,

�

p

(t)

i

+ wv

(t)

i

�

,

�

p

(t)

i

+ 

1

[z

(t)

i

� p

(t)

i

℄

�

, and

�

p

(t)

i

+ 

2

[
b
z

(t)

� p

(t)

i

℄

�

.

Sine r

(t)

1

; r

(t)

2

� UNIF (0; 1), the new partile p

(t+1)

i

will lie within M

t;i

. Also de�ne

M

t;�

as the n-dimensional hyperube with sides of length �

(t)

, entered at
b
z

(t)

. Let

M

t

=

s

[

i=1

M

t;i

be the support of probability measure �

t

. Sine M

t;�

�M

t

a point arbitrarily lose to
b
z

(t)

an be hosen, and hene there is always a  > 0 and 0 < � � 1 suh that

�

t

�

f(
b
z

(t+1)

) � f(
b
z

(t)

)�  or
b
z

(t)

2 R

�

�

� �

�

4.4 Inequality-onstrained optimisation

Inequality-onstrained optimisation problems an be redued to problems involving only

non-negativity onstraints on a set of variables. In Setion 4.1.3 the notion of slak variables,

where a standard optimisation problem is onverted to one where all inequalities involve

only a single variable, was introdued. The LPSO, and onsequently the CLPSO as well,

are expanded to handle non-negativity onstraints on a set of variables. As the aim of the

CLPSO is (in the ontext of this thesis) to solve a SVM's onstrained optimisation problem,

the method explained below fouses on box onstraints of the form a � x

j

� b. These

onstraints fore the partiles to only y inside a n-dimensional hyperube, but the method

developed will work equally well if no upper bound on the variables existed.

Consider the way a partile p

i

is being updated:

p

(t+1)

i

= v

(t+1)

i

+ p

(t)

i

(4.31)
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In the above equation, it is also assumed that p

(t)

i

lies inside the problem's feasible region


. That is, inside the n-dimensional hyperube. For notational onveniene, the subsript

i will be dropped. That is,

p

(t)

= (p

(t)

1

; p

(t)

2

; : : : ; p

(t)

n

)

T

(4.32)

For the above partile, for all values p

(t)

j

it will be true that a � p

(t)

j

� b. However, when

the veloity vetor v

(t+1)

is added, it may beome true that a value of p

(t+1)

j

may violate

these onstraints.

In this ase, the veloity vetor needs to be saled so that all values p

(t+1)

j

will fall inside

the onstraints. To sale the veloity vetor, a sale fator is omputed for eah p

(t+1)

j

that

lies outside of the onstraints. This fator will sale the vetor element to lie exatly on the

bound. Sine the sale fator of one element may sale other elements to lie outside of the

bounds, the minimum of all these sale fators are taken to sale the veloity vetor. Using

this simple tehnique, the movement of the partiles are restrited to the hyperube.

As an example, let a = 0 and b = 2 suh that 0 � p

(t)

j

� 2 in the following position

vetor, and onsider the addition of a veloity vetor:

p

(t)

= (

1

8

1

8

6

8

0 0

7

8

1

8

)

T

v

(t+1)

= ( 0 0 �

8

8

0 0

10

8

18

8

)

T

p

(t+1)

= (

1

8

1

8

�

2

8

0 0

17

8

19

8

)

T

< 0 > 2 > 2

It is lear that the new partile lies outside the [0; 2℄

7

hyperube. For saling, a value Æ

needs to be found suh that p

(t+1)

= Æv

(t+1)

+ p

(t)

will lie inside these onstraints. This Æ

must be hosen suh that p

(t+1)

3

, whih is smaller than a = 0, will now satisfy p

(t+1)

3

� 0.

The value of Æ must also enfore p

(t+1)

6

� 2 and p

(t+1)

7

� 2.

Continuing the example, Æ is omputed for eah violating dimension. The value of p

(t+1)

3

is �

2

8

, but it should ideally be `ut' to lie within its losest boundary, zero. Substituting

zero for p

(t+1)

3

gives the saling fator Æ with whih the veloity vetor should be saled to

ahieve this ideal value:

p

(t+1)

3

= Æ

3

v

(t+1)

3

+ p

(t)

3

Æ

3

=

�

p

(t+1)

3

� p

(t)

3

�

=v

(t+1)

3

=

�

0�

6

8

�

=(�

8

8

) =

6

8

(4.33)

Similarly, the value for p

(t+1)

6

is

17

8

, but should ideally be saled down to two, to lie within

its losest border:

Æ

6

=

�

p

(t+1)

6

� p

(t)

6

�

=v

(t+1)

6

=

�

2�

7

8

�

=(

10

8

) =

9

10

(4.34)
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The value for p

(t+1)

7

is

19

8

, but should also be saled down to two, to lie within its losest

border:

Æ

7

=

�

p

(t+1)

7

� p

(t)

7

�

=v

(t+1)

7

Æ

7

=

�

2�

1

8

�

(

18

8

) =

15

18

(4.35)

From these possible sale values that were omputed in (4.33), (4.34), and (4.35), the smallest

Æ is hosen to sale the veloity vetor with. Thus the value of Æ will be

6

8

. Multiplying Æ

with v

(t+1)

and updating the partile gives a new position p

(t+1)

that lies exatly within

the onstraints.

p

(t)

= (

1

8

1

8

6

8

0 0

7

8

1

8

)

T

Æv

(t+1)

= ( 0 0 �

6

8

0 0

15

16

27

16

)

T

p

(t+1)

= (

1

8

1

8

0 0 0

29

16

29

16

)

T

From the above example, an algorithm to keep a swarm of partiles within an n-

dimensional hyperube [a; b℄

n

, an be generalised.

Algorithm 4.4 - Satisfying inequality onstraints

1. Determine the new position that a partile will y to (but do not move it there)

p

(t+1)

= v

(t+1)

+ p

(t)

2. For eah dimension j in the new position that lies outside [a; b℄

n

, ompute a saling

fator Æ

j

Æ

j

=

�

a� p

(t)

j

�

=v

(t+1)

j

if p

(t+1)

j

< a

Æ

j

=

�

b� p

(t)

j

�

=v

(t+1)

j

if p

(t+1)

j

> b

Note that, sine p

(t)

j

2 [a; b℄ and p

(t+1)

j

=2 [a; b℄, the value of Æ will always be positive.

3. Set Æ = minfÆ

j

j p

(t+1)

j

=2 [a; b℄g

4. Finally, move the partile to the new position with

p

(t+1)

= Æv

(t+1)

+ p

(t)

to lie within the onstrained hyperube [a; b℄

n

.

The method desribed above in Algorithm 4.3 is used and experimentally veri�ed as part

of the CLPSO used for training Support Vetor Mahines.

It is now possible to y the swarm suh that both linear and bounded onstraints are

always met. However, the above approah of `utting against the borders' indues a new

hurdle that the LPSO has to overome.
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x2

x1

b

a b

a

Figure 4.4: Partiles beoming a linear ombination of eah other.

The LPSO requires that the set of vetors reated by subtrating the partile's urrent

position from the global best solution vetor, together with the swarm's set of veloity

vetors, must span the entire searh spae. If all partiles are `ut' against a single onstraint

(say a in a � p

j

� b, as shown in Figure 4.4), the partile positions may all beome

linear ombinations of eah other, and if the global best also lies on the spei� onstraint,

the property of spanning the searh spae will be lost. This problem an be remedied by

randomly sattering the swarm, or adding a random vetor to eah partile to move its

urrent position to the inside of the box onstraints, when no improvement is made in the

objetive funtion for a �xed number of iterations.

Due to the way the global best partile is moved in CLPSO, a random vetor is always

added to a position in the swarm. The random vetor ensures that, with a probability

greater than zero for eah iteration, that the global best partile will be moved away from

the bound to be inside (a; b).

4.5 Conluding

In this hapter the original form of the PSO algorithm was extended to solving onstrained

optimisation problems. Two new PSO algorithms were developed. The Linear PSO (LPSO)

makes it possible to traverse a searh spae as a hyperplane, and onditions for LPSO to

reah any point within the searh spae were rigorously analysed. LPSO does however make

allowane for premature onvergene. To remedy the problem of premature onvergene,

the Converging LPSO (CLPSO) was developed. A formal proof of CLPSO onvergene was

given. Finally, a method of handling inequality (box) onstraints was presented.

Experimental results follow in the next hapter, and illustrate LPSO and CLPSO on a

number of problems, as well as their performane as an optimiser in Support Vetor Mahine

training.



Chapter 5

Experimental results

The purpose of the following hapter, presenting experimental results, is twofold: The on-

vergene of Linear PSO (LPSO) and Converging LPSO (CLPSO) is tested, and the CLPSO

is implemented as the onstrained optimisation algorithm that is used in training a Support

Vetor Mahine (SVM).

Experimental results are shown to illustrate the di�erenes between the LPSO and the

CLPSO in linearly minimising onstrained funtions. The minima found by these two PSOs

are ompared for orretness against the minima found by a geneti algorithm implementa-

tion, alled Genoop II.

As a onlusion, the CLPSO is used in the SVM training algorithm, de�ned in Setion

2.4. The algorithm is empirially ompared against two standard SVM training methods,

namely deomposition and sequential minimal optimisation.

5.1 Linear Partile Swarm Optimiser

5.1.1 Experimental results

In order to test the performane of LPSO and CLPSO to minimising problems onstrained

by a set of linear onstraints Ax = b, let

A =

2

6

6

6

6

6

6

6

6

4

0 �3 �1 0 0 2 �6 0 �4 �2

�1 �3 �1 0 0 0 �5 �1 �7 �2

0 0 1 0 0 1 3 0 �2 2

2 6 2 2 0 0 4 6 16 4

�1 �6 �1 �2 �2 3 �6 �5 �13 �4

3

7
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7
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5

; b =

2

6

6

6
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6

6

4

3

0

9

�16

30

3

7

7

7

7

7

7

7

7

5

(5.1)

De�ning matrix A and vetor b in the above way gives a set of onstraints for testing

ten-dimensional funtions.

63
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In all experiments the inertia weight w was set to 0.7, while the values of 

1

and 

2

were

set to 1.4. The hoie is due to [17℄, where it is shown that parameter settings lose to these

(w = 0:7298 and 

1

= 

1

= 1:49618) give aeptable results. The value of �

(t)

was kept

onstant at 1.

The orretness of the results are tested against those found by Genoop II, a geneti

algorithm for optimising onstrained problems [31℄. Experiments on Genoop II are done

in a twofold manner:

1. A good minimum is needed against whih omparisons an be made. In eah ase

a good minimum for eah onstrained funtion was found by evolving the geneti

algorithm with a population size of 100, for a total of 4000 generations.

2. For purposes of omparison with LPSO and CLPSO, Genoop II was also evolved with

the same number of hromosomes (partiles) and generations (iterations) as LPSO and

CLPSO.

In the following experimental results, the `good minimum' found by Genoop II (with a

population size of 100 and after 4000 generations) is indiated �rst. After the good minimum

is shown, the simulations used for omparison with LPSO and CLPSO are disussed.

Test 1

The �rst funtion tested, f

1

, is a seond order polynomial (paraboli) funtion. For purposes

of testing the free dimensions were randomly initialised in the interval [�100; 100℄. The

problem is de�ned as

Minimise f

1

(x) =

P

i

x

2

i

; x 2 R

10

Subjet to Ax = b (5.2)

where A and b are de�ned in equation (5.1).

Genoop II The best solution found by Genoop II, with a population size of 100 and

4000 generations, was f

1

(x

?

) = 32:137 with

x

?

= (0:567;�0:487; 1:736;�1:181;�3:404; 3:357; 0:9;�1:795;�0:528; 0:075)

T

Genoop II was evolved for a total of 250 generations, for population sizes of 5, 10, 15,

and 20 hromosomes. The average onvergene over 100 simulations is shown in Figure

5.1(a). The average is determined over the best �tness values at a spei� generation, over

all simulations. The maximum and minimum values over all simulations are omputed in

a similar fashion, and are shown in Figures 5.1(b) and 5.1() respetively. The dereasing



Chapter 5. Experimental results 65

10

100

1000

10000

100000

0 50 100 150 200 250

av
er

ag
e 

gl
ob

al
 b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(a) Average

100

1000

10000

100000

0 50 100 150 200 250

m
ax

im
um

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(b) Maximum

10

100

1000

10000

100000

0 50 100 150 200 250

m
in

im
um

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

() Minimum

10

100

1000

10000

100000

0 50 100 150 200 250

st
an

da
rd

 d
ev

ia
tio

n 
of

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(d) Standard Deviation

Figure 5.1: Results of 100 Genoop II simulations on the onstrained parabola f

1

de�ned in

equation (5.2).

Table 5.1: Results of 100 Genoop II simulations on the onstrained parabola f

1

de�ned in equation

(5.2), after 250 generations. (`hromosomes' is abbreviated as hrms.)

Genoop II 5 hrms. 10 hrms. 15 hrms. 20 hrms.

Average 739.438 304.884 69.154 54.846

Maximum 1:626� 10

3

1:168� 10

3

124.820 107.584

Minimum 38.322 37.612 33.837 32.544

Standard Deviation 840.279 387.746 26.749 16.939
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Figure 5.2: Results of 100 simulations of LPSO on the onstrained parabola f

1

de�ned in equation

(5.2).

maximum (worst) performanes give a lear indiation that the geneti algorithm onverges

for all simulations. The standard deviation of the best �tness values over 100 simulations

is shown in Figure 5.1(d). These results are summarised in Table 5.1, and are ompared to

the PSO under the CLPSO results.

LPSO Figure 5.2 shows the onvergene of LPSO over 250 iterations, or time steps, of

the LPSO algorithm. The results are taken from a total of 100 simulations on swarm sizes

of 5, 10, 15, and 20. The average at a spei� iteration is omputed over the 100 gbest

values at that spei� iteration number, and the averages over all iterations are illustrated

in Figure 5.2(a). The maximums and minimums are omputed in a similar way, with the

maximum being the largest of the 100 gbest values at a spei� iteration, and the minimum

being the smallest of the 100 gbest values at a spei� iteration. This is shown in Figures

5.2(b) and 5.2(). The standard deviation of all the LPSO's gbest values at a ertain time
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(Figure 5.2(d)), shows the similarity in the onvergene of the 100 swarms.

The average LPSO results for eah set of simulations are ompletely di�erent, and illus-

trates how the swarms of partiles ath up with the global best partile, and onverges to

a sub-optimal solution. Only a swarm of 20 partiles were able to onverge to the optimal

solution during eah simulation. This is illustrated by omparing the standard deviations of

eah set of simulations's gbest values. After 250 iterations (time steps), the standard devia-

tion the 20-partile LPSO's gbest is only 7:176� 10

�12

, implying that all swarms onverged

to the optimal solution. The standard deviations of swarms with 5, 10, and 15 partiles

are substantially larger, implying that the swarms onverged to di�erent solutions, with the

variane in onvergene inreasing as the swarm size dereases. This is the expeted result,

due to partiles athing up and onverging to the global best solution [53℄. The results

after 250 iterations are shown in Table 5.2.

The large average gbest of 7:034�10

3

for a swarm of 5 partiles { ompared to the averages

of 10, 15, and 20 partiles { is also expeted. The minimum number of partiles needed to

ensure that the swarm spans the entire searh spae, is inf jS

(0)

j = n�r+1 = 10�5+1 = 6

(refer to equation (4.27)). Consequently, a swarm with 5 partiles annot possibly span the

entire searh spae, whih explains the large average gbest.

CLPSO The results of CLPSO over 250 time steps are shown in Figure 5.3, with the

averages, maximums, minimums, and standard deviations omputed in the same way as was

done with the LPSO above.

The CLPSO simulations (for 5, 10, 15, and 20 partiles) all onverged on average to the

minimum, or a value lose to it. The minimum solution found was

x

?

= (0:566;�0:485; 1:738;�1:181;�3:402; 3:357; 0:9;�1:795;�0:528; 0:074)

T

with

f

1

(x

?

) = 32:137

The rate of onvergene is higher for larger swarms. Figure 5.3(a) shows how the speed

of onvergene inreases as the swarm size grows from 5 to 10, 15, and 20 partiles. The

standard deviations in Table 5.2 show that there is a very small variane in the gbest found

by eah swarm in the di�erent sets of simulations, indiating that all swarms were lose to

or at the minimum solution after 250 time steps.

Sine the initial ondition (refer to equation (4.27)) on a swarm is dropped for the

CLPSO, a swarm of 5 partiles also searhed the entire searh spae and found the minimum.

This an be seen by omparing the average and minimum of a 5-partile swarm in Table

5.2. The di�erene between LPSO and CLPSO an be learly seen when Figures 5.2(a) and
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Figure 5.3: Results of 100 simulations of CLPSO on the onstrained parabola f

1

de�ned in equation

(5.2).
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Table 5.2: Results of 100 LPSO and CLPSO simulations on the onstrained parabola f

1

de�ned

in equation (5.2), after 250 iterations.

LPSO 5 partiles 10 partiles 15 partiles 20 partiles

Average 7:034� 10

3

445.316 35.071 32.137

Maximum 4:630� 10

4

4:505� 10

3

244.077 32.137

Minimum 37.420 32.137 32.137 32.137

Standard Deviation 8:007� 10

3

803.006 21.500 7:176� 10

�12

CLPSO 5 partiles 10 partiles 15 partiles 20 partiles

Average 35.197 32.139 32.137 32.137

Maximum 252.826 32.183 32.138 32.137

Minimum 32.138 32.137 32.137 32.137

Standard Deviation 22.132 6:689� 10

�3

1:832� 10

�4

3:016� 10

�6

5.3(a) are ompared. The CLPSO onverges on average to the minimum; the LPSO shows

premature onvergene for smaller swarm sizes, sine when the global best does not improve

over a large number of iterations, the swarm athes up with it. Note that the probability

of �nding better solutions inrease with LPSO swarm size, and thus the probability of

onvergene also inreases.

In omparison to Genoop II, the CLPSO has a substantially smaller standard deviation

of gbest values at iteration 250. This is due to the fat that CLSPO has already onverged,

while Genoop II has, for the larger part of simulations, not yet onverged to the minimum.

Test 2

Funtion f

2

is a quadrati funtion similar to those ommonly found in quadrati program-

ming problems. This funtion was hosen beause it is also similar to the dual Lagrangian

optimised in SVM training. Again, the free dimensions were randomly initialised in the

interval [�100; 100℄. The problem is de�ned as

Minimise f

2

(x) =

P

i

P

j

e

�(x

i

�x

j

)

2

x

i

x

j

+

P

i

x

i

; x 2 R

10

Subjet to Ax = b (5.3)

where A and b are de�ned in equation (5.1).
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Figure 5.4: Results of 100 Genoop II simulations on the onstrained quadrati funtion f

2

de�ned

in equation (5.3).
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Table 5.3: Results of 100 Genoop II simulations on the onstrained quadrati funtion f

2

de�ned

in equation (5.3), after 1000 generations. (`hromosomes' is abbreviated as hrms.)

Genoop II 5 hrms. 10 hrms. 15 hrms. 20 hrms.

Average 104.192 49.945 42.393 39.500

Maximum 262.656 82.221 60.110 56.613

Minimum 37.939 35.393 35.772 35.410

Standard Deviation 59.873 10.996 6.861 6.785

Genoop II The best solution found by Genoop II, with a population size of 100 and

4000 generations, was f

2

(x

?

) = 35:377 with

x

?

= (0:076;�0:28; 0:446;�0:373;�3:956; 3:762; 1:119;�1:865;�0:539; 0:178)

T

Genoop II was evolved for a total of 1000 generations, for population sizes of 5, 10, 15, and

20 hromosomes. The averages, maximums, minimums and standard deviations over 100

simulations are shown in Figure 5.4, and are omputed in the same way as Test 1. Again,

these results are summarised in Table 5.3, and are ompared to the PSO under the CLPSO

results.

LPSO The results of LPSO over 1000 time steps are shown in Figure 5.5, with the averages,

maximums, minimums, and standard deviations omputed in the same way as explained in

Test 1 above.

The averages, maximums and standard deviations illustrate the same behaviour as the

results in Test 1 (optimising the onstrained f

1

with LPSO). It is worthwhile to note that the

minimum found by the LPSO, as seen in Figure 5.5() and Table 5.4, is the true minimum,

exept for the 5-partile ase. This again illustrates that the LPSO's 5 partiles do not span

the entire searh spae, whih is 6-dimensional.

CLPSO The results of CLPSO over 1000 time steps are shown in Figure 5.6, with the

averages, maximums, minimums, and standard deviations omputed in the same way as

explained in Test 1 above.

It is lear from Figure 5.6(a) that, after 1000 iterations, the CLSPO is still onverging.

After 2000 iterations (not shown in the �gures), the average gbest values were 76.677 for 5

partiles, 66.084 for 10 partiles, 56.731 for 15 partiles, and 39.537 for 20 partiles. The

averages after 2000 iterations are all smaller than the averages at 1000 generations, shown

in Table 5.4.
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Figure 5.5: Results of 100 simulations of LPSO on the onstrained quadrati funtion f

2

de�ned

in equation (5.3).
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Figure 5.6: Results of 100 simulations of CLPSO on the onstrained quadrati funtion f

2

de�ned

in equation (5.3).
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Table 5.4: Results of 100 LPSO and CLPSO simulations on the onstrained quadrati funtion f

2

de�ned in equation (5.3), after 1000 iterations.

LPSO 5 partiles 10 partiles 15 partiles 20 partiles

Average 8:463� 10

3

758.525 125.727 59.762

Maximum 7:793� 10

4

1:123� 10

4

1:719� 10

3

246.905

Minimum 240.101 35.400 35.377 35.377

Standard Deviation 1:051� 10

4

1:496� 10

3

231.095 39.831

CLPSO 5 partiles 10 partiles 15 partiles 20 partiles

Average 82.077 68.570 59.001 39.832

Maximum 197.389 196.067 196.065 71.380

Minimum 35.377 35.377 35.377 35.377

Standard Deviation 60.959 53.865 49.957 10.887

Table 5.4 illustrates the average, maximum, minimum, and standard deviation of the

gbest onvergene of 100 simulations of swarms with 5, 10, 15, and 20 partiles, after 1000

time steps. The minimum gbest was

f

2

(x

?

) = 35:377

at

x

?

= (0:076;�0:281; 0:445;�0:373;�3:956; 3:762; 1:12;�1:865;�0:538; 0:178)

T

If the average minimum values found in Figures 5.4(a) and 5.6(a) are ompared, CLPSO

shows a faster rate of onvergene than Genoop II. The standard deviation after 1000

iterations or generations is smaller for Genoop II (ompare Tables 5.3 and 5.4), indiating

greater onsisteny in onvergene between the di�erent simulations.

Test 3

The third funtion tested, f

3

, is a Rosenbrok funtion in ten dimensions. The onstrained

f

3

di�ers from both f

1

and f

2

beause it is not a onvex funtion. The free dimensions were

randomly initialised in the interval [�100; 100℄. The problem is de�ned as

Minimise f

3

(x) =

P

n�1

i=1

(100(x

i+1

� x

2

i

)

2

+ (1� x

i

)

2

); x 2 R

10

Subjet to Ax = b (5.4)



Chapter 5. Experimental results 75

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0 500 1000 1500 2000

av
er

ag
e 

gl
ob

al
 b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(a) Average

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

0 500 1000 1500 2000

m
ax

im
um

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(b) Maximum

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0 500 1000 1500 2000

m
in

im
um

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

() Minimum

0.01

1

100

10000

1e+06

1e+08

1e+10

0 500 1000 1500 2000

st
an

da
rd

 d
ev

ia
tio

n 
of

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(d) Standard Deviation

Figure 5.7: Results of 100 Genoop II simulations on the onstrained Rosenbrok funtion f

3

de�ned in equation (5.4).

where A and b are de�ned in equation (5.1).

Genoop II The best solution found by Genoop II, with a population size of 100 and

4000 generations, was f

3

(x

?

) = 21485:361 with

x

?

= (0:84;�1:516; 2:359;�0:669;�3:352; 2:991; 1:053;�1:949;�0:273;�0:028)

T

Genoop II was evolved for a total of 2000 generations, for population sizes of 5, 10, 15, and

20 hromosomes. The averages, maximums, minimums and standard deviations over 100

simulations are shown in Figure 5.7, and are omputed in the same way as Test 1. Again,

these results are summarised in Table 5.5, and are ompared to the PSO under the CLPSO

results.

LPSO The results of LPSO over 2000 time steps are shown in Figure 5.8, with the averages,

maximums, minimums, and standard deviations omputed in the same way as explained in
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Table 5.5: Results of 100 Genoop II simulations on the onstrained Rosenbrok funtion f

3

de�ned

in equation (5.4), after 2000 generations. (`hromosomes' is abbreviated as hrms.)

Genoop II 5 hrms. 10 hrms. 15 hrms. 20 hrms.

Average 58249.328 21630.020 21546.332 21485.714

Maximum 2:005� 10

5

22030.988 21836.797 21486.646

Minimum 22334.971 21490.840 21487.098 21485.363

Standard Deviation 62513.767 154.443 85.311 0.400
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Figure 5.8: Results of 100 simulations of LPSO on the onstrained Rosenbrok funtion f

3

de�ned

in equation (5.4).
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Figure 5.9: Results of 100 simulations of CLPSO on the onstrained Rosenbrok funtion f

3

de�ned

in equation (5.4).

Test 1 above.

The LPSO swarms of 10, 15, and 20 partiles managed to �nd the minimum value of

the funtion, or ame lose to it at iteration number 2000. After 2000 iterations, the LPSO

swarms were still �nding better solutions, as is illustrated in Figure 5.8(a).

CLPSO The results of CLPSO over 2000 time steps are shown in Figure 5.9, with the

averages, maximums, minimums, and standard deviations omputed in the same way as

explained in Test 1 above.

The 20-partile CLSPO onsistently onverged to the minimum, as an be seen from

Figure 5.9 and Table 5.6. Figure 5.9(a) also shows that the average �tness dereases dra-

matially to the minimum after the swarm has onverged below a ertain �tness level. It

also shows that the swarms of 5 and 10 partiles did not stagnate, but are still onverging

at the 2000

th

iteration. The sudden and omplete onvergene when the swarm dereases
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Table 5.6: Results of 100 LPSO and CLPSO simulations on the onstrained Rosenbrok funtion

f

3

de�ned in equation (5.4), after 2000 iterations.

LPSO 5 partiles 10 partiles 15 partiles 20 partiles

Average 1:375� 10

9

4:444� 10

6

3:710� 10

5

1:260� 10

5

Maximum 3:556� 10

10

2:177� 10

8

2:054� 10

7

1:045� 10

7

Minimum 1:955� 10

5

21554.158 21483.373 21485.925

Standard Deviation 4:485� 10

9

2:278� 10

7

2:407� 10

6

1:043� 10

6

CLPSO 5 partiles 10 partiles 15 partiles 20 partiles

Average 6:522� 10

8

7:446� 10

5

21485.305 21485.305

Maximum 2:233� 10

10

7:112� 10

7

21485.305 21485.305

Minimum 21485.306 21485.305 21485.305 21485.305

Standard Deviation 2:395� 10

9

7:120� 10

6

9:834� 10

�8

9:401� 10

�8

below a spei� �tness value is on�rmed by the standard deviations of Figure 5.9(d), where

the variane in gbest for swarms of 20 partiles beomes lose to zero.

The raise in variane after a good minimum was found (see Figure 5.9(d)), an be

attributed to the random searh performed by CLPSO. As minutely better minimums are

found, the gbest values will start to di�er slightly, ausing a rise in standard deviation in

the order of 10

�7

.

The CLPSO found

x

?

= (0:84;�1:514; 2:359;�0:67;�3:352; 2:991; 1:053;�1:949;�0:274;�0:028)

T

after 2000 time steps. The value of f

3

at x

?

was

f

3

(x

?

) = 21485:305

The average best �tness of Genoop II is substantially better than that of both LPSO

and CLPSO for small population or swarm sizes (see Figures 5.7(a) and 5.9(a)). This an

be asribed to a greater amount of mutation on the hromosomes (partiles), and therefore

a greater diversity in the solutions tested. The better onvergene for small population or

swarm sizes is supported by the di�erene in the standard deviations over the simulations,

shown in Tables 5.5 and 5.6. For larger populations or greater swarm sizes, Genoop II and

CLPSO have very similar performane.
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5.1.2 LPSO and CLPSO Convergene harateristis

Some remarks, all on�rming the theoretial properties needed for LPSO and CLPSO to

suessfully onverge to a minimum, an be made from the above experimental results.

1. A swarm of 5 partiles is smaller than the minimum swarm size, as derived in equation

(4.27), of

inf jS

(0)

j = n� r + 1 = 10� 5 + 1 = 6

Thus LPSO will not over all searh dimensions, and results an be expeted to be

suboptimal. Indeed, the average gbest (minimum) of the onstrained f

1

in equation

(5.2) was at 7:034�10

3

after 250 time steps, while CLPSO managed to �nd an average

gbest of 35.197 with �ve partiles. The omparison is shown in Table 5.2. With �ve

partiles and t = 1000, LPSO's average best for f

2

de�ned in (5.3) was 8:463 � 10

3

,

while CLPSO's best f

2

was 82.007 (see Table 5.4).

2. As an be learly seen in Figures 5.2, 5.5, and 5.8, the swarm athes up with the

global best partile before reahing a minimum to ause premature onvergene. This

problem is overome by CLPSO, as the empirial results in Figures 5.3, 5.6, and 5.9

illustrate.

5.2 Support Vetor Mahine Training

After showing the onvergene and properties of the newly developed LPSO and CLPSO,

the CLPSO algorithm will be implemented in training SVMs. This setion illustrates the

suess and simpliity of the method, and also disusses some bottleneks that have to be

overome to make the algorithm pratially ompetitive.

5.2.1 Implementing the SVM training algorithm

Two issues remain to be resolved in implementing the SVM training algorithm desribed

in Setion 2.4. Both issues onsist of �nding feasible vetors: The �rst is to �nd an initial

feasible solution � for the algorithm to start with. The seond is, given a working set B, to

initialise the swarm of partiles that is going to optimise B, suh that the swarm is feasible.

Finding an initial feasible solution �

To resolve the �rst issue, a feasible solution that satis�es the linear onstraint �

T

y = 0,

with onstraints 0 � �

i

� C also met, is needed at the start of the deomposition algorithm.

The initial solution is onstruted in the following way:



Chapter 5. Experimental results 80

Let  be some real number between 0 and C, and  some positive integer less than both

the number of positive examples (y

i

= +1) and negative examples (y

i

= �1) in the training

set. Randomly pik a total of  positive examples, and  negative examples, and initialise

their orresponding �

i

to . By setting all other �

i

to zero, the initial solution will be

feasible.

The value 2 gives the total number of initial support vetors, and sine these initial

support vetors are a randomly hosen guess, it is suggested that the value of  be kept

small.

1

Initialising a feasible swarm of partiles

To resolve the seond issue, onsider the onstrained optimisation problem solved by the

CLPSO, repeated here for onveniene:

max

�

B

W (�

B

) = �

T

B

1�

1

2

�

T

B

Q

BB

�

B

��

T

B

Q

BN

�

N

(5.5)

subjet to

�

T

B

y

B

+�

T

N

y

N

= 0

�

B

� 0

C1��

B

� 0 (5.6)

In optimising the q-dimensional subproblem, CLPSO requires that all partiles be ini-

tialised suh that �

T

B

y

B

+�

T

N

y

N

= 0 is met. This is done as follows:

1. Set eah partile in the swarm to the q-dimensional vetor �

B

.

2. Add a random q-dimensional vetor Æ satisfying y

T

B

Æ = 0 to eah partile, under the

ondition that the partile will still lie in the hyperube [0; C℄

q

.

Initialising the swarm in this way ensures that the initial swarm lies in the set of feasible

solutions P = fp j Ap = ��

T

N

y

N

g, allowing the ight of the swarm to be de�ned by feasible

diretions.

5.2.2 Pratial onerns and improvements

A number of pratial issues need to be addressed to implement the algorithm numerially.

One issue is on deiding when a solution is `optimal enough,' and the Karush-Kuhn-Tuker

1

In reality, any non-zero feasible vetor an be used as an initial solution; hoosing  positive and negative

examples only gives a simple way of onstruting suh a vetor. Larger values of  imply a larger set of

initial support vetors, and the training algorithm simply spends extra time in removing the non-support

vetors from this set.
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onditions are adapted to be orret within an error threshold from the true onditions.

The SVM training algorithm presented in Chapter 2 assumes in�nite preision arithmeti.

Sine mahine numbers allow only �nite auray, the problem of error aumulation and

round-o� errors is addressed. A strategy is also given to optimise the dot produt between

two sparse vetors.

An approximation to the optimality onditions

The Karush-Kuhn-Tuker onditions (2.33) that de�ne the stopping riteria for the training

algorithm, speify that an �

(t)

i

between zero and C must imply that y

i

(s

(t)

i

+ b

(t)

) should

be exatly equal to one. In pratie this is not always possible, and a small positive error

� on the KKT onditions will be tolerated to allow the algorithm to terminate. The value

of � lose to 0.01 or 0.02 will typially give a very aurate optimisation [24℄. The pratial

KKT onditions are therefore

�

(t)

i

= 0 ) y

i

(s

(t)

i

+ b

(t)

) > 1� �

0 < �

(t)

i

< C ) 1� � < y

i

(s

(t)

i

+ b

(t)

) < 1 + �

�

(t)

i

= C ) y

i

(s

(t)

i

+ b

(t)

) < 1 + � (5.7)

Error aumulation and round-o� errors

The nature of the onstrained LPSO algorithm allows for division and multipliation by

very large and very small real numbers. This an give rise to numerial preision problems.

One of the onstraints on the SVM optimisation problem is that the sum of all y

i

�

i

must

be equal to zero. It may be true that, due to rounding errors, this sum an shift from zero.

To solve this problem, a hek is done to determine

error =

l

X

i=1

y

i

�

i

To reset the sum to zero, one of the zero Lagrange multipliers �

i

is set to the absolute

value of error. If error is positive, an �

i

orresponding to a negative example y

i

is randomly

hosen. If the opposite is true and error is negative, an �

i

orresponding to a positive

example y

i

is randomly hosen. As optimisation ontinues, this adjusted Lagrange multiplier

will be piked for reoptimisation, with the equality onstraint holding.

The update is done when error rises above a ertain threshold; in the experiments

presented here, error was in the order of 10

�6

. In pratie this update rarely happens, but

an our.
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Optimising the dot produt between two sparse vetors

The time taken to ompute the dot produt between two sparse vetors an be greatly

optimised if all multipliations with zero are simply ignored. The dot produt between two

n-dimensional vetors x

i

and x

j

is de�ned as

x

i

� x

j

= x

i1

x

j1

+ x

i2

x

j2

+ : : :+ x

in

x

jn

Sine a sparse vetor ontains many zero elements, many multipliations will be with zero

and therefore unneessary. The following algorithm is adapted from [41℄, and sans through

both vetors to ompute the dot produt:

/* Array x1, with length n1, is an array that stores only

xi's nonzero omponents. The original positions of these

omponents in vetor xi is stored in array id1. Arrays

x2 and id2 with size n2 is used to store sparse vetor xj.

*/

p1 = 0, p2 = 0, dot = 0

while (p1 < n1 && p2 < n2)

{

a1 = id1[p1℄, a2 = id2[p2℄

if (a1 == a2)

{

dot += x1[p1℄*x2[p2℄

p1++, p2++

}

else if (a1 > a2)

p2++

else

p1++

}

5.2.3 Experimental results

The SVM training algorithm presented in Setion 2.4 was tested on the MNIST dataset [33℄.

The inuene of di�erent working set sizes, as well as the salability of the approah, is ex-

amined. Finally, the training results are ompared to two other algorithms, a deomposition

method and the method of sequential minimal optimisation.
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Figure 5.10: A few examples from the MNIST dataset.

The MNIST dataset

The MNIST database is an optial harater dataset, and onsists of a training set of 60,000

handwritten digits [33℄. This database is a subset of a larger set available from the National

Institute of Standards Bureau (NIST). As shown in Figure 5.10, the examples are 28 by 28

pixel grey-level images. This is equivalent to eah example being a 784-dimensional vetor.

Eah pixel value orresponds to an integer in the range 0 (white) to 255 (blak). It is a

ommon database for benhmarking learning tehniques and pattern reognition methods.

Training the SVM

For training a SVM on the MNIST dataset, the harater `8' was hosen to represent the

set of positive examples, while the remaining digits de�ned the negative examples. Training

was done with a polynomial kernel of degree �ve:

k(x

i

;x

j

) = (x

i

� x

j

+ 1)

5

(5.8)

Due to the size of the dot produt between two images, raised to the �fth power, the pixel
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Table 5.7: Inuene of di�erent working set sizes on the �rst 20,000 elements of the MNIST dataset

Working Working Time SVs

set size set seletions

4 8,782 02:17:43 1,631

6 8,213 03:11:40 1,637

8 7,502 03:51:24 1,639

10 10,023 06:27:06 1,648

12 9,667 07:26:23 1,652

values were saled to the range [0; 0:1℄. This gives Lagrange multipliers �

i

that are easier

for the CLPSO to handle. (The kernel funtion of two unsaled blak images would be

(784 � 255

2

+ 1)

5

, while the kernel funtion of the saled versions gives a more pratial

(784� 0:01 + 1)

5

� 835).

For an optimal solution to be found in the following PSO experiments, the KKT ondi-

tions in equation (5.7) needed to be satis�ed within an error threshold of � = 0:02. Opti-

misation of the working set terminated when the KKT onditions on the working set were

met with an error of 0.001, or when the swarm has optimised for a hundred iterations.

The following parameters de�ned the experimental CLPSO: By letting  = 10, a total of

20 initial support vetors were hosen to start the algorithm. The swarm size s used in eah

experiment was 10, while the inertia weight w was set to 0.7. The aeleration oeÆients



1

and 

2

were both set to 1.4 [53℄. Sine the objetive funtion is onstrainted by a set

of box onstraints, the veloity vetors were not lamped. For eah experiment the upper

bound C was kept at 100.0 (a ommonly used upper bound in SVM training).

The PSO training algorithm was written in Java, and does not make use of ahing and

shrinking methods to optimize its speed. The sparsity of input data is used to speed up the

evaluation of kernel funtions. All experiments were preformed on a 1.00 GHz AMD Duron

proessor.

Experimental results show suessful and aurate training on the MNIST database. The

inuene of di�erent working set sizes on the CLPSO training algorithm, its salability, as

well as its relation to other SVM training algorithms, were examined.



Chapter 5. Experimental results 85

Table 5.8: Salability: training on the MNIST dataset

MNIST PSO Working PSO PSO SMO SMO SVM

light

SVM

light

elements set seletions time SVs time SVs time SVs

10,000 3,898 00:29:49 1,022 00:01:29 1,032 00:02:02 1,034

20,000 8,782 02:17:43 1,631 00:06:14 1,647 00:10:43 1,641

30,000 12,428 04:50:11 1,988 00:13:22 2,012 00:23:04 2,001

40,000 15,725 08:14:26 2,353 00:22:46 2,355 00:41:09 2,367

50,000 22,727 15:05:09 2,728 01:46:38 2,740 01:31:48 2,726

60,000 25,914 20:54:15 3,025 04:38:11 3,043 08:01:05 3,026

Inuene of working set sizes

Experiments on di�erent working set sizes were done on the �rst 20,000 elements of the

MNIST database. Results are shown in Table 5.7, and indiate that a working set of size

q = 4 gives the fastest onvergene time and fewest support vetors. A working set of size 2

an be solved analytially, as is true in the ase of Sequential Minimal Optimisation (SMO).

The results in Table 5.7 are not neessarily an indiation of the speed of the PSO on the

working set, as seletion of the working set also burdens the speed of the algorithm (the

q

2

greatest and least values of y

i

rW (�)

i

need to be seleted from a list of thousands).

Salability of the PSO approah

Salability of the PSO algorithm was tested by training on the �rst 10,000, 20,000, et.

examples from the MNIST dataset, as shown in Table 5.8. In eah ase a working set of

size 4 was used. The experimental results indiate that the PSO training algorithm shows

quadrati salability, and sales as � l

2:1

(with l being the training set size).

Comparison to other algorithms

In Table 5.8, the PSO approah is ompared to SMO and a deomposition method, SVM

light

[24℄. WinSVM was developed by C. Longbin [29℄ from the SVM

light

soure ode, and was

used as an implementation of SMO. Unlike these methods, the urrent PSO algorithm does

not make use of ahing and shrinking to optimise its speed.

Results similar to Table 5.7 indiate that SVM

light

gives the fastest rate of onvergene

with a working set size q = 8, whih is used in Table 5.8's omparison.
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Experimental results show SMO saling as � l

2:8

, and SVM

light

saling as � l

3:0

. Both

these algorithms are substantially faster than training a SVM with PSO on the MNIST

dataset, but the PSO approah shows better saling abilities (� l

2:1

). Due to the fat that

the PSO training algorithm starts with a very small set of possible support vetors, with all

other �

i

set to zero, the PSO method onsistently �nds a few support vetors less than the

other approahes.

The main drawbak from the urrent PSO approah is its slow performane times, but

from this initial study many optimisations an be implemented on both deomposition and

PSO methods.

5.3 Conluding

The suess of the CLPSO in optimising linearly onstrained funtions was experimentally

illustrated in this hapter. The neessity to hange the LPSO to a loally onverging algo-

rithm was also shown.

It was shown that a PSO an be used to train a SVM. Some properties of LPSO make it

partiularly useful to solve the SVM onstrained QP problem. The PSO algorithm is simple

to implement, and does not require any bakground of numerial methods. Aurate and

salable training results were shown on the MNIST dataset, with the PSO algorithm �nding

fewer support vetors and better salability than other approahes. Although the algorithm

is simple, its speed poses a pratial bottlenek, whih an be improved from this initial

study.



Chapter 6

Conlusion and Future Work

This thesis aimed to answer the question - \an a Partile Swarm Optimiser be used to train

a Support Vetor Mahine, and to what extent will it be suessful?"

The researh onduted for this thesis stood on two pillars. The �rst pillar was Support

Vetor Mahines (SVMs) and algorithms to train them, and a deomposition-training al-

gorithm was developed based on similar algorithms. The seond pillar was Partile Swarm

Optimisation (PSO), whih is implemented as the optimisation method in the SVM training

algorithm.

Conluding on the seond pillar, it was shown that partile swarms an easily be used

to optimise a funtion with equality onstraints of the form Ax = b. A variation of PSO,

the \Linear Partile Swarm Optimiser" (LPSO), was introdued to optimise these types of

problems, and onditions for the LPSO to be able to �nd any point in the feasible searh

spae, was developed. There is a positive probability that LPSO an onverge prematurely.

The problem of LPSO's premature onvergene was overome by reating a \Converging

LPSO" (CLSPO). A proof was given to show that CLPSO will at least onverge to a loal

minimum. An important property of the two new PSO algorithms is that, if the whole

swarm is initialised to lie within the hyperplane Ax = b, then the swarm an optimise the

objetive funtion without having to worry about the set of onstraints. This property was

formally proved, and shows that LPSO and CLPSO are ideally suited to solving equality-

onstrained optimisation problems. The suess of CLPSO (and premature onvergene

of LPSO) in optimising linearly onstrained funtions was experimentally illustrated. The

experimental results were ompared to results ahieved with Genoop II, a geneti algorithm

for onstrained optimisation. Experimental results show a general similarity in onvergene

between Genoop II and CLPSO.

To onlude on the �rst pillar, it was shown that a PSO ould be used to train a

SVM. Some properties of CLPSO make it partiularly useful to solve the SVM onstrained

87
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quadrati programming problem, and it was used in the deomposition algorithm to solve

the SVM's onstrained subproblems. The CLPSO algorithm is simple to implement, and

does not require any bakground of numerial methods. Aurate and salable training

results were shown on the MNIST dataset.

Although the CLPSO algorithm is simple, its speed in SVM training poses a pratial

bottlenek. Future researh may inlude improvement to the speed of the algorithm by

improving the CLPSO, and the ashing of kernel evaluations an be implemented.

Further researh an also explore the possibility of parallel training of SVMs. Instead of

seleting a single working set for optimisation, a number of working sets an be seleted and

optimised in parallel. If the working sets are distint, the subproblems will be independent

of eah other, making this method a strong andidate for further investigation.

The standard methods of improving the original PSO an also be implemented on both

LPSO and CLPSO. There is also sope for a proper analysis of CLPSO in the ontext of

random searh algorithms.

Finally, many interesting onstrained problems are waiting to be solved!
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