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Deelswermoptimeerder" word ontwikkel om sulke beperkte funksies te optimeer. As die
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Abstra
t

Parti
le swarms 
an easily be used to optimise a fun
tion with a set of linear equality


onstraints, and a \Linear Parti
le Swarm Optimiser" and \Converging Linear Parti
le

Swarm Optimiser" is developed to optimise su
h 
onstrained fun
tions. It is shown that if

the entire swarm of parti
les is initialised to 
onsist of only feasible solutions, then the swarm


an optimise the 
onstrained obje
tive fun
tion without ever again 
onsidering the set of


onstraints. Training a Support Ve
tor Ma
hine requires solving a 
onstrained quadrati


programming problem, and the Converging Linear Parti
le Swarm Optimiser ideally �ts the

needs of an optimisation method for Support Ve
tor Ma
hine training. Parti
le swarms

are intuitive and easy to implement, and is presented as an alternative to 
urrent numeri


Support Ve
tor Ma
hine training methods.
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Prefa
e

The question that originally spurred the resear
h in this thesis was - \
an a Parti
le Swarm

Optimiser be used to train a Support Ve
tor Ma
hine, and to what extent will it be su
-


essful?"

Training a Support Ve
tor Ma
hine (SVM) involves solving a quadrati
 programming

problem, with a single linear 
onstraint, and a set of non-negativity 
onstraints. At �rst

this problem seemed trivial - the obje
tive fun
tion that needs to be minimised is 
onvex,

and the Parti
le Swarm Optimiser (PSO) will not be trapped in any lo
al minima.

The diÆ
ulty in the problem arose with developing a method to handle the linear 
on-

straint. This has led to the development of the Linear (and Converging Linear) PSO algo-

rithms (LPSO and CLPSO), whi
h both have unique properties needed not only for handling

the single linear 
onstraint, but any set of (feasible) linear 
onstraints. The non-negativity


onstraints have led to the extension of both new Parti
le Swarm algorithms to in
lude


ases when 
onstraints appear as boxed 
onstraints. With the addition of sla
k variables to

an optimisation problem with linear 
onstraints, it be
omes possible to solve any of these

problems.

The main 
ontributions made by this thesis are therefore:

1. An algorithm for SVM training, whi
h is based on analysis of a method for de
ompos-

ing the SVM quadrati
 programming problem.

2. The development of LPSO for general optimisation problems, and a proof of a 
ondition

on the initial swarm guaranteeing that any point in the sear
h spa
e 
an be rea
hed.

3. A proof that LPSO is ideally suited for linearly 
onstrained optimisation, with a pre-


ondition needed for LPSO to always satisfy linear equality 
onstraints.

4. The extension of LPSO to CLPSO to pre
lude premature 
onvergen
e, and a proof

that CLPSO will at least 
onverge to a lo
al minimum.

5. The addition of a method to LPSO and CLPSO needed for inequality 
onstraint han-

dling, and the implementation of CLPSO with inequality 
onstraints as an optimiser

in SVM training.
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In a sense this thesis has delivered more than its original aim. The new PSO algorithms

will probably be of greater importan
e to further milestones in the Swarm Intelligen
e 
om-

munity, than its appli
ation in SVM training.

Chapter 1 puts SVMs under the magnifying glass, and sets the main optimisation prob-

lem (a quadrati
 programming problem) that forms the ba
kbone of this thesis. SVM train-

ing has unique problems of its own, primarily be
ause the training problem shows quadrati


growth as the training set size in
reases. Methods for SVM training are dis
ussed in Chapter

2, and a training algorithm, based on standard methods of de
omposing the main optimisa-

tion problem into subproblems, are used to 
onstru
t a 
orre
t training algorithm. Chapter

3 introdu
es PSO as an optimisation algorithm, and dis
usses some of the re
ent advan
e-

ments to the PSO method itself. The PSO is extended to handle 
onstrained problems in

Chapter 4, and LPSO and CLPSO are developed. This extension in
ludes a rigorous analy-

sis of the newly developed algorithms. The su

esses and failures of LPSO and CLPSO are

empiri
ally shown in Chapter 5. It is also shown how the CLPSO 
an be used to train SVMs

from a very large 
hara
ter re
ognition dataset. Finally, Chapter 6 provides an overview,

and gives some thoughts for further resear
h.

Many people have 
ontributed to the su

essful 
ompletion of this thesis. Foremost, I

am greatly indebted to professor Andries Engelbre
ht for introdu
ing me to the world of

arti�
ial intelligen
e, and for his patient guidan
e throughout my resear
h.

Ulri
h Paquet

Pretoria, South Afri
a

June 2003

Commit thy works unto the LORD, and thy thoughts shall be established. Proverbs 16:3
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Chapter 1

Support Ve
tor Ma
hines

This 
hapter dis
usses the development and basi
 theoreti
 building blo
ks of Support Ve
tor

Ma
hines. An overview of both linear and non-linear Support Ve
tor Ma
hines is given

from the viewpoint of pattern re
ognition. Kernel methods are introdu
ed, and the 
hapter


on
ludes with the Support Ve
tor Ma
hine training problem that will play a key role in the


hapters to follow.

1.1 Introdu
tion to Support Ve
tor Ma
hines

Support Ve
tor Ma
hines (SVMs) are a young and important addition to the ma
hine learn-

ing toolbox. Having been formally introdu
ed at the 1992 Workshop on Computational

Learning Theory [6℄, SVMs have proved their worth. In the following de
ade there has

been a remarkable growth in both the theory and pra
ti
e of these learning ma
hines. The

original treatments of Support Ve
tor Ma
hines (SVMs) are due to [6, 13, 21, 56, 58℄.

Traditionally, a SVM is a learning ma
hine for two-
lass 
lassi�
ation problems, and

learns from a set of examples. The algorithm aims to do a separation between the two


lasses by 
reating a linear de
ision surfa
e between them. This surfa
e is, however, not


reated in input spa
e, but rather in a very high-dimensional feature spa
e. Be
ause the

feature spa
e is non-linearly related to the input spa
e, the resulting model is non-linear.

Spe
ial properties of the de
ision surfa
e ensures high generalisation abilities of SVMs.

Although the Support Ve
tor (SV) algorithm appears to be a linear algorithm in a high-

dimensional spa
e, no 
omputations are done in that high-dimensional spa
e. All 
omputa-

tions are performed dire
tly in input spa
e by making use of kernel fun
tions. Due to the

use of Kernel Methods (KMs), a seemingly 
omplex algorithm for non-linear pattern re
og-

nition or regression 
an be implemented and analysed as a simple linear algorithm. KMs are

very modular. Any kernel fun
tion 
an be used with any kernel-based learning algorithm,

1
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and any kernel-based learning algorithm 
an work with any kernel fun
tion. By 
ombining

simple kernels to 
omplex ones, the kernel fun
tions themselves 
an also be derived in a

modular way.

The SV algorithm makes use of \support ve
tors" to de�ne the de
ision surfa
e. Support

ve
tors are a subset of the training patterns, or training ve
tors. These patterns 
an be


alled the most informative, and it is this subset of informative patterns that de�ne the

ar
hite
ture of a SVM. If all non-support ve
tor training patterns (the \uninformative"

patterns) are removed, and the SVM retrained, the solution will be exa
tly the same.

SVMs are popular due to two main reasons. Firstly, an important 
hara
teristi
 of SVMs

is its mathemati
al tra
tability and geometri
 interpretation. The SV algorithm is based on

very theoreti
al and intuitive ideas. Se
ondly, SVMs have shown to be a

urate in pra
ti
al

appli
ations, with su

esses in �elds as diverse as text 
ategorisation, bioinformati
s and

ma
hine vision.

The algorithm holds learning theory in one hand, and pra
ti
e in the other. Statisti
al

learning theory 
an be used to identify fa
tors needed for 
ertain algorithms to learn su
-


essfully. Complex models and algorithms { su
h as neural networks { are often needed for

pra
ti
al real-world appli
ations. These models are, however, hard to analyse theoreti
ally.

SVMs 
onstru
t models that are 
omplex enough, with the advantage that the models are

relatively simple to analyse mathemati
ally. These models in
lude a large 
lass of neural

networks, radial basis fun
tion (RBF) networks, and spe
ial 
ases of polynomial 
lassi�ers.

SVMs have be
ome an in
reasingly popular alternative to neural networks. In 
ompar-

ison to neural networks, SVMs have only a small number of tuneable parameters. The SV

algorithm also de�nes the ar
hite
ture of the learning ma
hine. The SVM training pro
ess

is 
hara
terised by solving a 
onvex quadrati
 programming problem. The solutions to the

training problem are global, and usually unique [9℄. A great bene�t of SVM training is the

absen
e of lo
al minima (or maxima), and the learning parameters 
onverge monotoni
ally

toward the solution.

Appli
ations and theory of SVMs have been extended far beyond basi
 
lassi�
ation

tasks to handle pattern re
ognition, regression, operator inversion, density estimation, and

novelty dete
tion. For pattern re
ognition, SVMs have been su

essfully applied in the

areas of isolated handwritten digit re
ognition [8, 13, 44, 45℄, speaker identi�
ation [42℄,

text 
ategorisation [23℄, fa
e dete
tion in images [39℄ and obje
t re
ognition [4℄. In the 
ase

of regression estimation problems, SVMs have been 
ompared to ben
hmark time series

predi
tion tests [34, 36℄. SVMs have also been used for density estimation [59℄ and ANOVA

de
omposition [51℄.

Although the SV algorithm is �rmly rooted in statisti
al learning theory, learning theory

is not in
luded in this work. An ex
ellent explanation 
an be found in [56, 57℄. This 
hapter
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fo
uses on the 
reation of SVMs: The basi
 idea behind pattern re
ognition is explained,

whi
h is used in 
onstru
ting an optimal hyperplane and linear SVMs for linearly separable

data. The linear SVM is then adapted to handle nonseparable 
lassi�
ation problems.

Finally, SVMs are extended to non-linear 
lassi�
ation models by the use of kernel fun
tions.

1.2 Pattern re
ognition

By observing their environment, ma
hines 
an learn to distinguish interesting patterns.

These patterns 
an be any entity that 
an be given a name, for example a handwritten


hara
ter or word, a �ngerprint, a fa
e, or a spee
h signal. After learning, the ma
hine

should be able to make intelligent de
isions about the 
ategories of similar patterns { this

pro
ess is 
alled pattern re
ognition.

Pattern re
ognition algorithms 
an be divided into two prin
ipal groups. Identifying a

pattern as a member of a prede�ned 
lass is 
alled supervised learning and 
lassi�
ation.

If the algorithm learns 
lasses of patterns based on a measure of similarity, the pro
ess is


alled unsupervised learning, or 
lustering. Unsupervised 
lassi�
ation assigns a pattern to

one of these determined 
lasses. A SVM is an example of supervised 
lassi�
ation, learning

from example patterns with 
lass labels.

For a given pattern re
ognition problem, the obje
tive is to estimate a fun
tion f :

R

N

! f�1g using a �nite set of training data. The training data set 
onsists of a total of l

N -dimensional patterns x

i

and their respe
tive 
lass labels y

i

, i.e.

fx

1

; y

1

g; : : : ; fx

l

; y

l

g 2 R

N

� f�1g (1.1)

If a new pattern fx; yg is generated from the same underlying probability density fun
tion

P (x; y) as the training data, then f should 
orre
tly 
lassify this example { that is, f(x) = y.

1.3 Linear Support Ve
tor Ma
hines

When training data is linearly separable, a separating hyperplane (a hyperplane that sepa-

rates the positive from the negative examples) of the form

w � x+ b = 0 (1.2)


an be �tted to 
orre
tly 
lassify training patterns. Here the ve
tor w is normal to the

hyperplane, and de�nes its orientation. This hyperplane is shown in Figure 1.1. From

equation (1.2), a de
ision fun
tion

f(x) = sign(w � x+ b): (1.3)
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{ | + = -1 }x w x b.

{ | + = 0 }x w x b.

{ | + = +1 }x w x b.

y = +1i

y = -1i

x1

x2

Figure 1.1: An example of a 
lassi�
ation problem in two dimensions, with the support ve
tors

en
ir
led.


an be derived, with f 
lassifying both positive (y

i

= +1) and negative (y

i

= �1) patterns.

Let d

+

(d

�

) be the shortest distan
e from the separating hyperplane to the 
losest

positive (negative) example, then the margin of the hyperplane is de�ned as the sum d

+

+d

�

.

An optimal hyperplane for a linearly seperable set of training data is here de�ned as the

linear de
ision fun
tion with maximal margin between the ve
tors of the two 
lasses, as is

shown in Figures 1.2(a) and 1.2(b). The support ve
tor algorithm will 
onstru
t this optimal

separating hyperplane.

It was shown in [55℄ that the optimal hyperplane will have good generalisation abilities,

and only a relatively small amount of training data is needed to 
onstru
t this plane. The set

of margin-determining training ve
tors are 
alled the support ve
tors. It was also shown that

if the training ve
tors are separated without errors by an optimal hyperplane, the expe
ted

value of the probability of 
ommitting an error on a test example is bounded by the ratio

between the expe
ted number of support ve
tors and the number of training ve
tors:

E[P (error)℄ �

E[number of support ve
tors℄

number of training ve
tors

(1.4)

The bound given in equation (1.4) does not expli
itly 
ontain the dimensionality of the spa
e

of separation. If the optimal hyperplane 
an thus be 
onstru
ted from a small number of

support ve
tors relative to the training set size, the generalisation ability will be high, even

in an in�nite-dimensional spa
e.

Assume all training data satisfy

w � x

i

+ b � +1 for y

i

= +1

w � x

i

+ b � �1 for y

i

= �1 (1.5)
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d+

d-

(a) Classi�
ation with a

large margin

d-
d+

(b) Classi�
ation

with a small margin

Figure 1.2: Constru
ting an optimal hyperplane

as shown in Figure 1.1. This 
an be 
ombined into a single set of equalities:

y

i

(w � x

i

+ b)� 1 � 0 i = 1; : : : ; l (1.6)

where l is the training set size.

To �nd the optimal separating hyperplane, it is ne
essary to maximise the margin d

+

+d

�

.

Suppose x

1

and x

2

with y

1

= +1 and y

2

= �1 are positive and negative points 
losest to

the hyperplane. For maximal separation, the hyperplane should be as far away as possible

from ea
h of them. By letting jj � jj be the l

2

norm of a ve
tor, get

w � x

1

+ b = +1

w � x

2

+ b = �1

) w � (x

1

� x

2

) = +2

)

w

jjwjj

� (x

1

� x

2

) =

2

jjwjj

Maximising the margin is equivalent to maximising

2

jjwjj

, whi
h is in turn the same as solving

min

w;b

1

2

jjwjj

2

(1.7)

subje
t to the 
onstraints in (1.6). Constru
ting the optimal hyperplane is therefore a 
onvex

quadrati
 problem.

A standard optimisation te
hnique, Lagrange multipliers [19℄, is used in 
onstru
ting

this optimal hyperplane. There are two main reasons for doing this. The �rst is that the


onstraints in (1.6) will be repla
ed by 
onstraints on the Lagrange multipliers themselves,

whi
h will be mu
h easier to handle. The se
ond reason is that, in the Lagrangian refor-

mulation, the training data will only appear as dot produ
ts between ve
tors. This is the
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ru
ial property that allows generalisation to the non-linear 
ase. The Lagrange multipliers,

�

i

� 0, are introdu
ed for ea
h of the 
onstraints in (1.6) to get the following Lagrangian:

L(w; b;�) =

1

2

jjwjj

2

�

l

X

i=1

�

i

(y

i

(w � x

i

+ b)� 1) (1.8)

The obje
tive is to minimise (1.8) with respe
t to w and b, under the requirement that

the derivatives of the Lagrangian with respe
t to all the �

i

vanish. This must be subje
t to

the 
onstraint that the Lagrange multipliers �

i

remain non-negative.

Sin
e all the 
onstraints are linear and thus 
onvex, their interse
tion is also 
onvex. Be-


ause the obje
tive fun
tion is also 
onvex, the problem is a 
onvex quadrati
 programming

problem. Thus it is possible to equivalently solve the dual optimisation problem of maximis-

ing (1.8), su
h that the gradient of L with respe
t to w and b vanishes, and requiring that

�

i

� 0. That is,

�

�b

L(w; b;�) = 0;

�

�w

L(w; b;�) = 0 (1.9)

and thus

l

X

i=1

y

i

�

i

= 0; w =

l

X

i=1

�

i

y

i

x

i

(1.10)

By substituting (1.10) into (1.8), the dual form of the optimisation problem is derived.

Determine

max

�

W (�) =

l

X

i=1

�

i

�

1

2

l

X

i=1

l

X

j=1

�

i

�

j

y

i

y

j

x

i

� x

j

(1.11)

subje
t to

�

i

� 0; i = 1; : : : ; l and

l

X

i=1

�

i

y

i

= 0 (1.12)

Thus, by solving the dual optimisation problem, the 
oeÆ
ients �

i

are obtained. These


oeÆ
ients are then used to 
al
ulate w from equation (1.10). The ve
tor w will be a

solution to problem (1.7). The de
ision fun
tion from equation (1.3) 
an be rewritten as

f(x) = sign

�

l

X

i=1

y

i

�

i

x � x

i

+ b

�

(1.13)

The de
ision surfa
e of (1.13) is determined by the l Lagrange multipliers �

i

. These

multipliers are either zero or positive. The subset of zero multipliers will have no e�e
t

on the de
ision fun
tion, and 
an be omitted. It is the subset of positive multipliers that
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-b
w

-î
w

w

Figure 1.3: An example of a linear separating hyperplane for the non-separable 
ase.

in
uen
es the 
lassi�
ation, and their 
orresponding training ve
tors are 
alled the support

ve
tors.

The ideas presented in this se
tion only handle separable data. Real data are usually

non-separable data, and some examples might violate (1.6). In the following se
tion, SVMs

are extended to handle mis
lassi�
ations.

1.4 Soft margin hyperplanes

In many 
ases it is impossible to separate the training data without errors, as illustrated in

Figure 1.3. If separation by a hyperplane is impossible, the margin between patterns of the

two 
lasses be
omes arbitrarily small, and the 
onstrained dual Lagrangian (1.11) will grow

arbitrarily large.

In this 
ase the separation of the training set 
an be done with a minimal number of

errors (mis
lassi�
ations), by relaxing the 
onstraints given in (1.6). Here the notion of

\soft margin 
lassi�ers" are introdu
ed. Add l nonnegative sla
k variables �

i

to relax the

hard-margin 
onstraints:

y

i

(w � x

i

+ b) � 1� �

i

; �

i

� 0; i = 1; : : : ; l (1.14)

Thus for an error to o

ur, the value of �

i

must ex
eed one. It is 
lear that

P

i

�

i

is an upper

bound on the number of training errors. The natural way to assign an extra 
ost for errors

is to 
hange to obje
tive fun
tion to be minimised from (1.7), to solving

min

w;b;�

1

2

jjwjj

2

+ C

l

X

i=1

�

i

(1.15)
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Here C > 0 is an arbitrarily 
hosen { and problem dependent { parameter. A larger

value of C assigns a greater penalty to errors, sin
e it 
onstrains

P

i

�

i

to a smaller value.

A smaller C allows

P

i

�

i

to be larger. The fun
tional in (1.15) des
ribes (for suÆ
iently

large C) the problem of 
onstru
ting a separating hyperplane whi
h minimises the sum of

deviations, �, of training errors and maximises the margin for the 
orre
tly 
lassi�ed ve
tors

[13℄.

The problem in (1.15) is also a 
onvex quadrati
 programming problem. Sin
e the values

of �

i

do not appear in the dual Lagrangian, (1.11) must again be maximised subje
t to

0 � �

i

� C; i = 1; : : : ; l and

l

X

i=1

�

i

y

i

= 0 (1.16)

A 
ru
ial property of the quadrati
 programming problem in (1.11, 1.12) and the de
ision

fun
tion f(x) = sign(

P

i

y

i

�

i

x � x

i

+ b) is that they depend only on dot produ
ts between

patterns. It is this property that allows generalisation to the non-linear 
ase.

1.5 Non-linear Support Ve
tor Ma
hines

A set of linear 
lassi�ers, as presented in the method above, is often not ri
h enough for

more diverse 
lassi�
ation problems. What is needed is a method that handles non-linear


lassi�
ation equally well. Linear SVMs 
an very easily be generalised to in
lude these

non-linear de
ision fun
tions: Boser et al [6℄ showed that the so-
alled kernel tri
k [1℄ 
an

a

omplish this generalisation. Noti
e that the training patterns only appear in the form of

dot produ
ts x

i

� x

j

in equations (1.11, 1.13). A non-linear transformation 
an be done on

the set of input ve
tors to a higher dimensional spa
e (where the dot produ
t is de�ned),

and the linear separation 
an be done in this higher dimensional spa
e. The data are thus

mapped into some other dot produ
t spa
e { a feature spa
e { F via the non-linear map

� : R

N

! F (1.17)

The only requirement on F is that it is equipped with the dot produ
t operator. No

assumptions are made on the dimensionality of F ; it 
an possibly be an in�nite-dimensional

spa
e. For a given training data set, the SVM is now 
onstru
ted in F instead of R

N

, i.e.

using the set of examples

f�(x

1

); y

1

g; : : : ; f�(x

l

); y

l

g 2 R

N

� f�1g (1.18)

From this mapped set of examples a de
ision fun
tion in F has to be estimated. In-

tuitively, the diÆ
ulty of 
onstru
ting a de
ision fun
tion in input spa
e should grow with

the dimension of the patterns. Statisti
ians 
all this diÆ
ulty the 
urse of dimensionality
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Ö:R R
2 3

x2
2

x
1

2

x2

x
1

x
1x2

2

Figure 1.4: An example of two-dimensional 
lassi�
ation. The three-dimensional feature spa
e is

de�ned by monomials x

2

1

,

p

2x

1

x

2

, and x

2

2

, where a linear de
ision surfa
e is 
onstru
ted. This


onstru
tion 
orresponds to a non-linear ellipsoidal de
ision boundary in R

2

.

{ a fun
tion of dimension N needs exponentially many patterns to sample the spa
e prop-

erly. Considering the 
urse of dimensionality, mapping to a higher dimensional feature spa
e

seems like a dubious idea.

The 
ontrary 
an, however, be true. Statisti
al learning theory shows that learning in

F 
an be simpler if fun
tions of a lower 
omplexity are used. It is the 
omplexity of the

fun
tion 
lass, not the dimensionality, that matters. The ri
hness of a powerful fun
tion


lass is then introdu
ed by the mapping �.

This idea 
an be understood by 
onsidering a simple 
lass of de
ision rules, namely linear


lassi�ers. Consider the toy example in Figure 1.4, where the training ve
tors are two-

dimensional. A 
ompli
ated non-linear de
ision surfa
e is needed to separate the training

examples in input spa
e. By de�ning the mapping

� : R

2

! R

3

(x

1

; x

2

)

T

7! (x

2

1

;

p

2x

1

x

2

; x

2

2

)

T

(1.19)

a linear hyperplane separates the mapped training ve
tors in a three-dimensional feature

spa
e. The feature spa
e is de�ned by the se
ond order monomials x

2

1

,

p

2x

1

x

2

, and x

2

2

.

This 
onstru
tion 
orresponds to a non-linear ellipsoidal de
ision boundary [35℄.

In the above example, both the statisti
al 
omplexity and the algorithmi
 
omplexity

of the learning ma
hine were 
ontrolled. The statisti
al 
omplexity was 
ontrolled by us-

ing a simple linear hyperplane 
lassi�er. Using a three-dimensional feature spa
e kept the

algorithmi
 
omplexity low.

A te
hni
al problem arises in real-world problems, sin
e the algorithmi
 
omplexity 
an-

not be kept low. Patterns may be images of 16� 16 pixels, a 256-dimensional input spa
e.

When fourth order monomials are used as mapping �, the feature spa
e would 
ontain all

the fourth order produ
ts of 256 pixels, and its dimension will be

�

4+256�1

4

�

� 200 million.

In 1992 it was shown that the problem of treating su
h high-dimensional spa
es 
ould be
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over
ome [6℄. Instead of making a non-linear transformation of the input ve
tors followed

by dot produ
ts with support ve
tors in the feature spa
e F , the order of operations is

inter
hanged. A 
omparison is �rst done between two ve
tors in input spa
e (for example

by taking their dot produ
t or some distan
e measure), and then a non-linear transformation

of the value of the result is made. The 
omparison and transformation is done by a kernel

fun
tion.

In the toy example of Figure 1.4, the 
omputation of a dot produ
t between two feature

spa
e ve
tors 
an be reformulated in terms of a kernel fun
tion k:

�(x

i

) ��(x

j

) =

0

B

B

�

x

2

i1

p

2x

i1

x

i2

x

2

i2

1

C

C

A

�

0

B

B

�

x

2

j1

p

2x

j1

x

j2

x

2

j2

1

C

C

A

= x

2

i1

x

2

j1

+ 2x

i1

x

i2

x

j1

x

j2

+ x

2

i2

x

2

j2

=

0

�

0

�

x

i1

x

i2

1

A

�

0

�

x

j1

x

j2

1

A

1

A

2

= (x

i

� x

j

)

2

= k(x

i

;x

j

) (1.20)

Training a non-linear SVM thus requires the 
omputation of dot produ
ts �(x

i

) � �(x

j

) in

the feature spa
e F , and 
an be redu
ed by de�ning a suitable kernel fun
tion, k, su
h that

k(x

i

;x

j

) = �(x

i

) � �(x

j

) (1.21)

The question, whi
h fun
tion k 
orresponds to a dot produ
t in some feature spa
e F ,

arises. In other words, how 
an a map � be 
onstru
ted su
h that k 
omputes the dot

produ
t in the spa
e � maps to? This has been dealt with by [6, 56℄, and the answer is seen

from Mer
er's theorem of fun
tional analysis [14℄:

To guarantee that there exits a mapping � and an expansion

k(u;v) = �(u) � �(v) =

X

i

�(u)

i

�(v)

i

(1.22)

it is ne
essary and suÆ
ient that the 
ondition

ZZ

k(u;v)g(u)g(v) du dv � 0 (1.23)

be valid for all g for whi
h

Z

g

2

(u) du <1 (1.24)
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As an example, 
onsider the toy example of Figure 1.4, with the kernel de�ned in equation

(1.20), and x a two-dimensional ve
tor. To show that Mer
er's 
ondition is satis�ed for

k(x

i

;x

j

) = (x

i

� x

j

)

2

, it must be shown that

ZZ

(x

i

� x

j

)

2

g(x

i

)g(x

j

) dx

i

dx

j

� 0 (1.25)

hold for all g with �nite L

2

norm, i.e. g must satisfy equation (1.24). Expanding and

fa
torising the left-hand side of the above inequality gives the needed result.

ZZ

(x

2

i1

x

2

j1

+ 2x

i1

x

i2

x

j1

x

j2

+ x

2

i2

x

2

j2

)g(x

i

)g(x

j

) dx

i

dx

j

=

Z

x

2

i1

g(x

i

) dx

i

Z

x

2

j1

g(x

j

) dx

j

+ 2

Z

x

i1

x

i2

g(x

i

) dx

i

� � �

� � �

Z

x

j1

x

j2

g(x

j

) dx

j

+

Z

x

2

i2

g(x

i

) dx

i

Z

x

2

j2

g(x

j

) dx

j

=

�

Z

x

2

i1

g(x

i

) dx

i

�

2

+ 2

�

Z

x

i1

x

i2

g(x

i

) dx

i

�

2

+

�

Z

x

2

i2

g(x

i

) dx

i

�

2

� 0 (1.26)

In many spe
i�
 
ases it is not as easy to 
he
k Mer
er's 
ondition, sin
e equation (1.23)

must hold for every g with �nite L

2

norm. Mer
er's 
ondition does give information on

whether some kernel 
omputes a dot produ
t in some feature spa
e, but it does not tell

what the mapping � or the spa
e F is.

When a kernel fun
tion does not 
omply with Mer
er's 
ondition, training data may exist

that give rise to an inde�nite Hessian matrix in the dual Lagrangian (1.11). The obje
tive

fun
tion 
an be
ome arbitrarily large, and the quadrati
 programming problem will have no

solution. Many training sets 
an still result in a positive semi-de�nite Hessian, and a SVM's


onstrained obje
tive fun
tion 
an be maximised. The results, however, will not have the

usual geometri
 interpretation of support ve
tors.

By de�nition of the kernel fun
tion k(x

i

;x

j

) = �(x

i

) ��(x

j

), the SVM de
ision fun
tion

be
omes

f(x) = sign

�

l

X

i=1

y

i

�

i

�(x) � �(x

i

) + b

�

= sign

�

l

X

i=1

y

i

�

i

k(x;x

i

) + b

�

(1.27)

The ar
hite
ture of the above de
ision fun
tion de�nes the ar
hite
ture of the SVM, as shown

in Figure 1.5. Examples of kernel fun
tions most 
ommonly used in pattern re
ognition

problems are:

k(x

i

;x

j

) = (x

i

� x

j

+ 1)

p

(1.28)

k(x

i

;x

j

) = e

�jjx

i

�x

j

jj

2

=2�

2

(1.29)

k(x

i

;x

j

) = tanh(�x

i

� x

j

� Æ) (1.30)
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k( , )x x1 k( , )x x2 k( , )x x3 k( , )x x4

Sy ka ( , )x xi i i
i

f( ) = sign(x + )b

y a1 1 y a2 2 y a3 3 y a4 4

Classification

Weights

Comparison

Support vectors ...x x

Input vector x

1 4

Figure 1.5: Ar
hite
ture of a Support Ve
tor Ma
hine: The input ve
tor x and the support ve
tors

x

i

(in this example opti
al digits) are non-linearly mapped (by �) into a feature spa
e F , where dot

produ
ts between their mapped representations are 
omputed. By the use of the kernel k, these two

steps are in pra
ti
e 
ombined. The results are linearly 
ombined by weights �

i

found by solving a

quadrati
 program. The linear 
ombination is then fed into a de
ision fun
tion f , whi
h determines

the 
lassi�
ation of x.
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(a) A Gaussian kernel

e

�jjx

i

�x

j

jj

2

.

(b) A polynomial kernel (x

i

�

x

j

+ 1)

5

.

Figure 1.6: Classifying with di�erent kernel fun
tions. The support ve
tors, with nonzero �

i

, are

shown with a double outline, and de�ne the de
ision boundaries between the two 
lasses.

Equation (1.28) results in a 
lassi�er that is a polynomial of degree p. Equation (1.29)

results in a Gaussian radial basis fun
tion 
lassi�er, while (1.30) gives a parti
ular kind of

two-layer sigmoidal neural network. Figures 1.6(a) and 1.6(b) show the de
ision boundaries

arising from both Gaussian radial basis fun
tion and polynomial kernels. More sophisti
ated

kernels, like kernels generating splines or Fourier expansions, 
an be found in [43, 50, 57℄.

1.6 Con
luding

This 
hapter presented the SVM optimisation problem: In training a non-linear SVM, the

following quadrati
 problem needs to be maximised:

W (�) =

l

X

i=1

�

i

�

1

2

l

X

i=1

l

X

j=1

�

i

�

j

y

i

y

j

k(x

i

;x

j

) (1.31)

subje
t to

0 � �

i

� 0; i = 1; : : : ; l; and

l

X

i=1

�

i

y

i

= 0 (1.32)

By 
onstru
ting a matrix Q su
h that (Q)

ij

= y

i

y

j

k(x

i

;x

j

) the problem at hand is to �nd

max

�

W (�) = �

T

1�

1

2

�

T

Q�

subje
t to �

T

y = 0 (1.33)

� � 0

C1�� � 0
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The following 
hapter is devoted to solving the above linearly 
onstrained quadrati
 pro-

gramming problem (1.33). The problem often involves a matrix with an extremely large

number of entries, whi
h make o�-the-shelf optimisation pa
kages unsuitable. Several SVM

training methods are presented, and a detailed de
omposition method of solving (1.33) is

dis
ussed.



Chapter 2

Support Ve
tor Ma
hine

Training Methods

An overview of 
urrent methods of Support Ve
tor Ma
hine training is given in this 
hapter.

The method of de
omposing the training problem into subproblems is dis
ussed in detail,

and in
ludes 
onditions for optimality of the training problem, methods for sele
ting good

subproblems, and di�erent optimisations to the de
omposition algorithm itself. The 
hapter


on
ludes with a 
omplete Support Ve
tor Ma
hine training algorithm.

2.1 Introdu
tion to Support Ve
tor Ma
hine training

methods

Training a Support Ve
tor Ma
hine (SVM) involves solving a linearly 
onstrained quadrati


optimisation problem. The SVM �ts a de
ision fun
tion to a labelled set of l training

patterns, whi
h 
orrespond to the total of l free parameters in the optimisation problem.

The quadrati
 programming (QP) problem, from 
hapter one, is to �nd

max

�

W (�) = �

T

1�

1

2

�

T

Q�

subje
t to �

T

y = 0 (2.1)

� � 0

C1�� � 0

In the QP problem, the obje
tive fun
tion { the fun
tion to be maximised { depends on

the �

i

quadrati
ally, while the parameters �

i

only appear linearly in the 
onstraints. Q is

an l by l matrix that depends on both a kernel fun
tion of the training inputs, and their

respe
tive labels: (Q)

ij

= y

i

y

j

k(x

i

;x

j

).

15
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The QP problem is equivalent to �nding the maximum of a bowl-shaped obje
tive fun
-

tion. The sear
h for the maximum o

urs in l dimensions, and is 
onstrained to lie inside a

hyper
ube and on a hyperplane. Due to the de�nition of the kernel fun
tion, the matrix Q

always gives a 
onvex QP problem. The 
onvexity of the optimisation problem implies that

every lo
al maximum is also a global maximum [19℄. A global maximum means that there is

no other point inside the feasible region at whi
h the obje
tive fun
tion takes a higher value.

When Q is positive de�nite, the obje
tive fun
tion will be bowl-shaped; when Q is positive

semi-de�nite, the obje
tive fun
tion will have 
at-bottomed troughs. The obje
tive fun
-

tion will never be saddle-shaped. Thus there exists a unique maximum or a 
onne
ted set

of maximums. Certain optimality 
onditions { the Karush-Kuhn-Tu
ker (KKT) 
onditions

[19℄ { give 
onditions determining whether the 
onstrained maximum has been found.

The SVM QP problem is simple and well understood; yet solving the QP problem for real-

world 
ases 
an prove to be very diÆ
ult. Analyti
 solutions are possible when the number

of training patterns is very small, or when the data is separable and it is known beforehand

whi
h ve
tors will be support ve
tors. In most real-world 
ases, numeri
 solutions are 
alled

for. Small problems 
an be solved with general-purpose optimisation pa
kages that solve

linearly 
onstrained 
onvex QPs. Larger problems, however, bring about diÆ
ulties in both

the size and density of Q.

The matrix Q has a dimension equal to the number of training examples. A training

set of 60,000 ve
tors gives rise to a matrix Q with 3.6 billion elements, whi
h does not �t

into the memory of a standard 
omputer. For large learning tasks, o�-the-shelf optimisation

pa
kages and te
hniques for general quadrati
 programming qui
kly be
ome intra
table in

their memory and time requirements.

In general (Q)

ij

is nonzero, whi
h makes Q 
ompletely dense. Most mathemati
al ap-

proa
hes either assume that Q is sparse (i.e. most (Q)

ij

are zero), or are only suitable for

small problems.

Sin
e standard QP te
hniques 
annot easily be used to train SVMs with several thousands

of examples, a number of other approa
hes have been invented. These algorithms allow for

fast 
onvergen
e and small memory requirements, even on large problems.

2.1.1 Chunking

The 
hunking algorithm is based on the fa
t that the non-support ve
tors play no role in the

SVM de
ision boundary. If they are removed from the training set of examples, the SVM

solution will be exa
tly the same.

Chunking was �rst suggested by V. Vapnik in [55℄. The large QP problem is broken

down into a number of smaller problems:

A QP routine is used to optimise the Lagrangian on an arbitrary subset of data. After
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this optimisation, the set of nonzero �

i

(the 
urrent support ve
tors) are retained, and all

other data points (�

i

= 0) are dis
arded. At every subsequent step, 
hunking solves the

QP problem that 
onsists of all nonzero �

i

, plus some of the �

i

that violates the KKT


onditions. These are in general the worst M violations, for some value of M . After

optimising the subproblem, data points with �

i

= 0 are again dis
arded. This pro
edure

is iterated until the KKT 
onditions are met, and the margin is maximised. Solving ea
h

subproblem still requires a numeri
 quadrati
 optimiser.

The size of the subproblem varies, but tends to grow with time. At the last step, 
hunking

has identi�ed and optimised all the nonzero �

i

, whi
h 
orrespond to the set of all the support

ve
tors. Thus the overall QP problem is solved.

Although this te
hnique of redu
ing the Q matrix's dimension from the number of train-

ing examples to approximately the number of support ve
tors makes it suitable to large

problems, a limitation still exists. The number of support ve
tors may ex
eed the maximal

number of parameters �

i

that the quadrati
 optimiser 
an handle, and even the redu
ed

matrix may not �t into memory.

2.1.2 De
omposition

De
omposition methods solve a sequen
e of smaller QP problems, and are similar in spirit to


hunking. The di�eren
e from 
hunking is in the size of the subproblems: the size remains

�xed.

De
omposition methods were introdu
ed in 1997 by E. Osuna et al. [40℄. The large QP

problem is broken down into a series of smaller subproblems, and a numeri
 QP optimiser

solves ea
h of these problems. It was suggested that one ve
tor be added and one removed

from the subproblem at ea
h iteration, and that the size of the subproblems should be kept

�xed. The motivation behind this method is based on the observation that as long as at least

one �

i

violating the KKT 
onditions is added to the previous subproblem, ea
h step redu
es

the obje
tive fun
tion and maintains all of the 
onstraints. In this fashion the sequen
e of

QP subproblems will asymptoti
ally 
onverge. For faster pra
ti
al 
onvergen
e, resear
hers

use di�erent unpublished heuristi
s to add and delete multiple examples.

While the strategy used in 
hunking takes advantage of the fa
t that the expe
ted number

of support ve
tors is small (< 3000), de
omposition allows for training arbitrarily large data

sets.

Another de
omposition method was introdu
ed by T. Joa
hims in [24℄. Joa
him's method

is based on the gradient of the obje
tive fun
tion. The idea is to pi
k �

i

for the QP

subproblem su
h that the �

i

form the steepest possible dire
tion of as
ent on the obje
tive

fun
tion, where the number of nonzero elements in the dire
tion is equal to the size of the

QP subproblem. As in Osuna's method, the size of the subproblem remains �xed.
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2.1.3 Sequential Minimal Optimisation

The most extreme 
ase of de
omposition is Sequential Minimal Optimisation (SMO) { where

the smallest possible optimisation problem is solved at ea
h step [41℄. Due to the fa
t that

the �

i

must obey the linear equality 
onstraint, the smallest set of �

i

that 
an be optimised

at ea
h step is two. At every step, SMO 
hooses two �

i

to jointly optimise, �nds the optimal

values for these �

i

, and updates the SVM to re
e
t these 
hanges.

SMO avoids numeri
al QP optimisation and large matrix storage entirely: if the two


hosen �

i

are optimised and the rest of the parameters �

i

kept �xed, it derives an analyti


solution whi
h is exe
uted in a few numeri
al operations. The method therefore 
onsists of a

heuristi
 step for �nding the best pair of parameters to optimise, and the use of an analyti


expression to ensure the obje
tive fun
tion in
reases monotoni
ally. Be
ause the smallest

possible subproblem is optimised at ea
h iteration of the algorithm, SMO solves more sub-

problems than other methods of de
omposition. Optimising ea
h subproblem, however, is

so fast that the overall QP problem 
an be solved qui
kly. Due to the de
omposition of the

QP problem and its speed, SMO is probably the method of 
hoi
e for training SVMs [10℄.

In this 
hapter a de
omposition algorithm based on the ideas of [24℄ is dis
ussed. This

algorithm makes no assumption on the expe
ted number of support ve
tors, and allows

training arbitrary large data sets. In 
onstru
ting the algorithm, 
onditions for optimal-

ity, de
omposition and optimality 
onditions on the working set are dis
ussed. Finally, a


omplete training algorithm is presented.

2.2 Conditions for optimality

In this se
tion, 
onditions for optimality of a solution � to problem (2.1) are introdu
ed.

Sin
e Q is a positive semi-de�nite matrix (the kernel fun
tion used is positive de�nite), and

the 
onstraints are linear, the Karush-Kuhn-Tu
ker (KKT) 
onditions [19℄ are ne
essary and

suÆ
ient for optimality.

The KKTmultipliers are introdu
ed by letting � be the asso
iated multiplier of �

T

y = 0,

�

T

= (�

1

; : : : ; �

l

) be the asso
iated multiplier of �� � 0, and �

T

= (�

1

; � � � ; �

l

) be the

asso
iated multiplier of � � C1 � 0. The following KKT 
onditions must then hold for

optimality:

rW (�)�r�

T

(�� C1)�r�

T

(��)�r�(�

T

y) = 0

) rW (�)� � + � � �y = 0 (2.2)

�

T

(�� C1) = 0 (2.3)

�

T

� = 0 (2.4)

� � 0 (2.5)



Chapter 2. Support Ve
tor Ma
hine Training Methods 19

� � 0 (2.6)

The Lagrange multipliers �

i


an have three possible values: The value of �

i


an be at zero,

at the upper bound C, or somewhere in the interval (0; C). By de�ning the 
lassi�er fun
tion

f

?

(x) =

l

X

i=1

y

i

�

i

k(x;x

i

) + b (2.7)

similar to (1.27), ea
h of these 
ases are now 
onsidered and expanded separately.

Case 1: 0 < �

i

< C

Consider a single value of �

i

, i.e. the Lagrange multiplier asso
iated with some input ve
tor

i. Then, from equation (2.2),

1� (Q�)

i

� �

i

+ �

i

� �y

i

= 0

Sin
e this 
ase examines �

i

from the interval (0; C), the term (��C1)

i

from (2.3) must

be non-zero and negative. For equations (2.3) and (2.5) to hold, �

i

must be equal to zero.

By using a similar argument, 
onditions (2.4) and (2.6) imply that �

i


an only be zero.

This gives

1� (Q�)

i

� �y

i

= 0 (2.8)

Be
ause the equation

y

i

f

?

(x

i

) = y

i

�

l

X

j=1

y

j

�

j

k(x

i

;x

j

) + b

�

= 1 (2.9)

holds when 0 < �

i

< C, and given that

(Q�)

i

=

l

X

j=1

y

i

y

j

�

j

k(x

i

;x

j

)

= y

i

l

X

j=1

y

j

�

j

k(x

i

;x

j

)

= y

i

�

f

?

(x

i

)� b

�

equation (2.8) 
an be rewritten, and simpi�es as

1� (Q�)

i

� �y

i

= 1� y

i

�

f

?

(x

i

)� b

�

� �y

i

= 1� 1 + y

i

b� �y

i

= 0

From this the value of b is equal to the KKT multiplier �, i.e.

� = b (2.10)
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Case 2: �

i

= C

As in the previous 
ase, 
onsider equation (2.2) for a single Lagrange multiplier �

i

at the

upper bound C:

1� (Q�)

i

� �

i

+ �

i

� �y

i

= 0

Be
ause �

i

= C, 
onditions (2.4) and (2.6) imply that �

i

must be equal to zero. Then,

1� (Q�)

i

� �

i

� �y

i

= 0 (2.11)

Equation (2.5) spe
i�es that �

i

� 0, and thus

1� (Q�)

i

� �y

i

� 0

1� y

i

�

f

?

(x

i

)� b

�

� by

i

= 1� y

i

f

?

(x

i

) � 0

Thus for a value of �

i

= C to meet the KKT 
onditions, it must be true that

y

i

f

?

(x

i

) � 1 (2.12)

Case 3: �

i

= 0

In the 
ase of �

i

= 0, equation (2.2) be
omes

1� (Q�)

i

� �

i

+ �

i

� �y

i

= 0

Conditions (2.3) and (2.5), with �

i

= 0, imply that �

i

= 0. Therefore,

1� (Q�)

i

+ � � �y

i

= 0 (2.13)

Using similar reasoning as the above 
ase of �

i

= C, it 
an be shown that a value of �

i

= 0

meets the KKT 
onditions if

y

i

f

?

(x

i

) � 1 (2.14)

Con
luding on the KKT 
onditions

From the three 
ases presented above, a solution � of problem (2.1) is an optimal solution

if the following relations hold for ea
h �

i

:

�

i

= 0 ) y

i

f

?

(x

i

) � 1

0 < �

i

< C ) y

i

f

?

(x

i

) = 1

�

i

= C ) y

i

f

?

(x

i

) � 1 (2.15)

If, for some given stage in the pro
ess of training a SVM, all Lagrange multipliers meet the

KKT 
onditions, an optimal solution to (2.1) is found and SVM training 
an stop.
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Computing the value of the threshold b

A value for the threshold b is needed for (2.7), and 
an be 
omputed for ea
h of the support

ve
tors. From (2.9),

b

i

= y

i

�

l

X

j=1

y

j

�

j

k(x

i

;x

j

) (2.16)

The average of these values is taken as the value for b.

2.3 A de
omposition method

De
omposition methods break the large QP problem down to a series of smaller subproblems,

and these subproblems are optimised to improve the obje
tive fun
tion.

In the pro
ess of de
omposition, a subset of variables is 
hosen for optimisation. The

original set of Lagrange multiplier variables is divided into two sets, 
alled B and N . Set

B is 
alled the \working set," and is 
reated by pi
king q sub-optimal variables from all

l �

i

. The working set of variables is optimised while keeping the remaining variables (set

N) 
onstant. After subset B is optimised, it is \put ba
k" into the original set and a new

working set is sele
ted for optimisation.

Sin
e it is known when a solution � is an optimal solution (the solution satis�es all KKT


onditions), the problem 
an be de
omposed and optimised until these 
onditions are met

with an adequate toleran
e. The general de
omposition algorithm is summarized as follows:

Algorithm 2.1 - General de
omposition algorithm

1. While the optimality 
onditions (2.15) are violated

(a) Sele
t q variables for the working set B. The remaining l � q variables are �xed

at their 
urrent values.

(b) De
ompose the problem and solve the quadrati
 program subproblem, i.e. opti-

mise W (�) on B.

2. Terminate and return �.

Con
erns of the above algorithm are the 
reation of KKT 
riteria for knowing when the

working set B is optimised, and methods of pi
king the optimal working set.

Firstly, however, it is ne
essary to rewrite equation (2.1) as a fun
tion that is only

dependent on the working set. Let � be split into two sets �

B

and �

N

. If �, y and Q are

appropriately rearranged, one has
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� =

2

4

�

B

�

N

3

5

; y =

2

4

y

B

y

N

3

5

; Q =

2

4

Q

BB

Q

BN

Q

NB

Q

NN

3

5

Sin
e only �

B

is being optimised for the subproblem,W is rewritten from equation (2.1)

in terms of �

B

to give

W (�

B

) =

�

�

T

B

1+�

T

N

1

�

�

1

2

�

�

T

B

Q

BB

�

B

+�

T

B

Q

BN

�

N

+�

T

N

Q

NB

�

B

+�

T

N

Q

NN

�

N

�

(2.17)

If terms that do not 
ontain �

B

are dropped, the optimisation problem remains essentially

the same. Also, sin
e Q is a symmetri
 matrix, with Q

BN

= Q

T

NB

, the problem redu
es to

�nding

max

�

B

W (�

B

) = �

T

B

1�

1

2

�

T

B

Q

BB

�

B

��

T

B

Q

BN

�

N

subje
t to �

T

B

y

B

+�

T

N

y

N

= 0 (2.18)

�

B

� 0

C1��

B

� 0

With jBj � jN j, the term �

T

B

Q

BN

�

N


onsumes the majority of 
omputing time when

determiningW (�

B

). As a performan
e optimisation, de�ne a ve
tor q

BN

= Q

BN

�

N

in the

following way:

(q

BN

)

i

= y

i

X

j2N

�

j

y

j

k(x

i

;x

j

) (2.19)

The ve
tor q

BN

is 
omputed on
e at the start of every subset optimisation. The 
omplex-

ity of the optimisation problem then be
omes proportional to the size of the working set,

independent of l. Given that l 
an be very large and that q = jBj will be relatively small, it

is a vast improvement. The optimisation problem be
omes equivalent to �nding

max

�

B

W (�

B

) = �

T

B

1�

1

2

�

T

B

Q

BB

�

B

��

T

B

q

BN

subje
t to �

T

B

y

B

+�

T

N

y

N

= 0 (2.20)

�

B

� 0

C1��

B

� 0

2.3.1 Optimality of the working set

The optimisation problem in (2.20) has one parti
ularly useful property: one 
an 
omputa-

tionally determine if a solution is an optimal solution. This gives a stopping 
riterion for

optimising the working set B.
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The de
omposed problem (2.20) 
onsists of a 
onvex obje
tive fun
tion (sin
e matrix

Q

BB

is positive semi-de�ne), and linear 
onstraints. The KKT 
onditions are thus ne
essary

and suÆ
ient for optimality.

The KKT 
onditions must hold for ea
h element in �

B

, and by again 
onsidering the

possible values of (�

B

)

i

, as in Se
tion 2.2, the 
onditions are:

(�

B

)

i

= 0 ) (Q

BB

�

B

)

i

+ (q

BN

)

i

+ �(y

B

)

i

� 1

0 < (�

B

)

i

< C ) (Q

BB

�

B

)

i

+ (q

BN

)

i

+ �(y

B

)

i

= 1

(�

B

)

i

= C ) (Q

BB

�

B

)

i

+ (q

BN

)

i

+ �(y

B

)

i

� 1 (2.21)

When the Lagrange multiplier �

i

lies between zero and C, the value of � 
an be 
omputed

with

� = (y

B

)

i

�

1� (Q

BB

�

B

)

i

� (q

BN

)

i

�

The value of �, as it appears in the above KKT 
onditions (2.21), 
an be taken as the

average of � 
omputed for ea
h i where 0 < (�

B

)

i

< C.

Apart from the optimality 
onditions des
ribed here, a method for sele
ting good or

optimal working sets { a de
omposition algorithm { is needed. Su
h a method will 
hoose

the working set B, while the KKT 
onditions presented here determines the termination


riteria on optimising B.

2.3.2 Sele
ting the working set

One of the most important issues in a de
omposition algorithm is the sele
tion of the working

set. The working set sele
ted plays a major role in the speed of the SVM training algorithm.

Sele
ting working sets at random 
auses the training algorithm (Algorithm 2.1) to 
onverge

very slowly, while 
ontinually sele
ting optimal variables 
auses the training algorithm to


y
le. A method for sele
ting approximately optimal working sets is presented below.

The de
omposition method presented in this se
tion is due to [24, 38℄. It works on the


lassi
al method of feasible dire
tions, proposed in the optimisation theory by [61℄. If 
 is

a feasible region of a general 
onstrained problem, then a ve
tor d is a feasible dire
tion at

the point � in 
, if there exists a

~

� su
h that �+ �d lies in 
 for all 0 � � �

~

�.

The main idea of the method of feasible dire
tions is to start with an initial feasible

solution, and to �nd the optimal solution by making steps along feasible dire
tions. At

ea
h iteration of a feasible dire
tions algorithm, the optimal feasible dire
tion (the dire
tion

giving the largest rate of in
rease of the obje
tive fun
tion) is found. The algorithm then

aims to maximise the obje
tive fun
tion along this dire
tion, by making a line sear
h to

determine a step length along the feasible dire
tion. The solution is moved by \stepping"
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along the feasible dire
tion to the better solution found. The algorithm terminates when no

feasible dire
tions 
an be found whi
h improve the obje
tive fun
tion.

The optimal feasible dire
tion of a general 
onstrained optimisation problem of the form

Maximise f(�) subje
t to A� � b

is found by solving the dire
tion �nding linear program

Maximise rf

T

d subje
t to Ad � 0; jjdjj

2

� 1

SVM training solves a 
onstrained quadrati
 optimisation problem, therefore the method

of feasible dire
tions is dire
tly appli
able to training a SVM. Finding the optimal feasible

dire
tion when solving the SVM problem (2.1) 
an be stated as

Maximise rW (�)

T

d

subje
t to y

T

d = 0

d

i

� 0 if �

i

= 0

d

i

� 0 if �

i

= C

jjdjj

2

� 1 (2.22)

Optimisation problem (2.22) is a full-s
ale linear program of dimension l, whi
h is 
omputa-

tionally expensive to solve at every iteration of the de
omposition method of SVM training.

An approximate solution to this problem, whi
h 
an be obtained in linear time, was proposed

by T. Joa
hims [24℄.

A requirement is added to (2.22), spe
ifying that only q 
omponents of d be non-zero.

The variables 
orresponding to these q non-zero 
omponents are in
luded in the working

set. Sin
e this only gives an approximation to (2.22), d is only used to identify B, and not

as a sear
h dire
tion. Instead of doing a line sear
h on d, the optimum solution is found in

the entire subspa
e spanned by the non-zero 
omponents of d.

By spe
ifying that only q 
omponents of d be non-zero, the problem be
omes intra
table.

This problem of intra
tability is over
ome by letting d

i

be equal to either �1, 0 or +1,

su
h that the Lagrange multipliers �

i


orresponding to d

i

= �1 are in
luded in B. An

approximation of (2.22) is thus found by

Maximise rW (�)

T

d

subje
t to y

T

d = 0

d

i

� 0 if �

i

= 0

d

i

� 0 if �

i

= C

d

i

2 f�1; 0; 1g

jfd

i

: d

i

6= 0gj = q (2.23)
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(a) Sele
ting the four largest val-

ues of jg

i

j, and setting ea
h 
orre-

sponding d

i

to the sign of g

i

, max-

imises g

T

d, but the equality 
on-

straint y

T

d = 0 is not met.

-1 -2 +3 +4 +5 +1-4 0 -2 +5

+1 +1 -1 -1 +1 -1 +1 +1 -1 +1

0 0 0 +1 0 +1 0 0 -1 +1

0 0 0 -1 0 -1 0 0 +1 +1y d

d

y

gT

T

T

ii i

=

=

=

=

=

-1 -2 -3 -4 -5 +1-4 0 +2 +5y g
ii i

(b) Sele
ting the two smallest and

largest y

i

g

i

, and respe
tively letting

d

i

be of opposite and similar sign to

y

i

, g

T

d is maximised su
h that the

equality 
onstraint y

T

d = 0 is also

met.

Figure 2.1: Sele
ting a working set of size four.

From this approximation the question arises: how is the dire
tion d determined? Firstly,

assume that the 
onstraints y

T

d = 0, d

i

� 0 if �

i

= 0, and d

i

� 0 if �

i

= C, are all absent.

Also, to simplify the notation used, let the shorthand g = rW (�) denote the dire
tional

derivative of W . With the equality and inequality 
onstraints absent, the maximum of the

obje
tive fun
tion is a
hieved by sele
ting q points with the highest values of jg

i

j. Then d

i

will take the value of sign(g

i

).

As an example, 
onsider Figure 2.1(a), with q equal to four. The four largest values of

jg

i

j are 
hosen (jg

4

j = 4, jg

5

j = 4, jg

6

j = 5 and jg

10

j = 5), and ea
h 
orresponding d

i

is set

to the sign of g

i

. In this way g

T

d is maximised.

The �rst remark that 
an be made about the example in Figure 2.1(a), is that the

equality 
onstraint y

T

d = 0 is being violated. For y

T

d to be equal to zero, the number of

elements with sign mat
hes between d

i

and y

i

must be equal to the number of elements with

sign mismat
hes between d

i

and y

i

. This means that if a working set of size q is sele
ted,

with q being even, ea
h number must be equal to

q

2

. The working set 
an thus be sele
ted

by making two passes over the data. A \forward pass" will sele
t

q

2

sign mismat
hes, while

a \ba
kward pass" will sele
t

q

2

sign mat
hes. To implement sele
tion of the working set, let




k

denote the largest 
ontribution to the obje
tive fun
tion g

T

d by some point k, subje
t to

the equality 
onstraint y

T

d = 0. The two passes over the data, ea
h sele
ting

q

2

variables,

are expanded in the following way:

\Forward pass"

The forward pass attempts to sele
t

q

2

variables su
h that y

k

d

k

is negative. This implies

that the signs of y

k

and d

k

must be di�erent in maximising g

T

d. To maximise g

T

d, the
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minimum g

i

is 
hosen when d

i

is negative, while the maximum g

i

is sele
ted when d

i

is

positive, i.e.

y

k

= 1 ) d

k

= �1 ) 


k

= min

i:y

i

=1

(g

i

) ) 


k

= min

i:y

i

=1

(y

i

g

i

)

y

k

= �1 ) d

k

= 1 ) 


k

= max

i:y

i

=�1

(g

i

) ) 


k

= min

i:y

i

=�1

(y

i

g

i

)

If the subs
ripts are 
ombined, the largest 
ontribution to the obje
tive fun
tion (with y

k

and d

k

having di�erent signs), subje
t to the equality 
onstraint, is




k

= min

i

(y

i

g

i

) (2.24)

\Ba
kward pass"

The ba
kward pass over the data sele
ts a total of

q

2

variables, su
h that y

k

d

k

is positive.

Thus the signs of y

k

and d

k

must be the same in maximising g

T

d, i.e.

y

k

= 1 ) d

k

= 1 ) 


k

= max

i:y

i

=1

(g

i

) ) 


k

= max

i:y

i

=1

(y

i

g

i

)

y

k

= �1 ) d

k

= �1 ) 


k

= min

i:y

i

=�1

(g

i

) ) 


k

= max

i:y

i

=�1

(y

i

g

i

)

If the subs
ripts are 
ombined, the largest 
ontribution to the obje
tive fun
tion (with y

k

and d

k

having the same signs), subje
t to the equality 
onstraint, is




k

= max

i

(y

i

g

i

) (2.25)

The working set is thus sele
ted based on the equations (2.24, 2.25) de�ned above. The

example of Figure 2.1(a) sele
ted an optimal but useless working set, sin
e it does not in
lude

the equality 
onstraint.

In Figure 2.1(b) the two smallest and largest y

i

g

i

(y

4

g

4

= �4, y

6

g

6

= �5, y

9

g

9

= +2 and

y

10

g

10

= +5) are sele
ted, su
h that the example 
orre
tly meets the equality 
onstraint

y

T

d = 0.

It is 
lear that the quantity y

i

g

i

gives an indi
ation of an element's 
ontribution to

the obje
tive fun
tion subje
t to the equality 
onstraint. This quantity is used to sele
t

the working set, by sorting the data elements a

ording to y

i

g

i

and sele
ting the top and

bottom

q

2

.

A

ounting for the inequality 
onstraints in (2.23) then be
omes a trivial task { when

sele
ting the top and bottom Lagrange multiplier variables �

i

from the sorted list, a variable

is skipped if the inequality 
onstraints are violated. Thus variables are skipped if d

i

= �y

i

(or in the 
ase of the ba
kward pass, if d

i

= y

i

) violates d

i

� 0 if �

i

= 0, and d

i

� 0 if

�

i

= C. Consider the forward pass: if d

i

= �y

i

, then variables should be 
hosen when

�y

i

� 0 if �

i

= 0, and �y

i

� 0 if �

i

= C. These 
onditions hold when y

i

= �1 and �

i

= 0,

or when y

i

= 1 and �

i

= C. A similar argument on the ba
kward pass states that variables

should be 
hosen when y

i

= 1 and �

i

= 0, or when y

i

= �1 and �

i

= C.
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The de
omposition algorithm, whi
h sele
ts variables with a forward and ba
kward pass

over the data, is implemented below:

Algorithm 2.2 - De
omposition algorithm

1. Let L be a list of all Lagrange multipliers.

2. While the optimality 
onditions (2.15) are violated

(a) sort L by y

i

g

i

in in
reasing order

(b) sele
t

q

2

samples from the front of L su
h that

� 0 < �

i

< C or

�

�

y

i

= �1 and �

i

= 0

�

or

�

y

i

= 1 and �

i

= C

�

(
) sele
t

q

2

samples from the ba
k of L su
h that

� 0 < �

i

< C or

�

�

y

i

= 1 and �

i

= 0

�

or

�

y

i

= �1 and �

i

= C

�

(d) optimise the newly sele
ted working set

3. Terminate and return �.

2.3.3 Short
uts and optimisations to the de
omposition algorithm

The speed of the de
omposition algorithm is hampered by many redundant 
omputations.

This se
tion dis
usses some of these performan
e bottlene
ks, and ways minimise additional


omputations.

Let t de�ne a 
ertain iteration in Algorithm 2.2. At time t, a number of fa
tors 
onsume

the algorithm's exe
ution time: Its eÆ
ien
y greatly depends on the amount of time taken to


ompute the ve
tor g = rW (�

(t)

) and matri
es Q

BB

and Q

BN

. Its speed is also in
uen
ed

by the time taken to 
ompute the KKT 
onditions at ea
h iteration, sin
e it too requires

the kernel matrix.

Due to the approa
h taken by the de
omposition method, the quantities g = rW (�

(t)

)

(needed for sele
ting the working set) and y

i

f

?

(x

i

) (needed for KKT 
onditions), 
an be

de�ned using knowledge of only q rows of the Hessian Q. These q rows 
orrespond to the q

elements in the 
urrent working set.

For this purpose, de�ne a ve
tor s

(t)

, that is 
omputed dire
tly after working set sele
tion,

and is stored throughout the training iteration:

s

(t)

i

=

l

X

j=1

�

(t)

j

y

j

k(x

i

;x

j

) =

X

j2B

�

(t)

j

y

j

k(x

i

;x

j

) +

X

j2N

�

(t)

j

y

j

k(x

i

;x

j

) (2.26)
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As �

(t)

is re�ned, the obje
tive fun
tion W (�

(t)

) is in
reased by ea
h iteration of the

de
omposition method. The best ve
tor �

(t)

found in iteration t is therefore used as the

ve
tor �

(t+1)

, whi
h the de
omposition method uses to sele
t a working set for iteration

t + 1. The ve
tor �

(t+1)

is therefore the ve
tor that maximises W (�

(t)

) over the working

set B from iteration t, i.e.

W (�

(t+1)

) = max

B

W (�

(t)

) (2.27)

and

W (�

(t)

) = (�

(t)

)

T

1�

1

2

(�

(t)

)

T

Q�

(t)

=

l

X

i=1

�

(t)

i

�

1

2

l

X

i=1

l

X

j=1

�

(t)

i

�

(t)

j

y

i

y

j

k(x

i

;x

j

)

=

l

X

i=1

�

(t)

i

�

1

2

l

X

i=1

�

(t)

i

y

i

l

X

j=1

�

(t)

j

y

j

k(x

i

;x

j

)

=

l

X

i=1

�

(t)

i

�

1

2

l

X

i=1

�

i

y

i

s

(t)

i

(2.28)

When a ve
tor �

(t)

has been found that maximises W (�

(t)

) over the working set B, the

starting ve
tor for the next iteration { whi
h is also the best solution � found thus far { is

updated with �

(t+1)

 �

(t)

. Be
ause � is updated, the value of s must also be updated.

Sin
e only the value of �

B

, or the working set of variables, has 
hanged from time t to time

t+ 1, s is updated with

s

(t+1)

i

= s

(t)

i

+

X

j2B

�

�

(t+1)

j

� �

(t)

j

�

y

j

k(x

i

;x

j

) (2.29)

Many optimisations 
an be implemented using de�nition (2.26) and simple update (2.29)

of ve
tor s. At the start of training of a new working set, the value of q

BN

from (2.19) is


omputed with

(q

BN

)

(t)

i2B

= y

i

�

s

(t)

i

�

X

j2B

�

(t)

j

y

j

k(x

i

;x

j

)

�

(2.30)

The derivative of W at time t (needed for sele
ting an optimal working set) is easily deter-

mined from s, i.e.

rW (�

(t)

)

i

= 1�

1

2

� 2y

i

l

X

j=1

�

(t)

j

y

j

k(x

i

;x

j

)

= 1� y

i

s

(t)

i

(2.31)
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By using s, the value of the threshold b (2.16) is rewritten for ea
h support ve
tor as

b

(t)

i

= y

i

�

l

X

j=1

y

j

�

(t)

j

k(x

i

;x

j

)

= y

i

� s

(t)

i

(2.32)

The value of b

(t)

is taken as the average over all the b

(t)

i

of all support ve
tors i.

Finally, the KKT optimality 
onditions spe
i�ed in (2.15) are also rewritten in terms of

s, and are 
omputed in linear time. A solution �

(t)

of (2.1) is an optimal solution if the

following relations hold for ea
h �

(t)

i

:

�

(t)

i

= 0 ) y

i

(s

(t)

i

+ b

(t)

) � 1

0 < �

(t)

i

< C ) y

i

(s

(t)

i

+ b

(t)

) = 1

�

(t)

i

= C ) y

i

(s

(t)

i

+ b

(t)

) � 1 (2.33)

2.4 The training algorithm

Almost all ne
essary tools are now gathered to 
reate a SVM training algorithm.

In this 
hapter the Karush-Kuhn-Tu
ker 
onditions have been used to spe
ify whether

and optimal solution has been found and the training algorithm 
an terminate. A method

was developed to de
ompose the SVM problem into more workable subproblems. Optimi-

sations to redu
e the number of 
omputations were also introdu
ed.

Finally, the detailed training algorithm is presented:

Algorithm 2.3 - SVM training algorithm

1. Pi
k an initial ve
tor �

(0)

2. Compute the initial value of s

(0)

:

s

(0)

i

=

l

X

j=1

�

(0)

j

y

j

k(x

i

;x

j

):

3. Compute the initial value of b with

b

(0)

=

1

SV s

X

i2SV s

(y

i

� s

(0)

i

);

where SV s is the total number of 
urrent support ve
tors.

4. Let L be a list of all l Lagrange multipliers �

i

.

5. While the Karush-Kuhn-Tu
ker 
onditions in (2.33) are not met
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(a) Let g 2 R

l

be de�ned by

g

i

= rW (�

(t)

)

i

= 1� y

i

s

(t)

i

:

(b) Sort L by y

i

g

i

in in
reasing order.

(
) Sele
t

q

2

samples from the front of L su
h that

� 0 < �

(t)

i

< C or

�

�

y

i

= �1 and �

(t)

i

= 0

�

or

�

y

i

= 1 and �

(t)

i

= C

�

(d) Sele
t

q

2

samples from the ba
k of L su
h that

� 0 < �

(t)

i

< C or

�

�

y

i

= 1 and �

(t)

i

= 0

�

or

�

y

i

= �1 and �

(t)

i

= C

�

(e) After sele
tion of the elements �

B

in the working set B, 
ompute the Hessian

matrix Q

BB

.

(f) Determine the ve
tor q

BN

with

(q

BN

)

(t)

i2B

= y

i

�

s

(t)

i

�

X

j2B

�

(t)

j

y

j

k(x

i

;x

j

)

�

:

(g) Re-optimise the working set, using

W (�

B

) = �

T

B

1�

1

2

�

T

B

Q

BB

�

B

��

T

B

q

BN

;

and 
onstraints de�ned in (2.20). Repla
e the optimised �

B

into �

(t)

to get

�

(t+1)

.

(h) Update the ve
tor s

(t+1)

with

s

(t+1)

i

= s

(t)

i

+

X

j2B

�

�

(t+1)

j

� �

(t)

j

�

y

j

k(x

i

;x

j

):

(i) Re
ompute the value of b with

b

(t+1)

=

1

SV s

X

i2SV s

(y

i

� s

(t+1)

i

):

(j) In
rease time t with t := t+ 1.

6. Terminate and return �.

There is one tool needed to 
omplete the SVM training algorithm, and that is a routine

to optimise the working set, i.e. a routine that 
an solve (2.20). The following 
hapter

introdu
es Parti
le Swarm Optimisation (PSO) as a general optimisation method. Sin
e

(2.20) is a problem with linear and boxed 
onstraints, PSO is adapted to handle linear

equality and inequality 
onstraints, and the working set 
an be optimised using PSO, and

the SVM trained.



Chapter 3

Parti
le Swarm Optimisation

Parti
le Swarm Optimisation is dis
ussed as an algorithm for optimising un
onstrained prob-

lems. The 
hapter looks into standard topologies used in the algorithm, and tou
hes on a

number of improvements to Parti
le Swarm Optimisation.

3.1 Introdu
tion to un
onstrained optimisation

Numeri
al optimisation te
hniques have their appli
ation in many �elds, in
luding natu-

ral s
ien
e, engineering, �nan
e, medi
ine and tele
ommuni
ations. The obje
tive of su
h

te
hniques is to assign values from a given domain to a set of parameters su
h that a spe-


i�
 fun
tion is optimised. The fun
tion that is minimised or maximised (optimised) is


alled the obje
tive fun
tion, and it depends on a set of solution-de�ning variables. Let

x = (x

1

; x

2

; : : : x

n

)

T

2 R

n

represent the domain of the obje
tive fun
tion, or the optimi-

sation (solution-de�ning) variable. Let f , the fun
tion that needs to be optimised, assign

values from R

n

to R su
h that f : R

n

! R.

For minimisation problems, the ideal is to �nd a global minimum x

?

su
h that

f(x

?

) � f(x); 8x 2 R

n

(3.1)

For some appli
ations, a lo
al minimum x

?

L

on a domain L � R

n

is an a

eptable solution.

In su
h 
ases

f(x

?

L

) � f(x); 8x 2 L (3.2)

In both 
ases, �nding a global minimum or a lo
al minimum, the sear
h spa
e 
an be

un
onstrained or 
onstrained by a set of 
onstraints. This 
hapter fo
uses on Parti
le Swarm

Optimisation (PSO) for un
onstrained optimisation, the 
onstrained 
ase is examined in

detail in Chapter 4.

31
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Traditionally, numeri
al optimisation te
hniques have mainly been developed from the

operations resear
h 
ommunity [18, 37℄. The past de
ade has witnessed an in
rease in 
on-

tributions from the arti�
ial intelligen
e 
ommunity, most notably from the evolutionary


omputing �eld [3℄. Re
ently, PSO has been introdu
ed as a su

essful te
hnique for nu-

meri
al optimisation [16, 25, 27℄. Other re
ent methods for optimisation in
lude arti�
ial

immune systems, di�erential evolution, memeti
 algorithms and s
atter sear
h [12℄.

3.2 Introdu
tion to Parti
le Swarm Optimisation

Many eÆ
ient optimisation algorithms 
an be 
onstru
ted from the study of ants working as

a 
olony, birds migrating in a 
o
k toward some destination, or �sh swimming in a s
hool.

While the individual behaviour of an organism may seem ineÆ
ient, the 
olle
tive e�ort of

individuals inside a swarm 
an be
ome 
omplex and intelligent [5℄.

One su
h a method is Parti
le Swarm Optimisation (PSO), originally introdu
ed by

Kennedy and Eberhart [25℄. PSO represents an optimisation method where individuals,


alled parti
les, 
ollaborate as a population, or swarm, to rea
h a 
olle
tive goal, for example

minimising an n-dimensional fun
tion f .

Ea
h parti
le is n-dimensional, and is a potential minimum of f . A parti
le has memory

of the best solution that it has found, 
alled its personal best. The parti
les 
y through the

sear
h spa
e with a velo
ity, whi
h is dynami
ally adjusted a

ording to its personal best

and the best solution found by a neighbourhood of parti
les.

There is thus a sharing of information that takes pla
e. Parti
les pro�t from the dis
ov-

eries and previous experien
e of other parti
les during the exploration and sear
h for lower

obje
tive fun
tion values.

There exist a great number of s
hemes in whi
h this information sharing 
an take pla
e.

One of two so
iometri
 prin
iples is usually implemented [27℄, with more re
ent tolopogies

investigated in [26, 28℄. The �rst, 
alled gbest (global best), 
on
eptually 
onne
ts all the

parti
les in the population to one another. Thus ea
h parti
le is in
uen
ed by the very

best performan
e of the entire population. The se
ond, 
alled lbest (lo
al best), 
reates a

neighbourhood for ea
h individual 
omprising itself and its k nearest neighbours in the pop-

ulation. Neighbourhoods are usually determined using parti
le indi
es, although topologi
al

neighbourhoods have also been used [52℄.

PSO di�ers from traditional optimisation methods, in that a population of potential

solutions are used in the sear
h. The dire
t �tness information instead of fun
tion derivatives

or other related knowledge is used to guide the sear
h. This sear
h is based on probabilisti
,

rather than deterministi
, transition rules.

Let i indi
ate a parti
le's index in the swarm. Then
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S = fp

1

;p

2

; : : : ;p

s

g

is a swarm of s parti
les. In PSO ea
h of the s parti
les has a 
urrent position

p

i

= (p

i1

; p

i2

; : : : ; p

in

)

T

and 
y through the n-dimensional sear
h spa
e R

n

with a 
urrent velo
ity

v

i

= (v

i1

; v

i2

; : : : ; v

in

)

T

;

whi
h is dynami
ally adjusted a

ording to its own previous best solution

z

i

= (z

i1

; z

i2

; : : : ; z

in

)

T

and the 
urrent best solution
b
z of the entire swarm (gbest), or the parti
le's neighbourhood

(lbest).

At iteration time t of the PSO algorithm, the velo
ity and parti
le updates are spe
i�ed

seperately for ea
h dimension j of the velo
ity and parti
le ve
tors. A parti
le p

i

will intera
t

and move a

ording to the following equations [25℄:

v

(t+1)

ij

= v

(t)

ij

+ 


1

r

(t)

1

[z

(t)

ij

� p

(t)

ij

℄ + 


2

r

(t)

2

[bz

(t)

j

� p

(t)

ij

℄ (3.3)

p

(t+1)

ij

= v

(t+1)

ij

+ p

(t)

ij

(3.4)

Equation (3.3) takes three terms into 
onsideration to 
al
ulate the velo
ity of parti
le i:

the parti
le's previous velo
ity, the distan
e between the parti
le and its personal best, and

the distan
e between the parti
le and the best solution found by its neighbourhood, whi
h

may be the entire swarm.

The sto
hasti
 nature of the algorithm is determined by r

(t)

1

; r

(t)

2

� UNIF (0; 1), two

uniform random numbers between zero and one. In the se
ond and third terms these numbers

are s
aled by a

eleration 
oeÆ
ients 


1

and 


2

, where 0 � 


1

; 


2

� 2. CoeÆ
ient 


1

has been


alled the 
ognitive learning rate [2℄, sin
e it s
ales the se
ond term in (3.3), the term that

de�nes the parti
le's movement in the dire
tion of its personal best. In the same way, 


2

is


alled the so
ial learning rate, s
aling the in
uen
e of the neighbourhood's best solution on

the parti
le.

After determining parti
le i's velo
ity, it moves toward its new position, as shown in

(3.4).

At iteration time t of the PSO algorithm, the personal best of ea
h parti
le is 
ompared

to its 
urrent performan
e. The personal best z

(t)

i

is set to the better performan
e, i.e.

z

(t)

i

=

8

<

:

z

(t�1)

i

if f(p

(t)

i

) � f(z

(t�1)

i

)

p

(t)

i

if f(p

(t)

i

) < f(z

(t�1)

i

)

(3.5)
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The de�nition of a parti
le's neighbourhood determines the ve
tor
b
z, the best solution

found by either the entire swarm or the parti
le's neighbourhood. Information sharing takes

pla
e through the neighbourhood - the most 
ommon, gbest and lbest, are dis
ussed below.

More re
ent tolopogies are investigated in [26, 28℄.

3.2.1 Global best (gbest)

The global best (gbest) PSO 
on
eptually 
onne
ts all the parti
les in the population to

one another, so that ea
h parti
le is in
uen
ed by the very best performan
e of the entire

population. The global best parti
le pulls all parti
les towards itself, and parti
les move in

its dire
tion. If the global best is not updated regularly, the entire swarm may 
onverge to

it, resulting in premature 
onvergen
e.

The global best
b
z

(t)

is set to the position of the parti
le with the best performan
e within

the swarm, i.e.

b
z

(t)

2 fz

(t)

1

; z

(t)

2

; : : : ; z

(t)

s

g

�

�

f(
b
z

(t)

)

= minff(z

(t)

1

); f(z

(t)

2

); : : : ; f(z

(t)

s

)g (3.6)

3.2.2 Lo
al best (lbest)

The lbest (lo
al best) version of the PSO 
reates a neighbourhood for ea
h individual 
om-

prising itself and its k nearest neighbours in the population. Neighbourhoods are usually

determined using parti
le indi
es, although topologi
al neighbourhoods have also been used

[26℄. Assuming that parti
le indi
es wrap around at s, let N

i

be the neighbourhood of

parti
le i.

N

i

= fz

(t)

i�k

; z

(t)

i�k+1

; : : : ; z

(t)

i

; : : : ; z

(t)

i+k�1

; z

(t)

i+k

g (3.7)

The neighbourhood best
b
z

(t)

N

i

at time t is de�ned as the best solution in parti
le i's neigh-

bourhood:

b
z

(t)

N

i

2 N

i

�

�

f(
b
z

(t)

N

i

) = maxff(z

(t)

j

)g 8 z

j

2 N

i

(3.8)

It is possible to let the neighbourhood size k be equal to zero, in whi
h 
ase ea
h parti
le

p

i

only 
ompares its 
urrent position with its own best position z

(t)

i

, and no information

sharing takes pla
e. A neighbourhood size of k equal to the swarm size s is equivalent to

the gbest version of the PSO.

It was shown by [16, 48℄ that, although lbest is slower in 
onvergen
e than gbest, lbest

results in better solutions and sear
hes a larger part of the sear
h spa
e.
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3.2.3 The PSO algorithm

All that is left to 
omplete from the above se
tions is the PSO algorithm itself. The def-

inition of a parti
le's personal and global or lo
al best position was de�ned. Using these

best positions to determine ea
h parti
le's velo
ity, the swarm of parti
les 
an su

essfully

traverse the sear
h spa
e, looking for an optimum solution to a problem. The standard PSO

algorithm, used to minimise a fun
tion

f : R

n

! R (3.9)

is presented below:

Algorithm 3.1 - Parti
le Swarm Optimisation

1. Set the iteration number t to zero, and initialise the swarm S of n-dimensional parti
les

p

(0)

i

: ea
h 
omponent p

(0)

ij

of p

(0)

i

is randomly initialised to a value in the initial

domain of the swarm, an interval [p

min

; p

max

℄. Sin
e the parti
les are already randomly

distributed, the velo
ities of parti
les are initialised to the zero ve
tor 0.

2. Evaluate the performan
e f(p

(t)

i

) of ea
h parti
le.

3. Compare the personal best of ea
h parti
le to its 
urrent performan
e, and set z

(t)

i

to

the better performan
e, as shown in (3.5).

4. Use (3.6) to set the global best
b
z

(t)

to the position of the parti
le with the best

performan
e within the entire swarm (gbest). When a lbest PSO is implemented,

equation (3.8) is used to set the neighbourhood best
b
z

(t)

N

i

for ea
h parti
le i.

5. Change the velo
ity ve
tor for ea
h parti
le a

ording to equation (3.3).

6. Move ea
h parti
le to its new position, a

ording to equation (3.4).

7. Let t := t+ 1.

8. Go to step 2, and repeat until 
onvergen
e or t = t

max

.

The algorithm has 
onverged if the di�eren
e between the best solution found over a

spe
i�ed number of iterations remains within a 
ertain bound. The algorithm iterates until

either one of two 
onditions is met: the algorithm has 
onverged, or the maximum number

of iterations t

max

have been rea
hed.
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3.2.4 Improvements

A number of methods have been proposed to improve the 
onvergen
e and probability of


onvergen
e of the standard PSO algorithm, and are dis
ussed in this se
tion. Apart from


hanges to the PSO update equation (3.3), most of these methods make no 
hanges to the

PSO algorithm itself.

Maximum velo
ity

The probability of parti
les leaving the 
urrent sear
h spa
e 
an be redu
ed by 
lamping

the velo
ity updates { the velo
ity update ve
tors in the �rst term of (3.3) 
an be restri
ted

by spe
ifying upper and lower bounds v

max

and �v

max

on v

(t)

ij

. If v

(t)

ij

is greater than v

max

,

then v

(t)

ij

is set to v

max

. Similary, if v

(t)

ij

is smaller than �v

max

, then v

(t)

ij

is set to the value

of �v

max

. The value of v

max

is usually a fun
tion of the range of the problem. If the range

of ea
h 
omponent p

ij

of parti
le p

i

is between -10 and 10, v

max

will be proportional to 10.

Inertia weight

The previous velo
ity in the �rst term of (3.3) 
an be s
aled with an intertia weight w, i.e.

v

(t+1)

ij

= wv

(t)

ij

+ 


1

r

(t)

1

[z

(t)

ij

� p

(t)

ij

℄ + 


2

r

(t)

2

[bz

(t)

j

� p

(t)

ij

℄ (3.10)

The inertia weight was introdu
ed to improve the rate of 
onvergen
e of the PSO algo-

rithm [47℄, and determines how mu
h the velo
ity at time t should in
uen
e the velo
ity at

time t+1. A large inertia weight 
auses the PSO to explore larger parts of the sear
h spa
e,

while a smaller inertia weight results in exploitation of a smaller and more fo
ussed region

of the sear
h spa
e. An inertia weight of one results in an update equation equivalent to

(3.3).

It is possible, through 
areful sele
tion of the inertia weight, to 
reate a balan
e between

lo
al and global exploration abilities, and therefore 
reate a faster rate of 
onvergen
e. The

balan
e 
an be a
hieved with a linearly de
reasing inertia weight

w = w

max

�

t

t

max

(w

max

� w

min

) (3.11)

where w

max

is the initial (starting) inertia weight, and w

min

is the �nal weight. The values

t

max

and t respe
tively indi
ate the maximum and 
urrent iteration number. Setting w

max

to 0.9 and w

min

to 0.4 has been shown to give good 
onversion, independent of the problems

tested [46, 47℄.
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Constri
tion 
oeÆ
ient

Mauri
e Cler
 has introdu
ed a 
onstri
tion fa
tor to PSO, whi
h improves PSO's ability

to 
ontrol velo
ities [11℄. The 
onstri
tion fa
tor analyti
ally 
hooses values for w, 


1

and




2

su
h that 
ontrol is allowed over the dynami
al 
hara
teristi
s of the parti
le swarm, in-


luding its exploration versus exploitation abilities. Clamping the velo
ities is not ne
essary

when a 
onstri
tion 
oeÆ
ient � is used in (3.3), 
hanging the velo
ity update to

v

(t+1)

ij

= �

�

v

(t)

ij

+ 


1

r

(t)

1

[z

(t)

ij

� p

(t)

ij

℄ + 


2

r

(t)

2

[bz

(t)

j

� p

(t)

ij

℄

�

(3.12)

with

� =

2

�

�

2� '�

p

'

2

� 4'

�

�

(3.13)

and ' = 


1

+ 


2

, ' > 4.

As the value of ' tends to 4 (from above), the value of � tends to 1 (from below), and the

parti
le's velo
ity is almost not damped at all; as ' grows larger, � tends to zero, and the

parti
le's velo
ity is more strongly damped. A 
orre
t 
hoi
e of the 
onstri
tion fa
tor makes

velo
ity 
lamping unne
essary, although it was found that �, 
ombined with 
onstraints on

v

max

, signi�
antly improved PSO performan
e [17℄.

Guaranteed Convergen
e Parti
le Swarm Optimiser

The PSO des
ribed in this 
hapter, in
luding the versions with an inertia weight (3.10) and


onstri
tion fa
tor (3.12), all have a probability of 
onverging prematurely. This 
an be


learly seen by 
onsidering the 
ase when a parti
le's position and personal best 
oin
ide

with the global best. The velo
ity of the parti
le will only depend on v

(t)

ij

(or wv

(t)

ij

or �v

(t)

ij

),

and if it is 
lose to zero, or the position of the global best does not 
hange, the parti
le will

`
at
h up' with the global best. This does not mean that the swarm has 
onverged to a

minimum, but merely that it has 
onverged prematurely to the global best.

Van den Berg has introdu
ed the Guaranteed Convergen
e PSO (GCPSO) [53, 54℄, whi
h

de�nes a di�erent velo
ity update for the global best parti
le. If � is the index of the global

best parti
le, su
h that z

�

=
b
z, then the new velo
ity update ensures that a point is sampled

from the support of a probability measure 
ontaining
b
z or 
lose to

b
z:

v

(t+1)

�;j

= �p

(t)

�;j

+ bz

(t)

j

+ wv

(t)

�;j

+ �

(t)

(1� 2r

(t)

2

) (3.14)

The value � is a s
aling fa
tor used to generate a random sample spa
e with � as its side

lengths, with r

(t)

2

again being uniformly distributed between zero and one. In essen
e the

velo
ity update resets the parti
le's position to that of the global best, and adds the 
urrent
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sear
h dire
tion. To this result a random ve
tor from �

(t)

(1� 2r

(t)

2

) is added. By 
ombining

equations (3.4) and (3.14), the position of the new parti
le will be

p

(t+1)

�;j

= bz

(t)

j

+ wv

(t)

�;j

+ �

(t)

(1� 2r

(t)

2

) (3.15)

The size of the random sear
h volume is 
hanged by expanding � when better fun
tion

evaluations are su

essfully found. The sampling volume is de
reased when no improvements

to the fun
tion evaluation is found over time; the smaller volume in
reases the probability

of 
hoosing a variable that gives a better obje
tive fun
tion value. If a failure in de
reasing

the obje
tive fun
tion is equivalent to f(
b
z

(t)

) = f(
b
z

(t�1)

), then the value of �

(t)

is adapted

after ea
h iteration of the GCPSO algorithm with

�

(t+1)

=

8

>

>

<

>

>

:

2�

(t)

if #s > s




1

2

�

(t)

if #f > f




�

(t)

otherwise

(3.16)

The terms #s and #f respe
tively denote the number of 
onse
utive su

esses and

failures, with s




and f




being threshold parameters. To ensure the 
orre
tness of (3.16), #f

is set to zero if #s in
reases from iteration t to iteration t+1 of the algorithm. In a similar

fashion, #s is set to zero when #f in
reases. A rigorous analysis of GCPSO 
an be found

in [53℄.

3.3 Con
luding

The basi
 PSO algorithm was dis
ussed in this 
hapter, and a (by no means exhaustive)

number of improvements were shown. In parti
ular, this 
hapter has fo
used on improve-

ments to the PSO that are relevant to the rest of this thesis. The GCPSO is of parti
ular

interest, sin
e it will be the basis for development of the Converging Linear PSO in Chapter

4. The interested reader is referred to [7, 27, 53℄, the pro
eedings of the Parti
le Swarm Opti-

mization Workshop (2001), and the pro
eedings of the IEEE Swarm Intelligen
e Symposium

(2003) for a thorough treatment of resear
h in Parti
le Swarm Optimisers.

An overview of un
onstrained optimisation was given, but it will only serve as a platform

from whi
h PSO will be extended to optimise 
onstrained problems. The following 
hapter

takes 
are of this extension, by examining and analysing a method of linear 
onstraint

handling. Inequality 
onstraints are also taken 
are of, and �nally we not only have a PSO

that 
an train Support Ve
tor Ma
hines, but 
an also optimise general problems with both

linear equality and inequality 
onstraints.



Chapter 4

Constrained Parti
le Swarm

Optimisation

The standard Parti
le Swarm Optimiser is unable to easily optimise fun
tions bound by a

set of linear equality or inequality 
onstraints. The obje
tive of this 
hapter is to present two

new algorithms, the Linear Parti
le Swarm Optimiser (LPSO) and the Converging Linear

Parti
le Swarm Optimiser (CLPSO), designed spe
i�
ally with 
onstrained optimisation in

mind. The properties and 
onvergen
e of these new algorithms are 
arefully analysed; a proof

for a set of initial 
onditions on LPSO, a proof of both algorithms' ability to sear
h within

the 
onstrained spa
e, and a 
onvergen
e proof for CLPSO, is given.

4.1 Introdu
tion to 
onstrained optimisation

Optimisation problems have the goal of �nding the best value of some fun
tion. These

types of problems are generally 
omposed of three parts: an obje
tive fun
tion that needs

to be optimised (minimised or maximised), a set of solution-de�ning variables on whi
h the

obje
tive fun
tion depends, and a set of 
onstraints that restri
ts feasible values of these

variables. Constraints 
an be of two types: equality 
onstraints spe
ify that a fun
tion

of the variables must be equal to a 
onstant, while inequality 
onstraints spe
ify that a


ertain fun
tion of the variables must be greater than or equal to (or less than or equal to)

a 
onstant.

4.1.1 Terminology

Let x = (x

1

; x

2

; : : : ; x

n

)

T

2 R

n

represent the solution-de�ning variable. This ve
tor x 2 R

n

is 
alled the optimisation variable. The fun
tion that needs to be optimised is de�ned as

39
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f : R

n

! R, and is 
ommonly 
alled the obje
tive fun
tion or 
ost fun
tion. Let the

set of fun
tions g

i

: R

n

! R de�ne the inequality 
onstraint fun
tions, giving a set of

inequalities g

i

(x) � 0. De�ning h

i

(x) = 0 as equality 
onstraints, the fun
tions h

i

: R

n

! R

are the equality 
onstraint fun
tions. If there are no 
onstraints, the problem is 
alled an

un
onstrained problem, as was examined in Chapter 3.

Using the above notation, a general optimisation problem 
an be stated as

Minimise f(x)

Subje
t to g

i

(x) � 0; i = 1 : : : k

h

i

(x) = 0; i = 1 : : :m (4.1)

to des
ribe the problem of �nding an optimisation variable x that minimises f(x) over all

values of x that satisfy the 
onditions g

i

(x) = 0, i = 1 : : : k, and h

i

(x) = 0, i = 1 : : :m.

The maximum of f(x) 
an be found by minimising �f

?

(x). In a similar way, an inequal-

ity 
onstraint fun
tion g

i

(x) � 0 
an be written in the standard form with �g

i

(x) � 0.

The domain 
 of the 
onstrained optimisation problem is the set of x-values for whi
h

the obje
tive and all 
onstraint fun
tions are de�ned. If dom(g

i

) denotes the set of x-values

for whi
h g

i

(x) � 0, and dom(h

i

) denotes the set of x-values for whi
h h

i

(x) = 0, then 
 is

the interse
ion of these domains.


 =

k

\

i=1

dom(g

i

) \

m

\

i=1

dom(h

i

) (4.2)

A point x 2 
 is feasible if it satis�es the 
onstraints g

i

(x) � 0 and h

i

(x) = 0.

If 
 is non-empty, there exists at least one feasible point, and the problem is feasible.

If no feasible point exists, the problem is infeasible. The domain is the set of all feasible

points, 
alled the feasible set. The problem of determining whether the problem is feasible

or not is 
alled the feasibility problem. The feasibility problem determines if the inequalities

are 
onsistent, and if so, �nds a point that satis�es them. It is written as

Find x

Subje
t to g

i

(x) � 0; i = 1 : : : k

h

i

(x) = 0; i = 1 : : :m (4.3)

If x is feasible and g

i

(x) = 0, the 
onstraint g

i

(x) � 0 is a
tive at x. If g

i

(x) < 0, the


onstraint g

i

(x) � 0 is ina
tive. The equality 
onstraint h

i

(x) = 0 is a
tive at all feasible

points. Redundant 
onstraints are 
onstraints that are implied by other 
onstraints, and

deleting them will not 
hange the set of feasible solutions.

The optimal or minimal value f

?

of problem (4.1) is de�ned as
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f

?

= infff(x)

�

�

g

i

(x) � 0; i = 1 : : : k; and h

i

(x) = 0; i = 1 : : :mg (4.4)

The values of f

?

are allowed to take on the extended values �1. If the problem is

infeasible, and the standard 
onvention that the in�mum of the empty set is +1 is used,

the optimal value f

?

is equal to +1.

It is also possible that the problem is unbounded from below, su
h that f

?

= �1. A

problem unbounded from below 
ontains a sequen
e of feasible points fx

j

g

j�1

with f(x

j

)!

�1 as j !1.

For x 2 R

n

to be an optimal point, it must be feasible and have f(x) = f

?

. The problem

may 
ontain more than one feasible x that minimises f(x), and the set of these optimal

points is denoted by

X = fx

�

�

g

i

(x) � 0; i = 1 : : : k; and

h

i

(x) = 0; i = 1 : : :m; and f(x) = f

?

g (4.5)

If X is not empty, the optimal value 
an be found and the problem is solvable. If X is

empty, an optimal value 
an not be found.

An approximate solution to the problem is very often suÆ
ient if a numeri
 method is

used to �nd it. This approximate solution must lie within an error margin � > 0 from the

true solution. The solution x with f(x) � f

?

+ � is 
alled �-suboptimal and the set of all

�-suboptimal points is 
alled the �-suboptimal set for the problem.

A lo
al solution to the optimisation problem is a feasible point x whi
h will minimise f

on the set of nearby feasible solutions within a 
ertain radius from x. A feasible point x is

thus lo
ally optimal if there is an R > 0 su
h that

f(x) = infff(z)

�

�

g

i

(z) � 0; i = 1 : : : k; and

h

i

(z) = 0; i = 1 : : :m; and kz� xk � Rg (4.6)

The term `globally optimal' is used for `optimal' to distinguish between `lo
ally optimal' and

`optimal.'

4.1.2 Expressing problems in the standard form

Optimisation problem (4.1) is referred to as a standard form optimisation problem. The


onvention is 
hosen that the right-hand side of the inequality and equality 
onstraints

are zero. This 
an always be arranged by subtra
ting any nonzero right-hand side: for

example, the equality 
onstraint h

(1)

i

(x) = h

(2)

i

(x) is written as h

i

(x) = 0, where h

i

(x) =

h

(1)

i

(x) � h

(2)

i

(x). In a similar way inequalities of the form g

i

(x) � 0 are expressed as

�g

i

(x) � 0.
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4.1.3 Sla
k variables

Problem (4.1),

Minimise f(x)

Subje
t to g

i

(x) � 0; i = 1 : : : k

h

i

(x) = 0; i = 1 : : :m


an be rewritten so that all inequalities involve only a single variable, instead of an entire

fun
tion g

i

(x). These single variables are 
alled sla
k variables and repla
es ea
h inequality


onstraint with an equality 
onstraint, and a non-negativity 
onstraint. There is one sla
k

variable s

i

asso
iated with ea
h original inequality 
onstraint g

i

(x) � 0. Optimisation

problem (4.1) is rewritten as

Minimise f(x)

Subje
t to g

i

(x) + s

i

= 0; i = 1 : : : k

h

i

(x) = 0; i = 1 : : :m

s

i

� 0; i = 1 : : : k (4.7)

where the variables are x 2 R

n

and s 2 R

k

. This problem has n+ k variables, k inequality


onstraints (the non-negativity 
onstraints on s

i

), and k +m equality 
onstraints.

The problem is equivalent to the original standard form problem. If (x; s) is feasible

for the above problem, then x is feasible for the original problem, sin
e s

i

= �g

i

(x) � 0.

Conversely, if x is feasible for the original problem, then (x; s) is feasible for the above

problem, where s

i

= �g

i

(x). Similarly, x is optimal for the original problem if and only if

(x; s) is optimal for the above problem, where s

i

= �g

i

(x).

4.1.4 Convex optimisation

A 
onvex optimisation problem is one of the form

Minimise f(x)

Subje
t to g

i

(x) � 0; i = 1 : : : k

Ax = b; A 2 R

m�n

and b 2 R

m

(4.8)

where both f and g

1

; : : : ; g

k

are 
onvex fun
tions. The 
onvex problem has three additional

requirements 
ompared to the general standard form problem (4.1): the obje
tive is 
onvex,

the inequality 
onstraint fun
tions are 
onvex, and the equality 
onstraint fun
tions h

i

(x) =

a

T

i

x� b

i

are aÆne.
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The additional requirements give rise to an important property: the feasible set of a


onvex optimisation problem is 
onvex, sin
e it is the domain of the problem


 =

k

\

i=1

dom(g

i

) \ fx j Ax = bg (4.9)

whi
h is a 
onvex set, with k (
onvex) sublevel sets fx j g

i

(x) � 0g and m hyperplanes

fx j a

T

i

x = b

i

g.

An important property of 
onvex optimisation problems is that any lo
ally optimal point

is also globally optimal. To see this, suppose that (feasible) x is lo
ally optimal for a 
onvex

optimisation problem, and

f(x) = infff(z)

�

�

g

i

(z) � 0; i = 1 : : : k; and

a

T

i

x = b

i

; i = 1 : : :m; and kz� xk � Rg (4.10)

for some R > 0. Now suppose that x is not globally optimal, su
h that there is a feasible

y with f(y) < f(x). As a result ky � xk > R, sin
e otherwise f(x) � f(y). Consider the

point z given by

z = (1� �)x+ �y; � =

R

2ky� xk

(4.11)

It follows that kz � xk =

R

2

< R, and by 
onvexity of the feasible set, z is feasible. By


onvexity of f it follows that

f(z) � (1� �)f(x) + �f(y) < f(x) (4.12)

whi
h 
ontradi
ts (4.10). Hen
e there exists no feasible y with f(y) < f(x), and it follows

that x is globally optimal.

4.1.5 Duality

Consider the standard optimisation problem (4.1), with a non-empty domain 
, also 
alled

a `primal problem.' The 
onstraints in (4.1) 
an be introdu
ed to the obje
tive fun
tion by

augmenting it with a weighted sum of the 
onstraint fun
tions. Let the ve
tor � 2 R

k

be

asso
iated with the set of k inequality 
onstraints, and � 2 R

m

be asso
iated with the set of

m equality 
onstraints. These ve
tors are 
alled the Lagrange multiplier ve
tors, and de�ne

the Lagrangian L : R

n

� R

k

� R

m

! R asso
iated with (4.1) as

L(x;�;�) = f(x) +

k

X

i=1

�

i

g

i

(x) +

m

X

i=1

�

i

h

i

(x) (4.13)
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The dual problem asso
iated with the primal problem is written as

Maximise L(x;�;�) with respe
t to � and �

Subje
t to � � 0 (4.14)

If the problem (4.1) is 
onvex, then the solution of the primal problem is the ve
tor x

?

of

the saddle point (x

?

;�

?

;�

?

) of (4.13) su
h that

L(x

?

;�;�) � L(x

?

;�

?

;�

?

) � L(x;�

?

;�

?

) (4.15)

The ve
tor x

?

that solves the primal problem, as well as the two Lagrange multiplier

ve
tors � and �, 
an be found by solving the min-max problem

min

x

max

�;�

L(x;�;�) (4.16)

4.1.6 Equality-
onstrained optimisation

The �nal optimisation problem introdu
ed, is the problem of minimising f under a set of

linear equality 
onstraints. This problem is written as

Minimise f(x)

Subje
t to Ax = b; A 2 R

m�n

and b 2 R

m

(4.17)

and will from the basis of PSO developments to follow. In the following se
tions, a PSO

algorithm is developed to su

essfully handle the above equality 
onstrained optimisation

problem. The method is extended to handle inequality 
onstraints as well.

4.2 Linear Parti
le Swarm Optimisation

The Parti
le Swarm Optimisation (PSO) algorithm dis
ussed in Chapter 3 is an algorithm

suited for un
onstrained optimisation. This se
tion introdu
es a new PSO algorithm, the

Linear Parti
le Swarm Optimiser, that is spe
i�
ally developed with linear 
onstraints in

mind. The update equations for a parti
le's velo
ity and position, with inertia weight w, is

repeated here:

v

(t+1)

ij

= wv

(t)

ij

+ 


1

r

(t)

1

[z

(t)

ij

� p

(t)

ij

℄ + 


2

r

(t)

2

[bz

(t)

j

� p

(t)

ij

℄ (4.18)

p

(t+1)

ij

= v

(t+1)

ij

+ p

(t)

ij

(4.19)

Traditionally, the above velo
ity and position update steps are spe
i�ed separately for ea
h

dimension of a parti
le, as is done in [25, 27, 48, 53℄. If the random numbers r

(t)

1

and r

(t)

2
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are rather kept 
onstant for all ve
tor dimensions, the velo
ity updates are 
al
ulated as a

linear 
ombination of position and velo
ity ve
tors.

v

(t+1)

i

= wv

(t)

i

+ 


1

r

(t)

1

[z

(t)

i

� p

(t)

i

℄ + 


2

r

(t)

2

[
b
z

(t)

� p

(t)

i

℄ (4.20)

p

(t+1)

i

= v

(t+1)

i

+ p

(t)

i

(4.21)

The above approa
h has the advantage that the 
ight of parti
les is de�ned by standard

linear operations on ve
tors. The guaranteed movement of parti
les through subspa
es and

subsets be
omes possible, as stated in Theorem 4.1 (to follow). The PSO algorithm using

update equations (4.20, 4.21) is referred to as a \Linear Parti
le Swarm Optimiser" (LPSO),

due to the way the update equations are formulated. The LPSO algorithm, used to minimise

a fun
tion

f : R

n

! R (4.22)

is presented below:

Algorithm 4.1 - Linear Parti
le Swarm Optimisation (LPSO)

1. Set the iteration number t to zero, and randomly initialise the swarm S of n-dimensional

parti
les p

(0)

i

to a value in the initial domain of the swarm. Initialise all velo
ity ve
tors

v

i

= 0.

2. Evaluate the performan
e f(p

(t)

i

) of ea
h parti
le.

3. Compare the personal best of ea
h parti
le to its 
urrent performan
e, and set z

(t)

i

to

the better performan
e:

z

(t)

i

=

8

<

:

z

(t�1)

i

if f(p

(t)

i

) � f(z

(t�1)

i

)

p

(t)

i

if f(p

(t)

i

) < f(z

(t�1)

i

)

(4.23)

4. Set the global best
b
z

(t)

to the position of the best performan
e in the swarm:

b
z

(t)

2 fz

(t)

1

; z

(t)

2

; : : : ; z

(t)

s

g

�

�

f(
b
z

(t)

)

= minff(z

(t)

1

); f(z

(t)

2

); : : : ; f(z

(t)

s

)g (4.24)

5. Change the velo
ity ve
tor for ea
h parti
le a

ording to equation (4.20).

6. Move ea
h parti
le to its new position, a

ording to equation (4.21).

7. Let t := t+ 1.

8. Go to step 2, and repeat until 
onvergen
e or t = t

max

.
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(a) S

?

spanning R

1
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(2,1)
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x1
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(b) S

?

spanning R

2

.

Figure 4.1: Comparing the possible sear
h spa
es resulting from di�erent initial swarms in LPSO,

with v

(0)

i

= 0.

The algorithm has 
onverged if the di�eren
e between the best solution found over a

spe
i�ed number of iterations remains within a 
ertain bound. The algorithm iterates until

either one of two 
onditions is met: the algorithm has 
onverged, or the maximum number

of iterations t

max

have been rea
hed. In essen
e the 
onvergen
e and stopping 
onditions

are therefore the same as for the standard PSO.

4.2.1 Criteria on the initial swarm

If a PSO is 
onsidered in the traditional sense, with random numbers r

(t)

1

and r

(t)

2

generated

for ea
h dimension in a parti
le's update equations (4.18, 4.19), any point in the sear
h

spa
e 
an possibly be rea
hed with a swarm of arbitrary size. It is even possible to rea
h

any point in the sear
h spa
e with a swarm of size two [27℄.

This generalisation does not work for the LPSO, where the update equations (4.20) and

(4.21) are in fa
t linear 
ombinations of position and velo
ity ve
tors. The initial swarm

will thus in
uen
e whi
h positions 
an and 
annot be found.

In fa
t, if all velo
ities are initialised to zero (like in the LPSO algorithm above), only

positions in the span of the set of ve
tors 
reated by subtra
ting the initial global best
b
z

(0)

from ea
h initial position ve
tor, will be found. A similar idea is true if the initial velo
ities

are non-zero, where the initial velo
ity ve
tors are added to the previous set of ve
tors

(
reated by subtra
ting the global best
b
z

(0)

from ea
h initial position ve
tor) to span the

set of possible solutions found.

Consider the example illustrated in Figures 4.1(a) and 4.1(b), and say f(x) is minimized

at a point (or ve
tor) x

?

. If the LPSO algorithm is able to �nd x

?

, ve
tor x

?

should be

de
omposable into a linear 
ombination of the initial velo
ity ve
tors.

It is easy to see from Figure 4.1(a) that a swarmwith initial population f(1; 2); (2; 1); (3; 0)g
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will never be able to rea
h x

?

= (2; 2). This is due to the way the parti
les are moved with

velo
ities whi
h are initialised to the zero ve
tor. v

(t)

1

and v

(t)

2

will 
ause the parti
les to 
y

on a straight line, sin
e all possible velo
ities will be of the form �[(1; 2)� (2; 1)℄ = �(�1; 1),

with � 2 R. All personal and global bests will also lie on this line, and thus sear
hes will

be in R

1

and not in R

2

. If
b
z

(0)

= (2; 1), then the set of ve
tors

f(1; 2)�
b
z

(0)

; (2; 1)�
b
z

(0)

; (3; 0)�
b
z

(0)

g = f(�1; 1); (0; 0); (1;�1)g

as shown in Figure 4.1(a), will only span R

1

. The optimal value x

?

at (2; 2) 
an not be

rea
hed. In 
omparison, Figure 4.1(b) shows that the set of ve
tors

fp�
b
z

(0)

j p 2 S

(0)

g = f(�1; 1); (0; 0); (2; 2)g

from the initial swarm S

(0)

= f(1; 2); (2; 1); (4; 3)g will span R

2

, and x

?

at (2; 2) 
an

possibly be rea
hed.

This leads us to a �rst important theorem, whi
h makes the following assumptions from

Algorithm 4.1 (LPSO):

1. v

(0)

i

= 0

2. z

(0)

i

= p

(0)

i

Theorem 4.1

If f needs to be optimized in R

n

, a swarm of s parti
les S

(0)

= fp

(0)

1

; p

(0)

2

; : : : ;p

(0)

s

g will

be able to �nd the optimal value x

?

if and only if there exists a subset S

?

� S

(0)

�
b
z

(0)

=

fp�
b
z

(0)

j p 2 S

(0)

g that forms a basis for R

n

.

Proof

Say the optimal value x

?


an be found. Then x

?


an be written as some p

(0)

k

2 S

(0)

plus a

linear 
ombination of the set of initial velo
ity ve
tors

�

wv

(0)

i

+ 


1

r

(0)

1

[z

(0)

i

� p

(0)

i

℄ + 


2

r

(0)

2

[
b
z

(0)

� p

(0)

i

℄

�

�

i = 1 : : : s

	

Sin
e v

(0)

i

= 0, z

(0)

i

= p

(0)

i

and �


2

r

(0)

2

is a non-zero s
alar, x

?

� p

(0)

k


an be written as a

linear 
ombination of

S

(0)

�
b
z

(0)

=

�

p

(0)

1

�
b
z

(0)

; p

(0)

2

�
b
z

(0)

; : : : ;p

(0)

s

�
b
z

(0)

	

Be
ause any ve
tor x

?

� p

(0)

k

2 R

n


an be written as a linear 
ombination of S

(0)

�
b
z

(0)

,

it is true that S

(0)

�
b
z

(0)

spans R

n

. Thus there exits a subset S

?

� S

(0)

�
b
z

(0)

of linearly

independent ve
tors that also spans R

n

. This subset S

?

will form a basis for R

n

.
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To prove the 
onverse, assume S

?

� S

(0)

�
b
z

(0)

forms a basis for R

n

. Then any ve
tor

in R

n


an be written as a linear 
ombination of S

(0)

�
b
z

(0)

. The optimal value 
an thus be

written as p

(0)

k

2 S

(0)

plus some linear 
ombination of S

(0)

�
b
z

(0)

, and 
an thus be rea
hed.

�

Sin
e one of the parti
les will be the global best parti
le with p

(0)

i

�
b
z

(0)

= 0, the set of

ve
tors S

(0)

�
b
z

(0)

will 
ontain the zero ve
tor, and so S

(0)

needs to 
ontain a minimum of

n+ 1 ve
tors for S

(0)

�
b
z

(0)

to span R

n

, namely

inf jS

(0)

j = n+ 1 (4.25)

To explore the 
ase when initial velo
ities are non-zero, 
onsider the LPSO update equa-

tions (4.20) and (4.21). Assuming that the initial personal best z

(0)

i

is set to p

(0)

i

, two ve
tors

play a role in parti
le i's update equations: the initial velo
ity ve
tor v

(0)

i

and the di�eren
e

between the initial global best
b
z

(0)

and the initial position p

(0)

i

. It follows that the set of

ve
tors

�

v

(0)

1

;
b
z

(0)

� p

(0)

1

; v

(0)

2

;
b
z

(0)

� p

(0)

2

; : : : ;v

(0)

s

;
b
z

(0)

� p

(0)

s

	

must span R

n

, and the minimum swarm size for LPSO of S

(0)

will be

�

n

2

�

+ 1.

4.3 Equality-
onstrained optimisation

The LPSO algorithm lends itself perfe
tly to solving equality-
onstrained optimisation prob-

lems, as was dis
ussed in Se
tion 4.1.6. This se
tion summarises 
urrent methods from the

Evolutionary Computing and PSO �elds, and dis
usses and proves the usefulness of LPSO

to equality-
onstrained optimisation.

4.3.1 Current methods

Many methods for 
onstraint handling have been proposed in the Evolutionary Computation

�eld [32℄. These 
an be broadly 
lassi�ed into penalty, repair and 
onstraint-preserving

methods.

Penalty methods add a penalty to the obje
tive fun
tion to de
rease the quality of infea-

sible solutions [20, 22, 32℄. While penalty methods are very popular, they do not guarantee

a solution where no 
onstraints are violated, sin
e the sear
h spa
e still in
ludes infeasible

solutions, and su

ess depends on the penalty method.

Repair methods apply operators to move an infeasible solution 
loser to the feasible

spa
e of solutions [30, 60℄. Operators designed to `
orre
t' infeasible solutions are usually
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Figure 4.2: Progressive redu
tion of the feasible domain.


omputationally intensive. Not all 
onstraints 
an be easily implemented to be 
orre
ted by

these operators, whi
h must be tailored to the parti
ular problem [15℄.

Constraint-preserving methods (feasible solutions methods) redu
e the sear
h spa
e by

ensuring that all 
andidate solutions at all times satisfy the 
onstraints [32℄. Solutions are

initialised within the feasible domain, and transformations of 
andidate solutions are su
h

that the resulting solutions still lie within the feasible domain.

Hamida and S
hoenauer introdu
ed a hybrid approa
h for Evolutionary Algorithms to

handle equality 
onstraints [22℄. In this approa
h, equalities h

j

(x) = 0 are written as double

inequalities �"

(t)

� h

j

(x) � "

(t)

. The idea is to start, for ea
h equality, with a large feasible

domain, and so tolerate high violation degrees. This domain is then gradually redu
ed

along evolution, in order to bring it as 
lose as possible to a null measure feasible domain,

as illustrated in Figure 4.2. The value of " is progressively redu
ed with the aim of rea
hing

0 � h

j

(x) � 0.

Feasible solutions methods, on the other hand, are based on transforming feasible indi-

viduals into other feasible individuals. In the Evolutionary Algorithm sense, it is done by

operators that are 
losed on the feasible part of the sear
h spa
e. These methods assume

linear 
onstraints only and a feasible starting point, or a feasible initial population [32℄.

Mi
halewi
z and Janikow developed a geneti
 algorithm 
alled Geno
op, named after

\GEneti
 algorithm for Numeri
al Optimisation for COnstrained Problems" [31℄. The ap-

proa
h, fo
using on linear 
onstrains, �rstly eliminates the equalities in the set of 
onstraints,

and se
ondly uses 
arefully designed `geneti
' operators that guarantee to keep all `
hromo-

somes' of the geneti
 algorithm within the 
onstrained spa
e.

Shi and Krohling developed a method using two 
o-evolving PSOs, and duality from

Se
tion 4.1.5, to solve a 
onstrained optimisation problem [49℄. The min-max problem

(4.16) is solved by evolving two simultaneous PSOs. The �rst PSO freezes the Lagrange

multipliers � and �, and minimises the Lagrangian L(x;�;�) over x. The se
ond PSO

freezes the variable ve
tor x, and maximises L(x;�;�) over the Lagrange multipliers � and

�. However, if the optimisation problem is non-
onvex, the solution of the primal and dual

problems do not 
oin
ide. In this 
ase a penalty, determined by the inequality and equality
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onstraint fun
tions, is added to the Lagrangian.

The LPSO falls in the 
onstraint-preserving 
lass of 
onstraint handling algorithms.

Linear 
onstraints are assumed, and if the initial swarm 
ontains only feasible starting

points, transitions to new solutions through velo
ity updates ensure feasible solutions to be

generated.

4.3.2 PSO for equality-
onstrained optimisation

Let the obje
tive be to �nd the minimum of some fun
tion f(x), where x 2 R

n

, subje
t to

a set of linear 
onstraints,
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It is assumed that the problem is feasible, or the solution set for the linear 
onstraints is

non-empty. Then, in simple terms, the problem is de�ned as

Minimise f(x); x 2 R

n

Subje
t to Ax = b; A 2 R

m�n

and b 2 R

m

(4.26)

It 
an be said that f needs to be optimised in the hyperplane C, the set of parti
ular

solutions of the linear system Ax = b. That is,

C = fx j Ax = bg

de�nes the set of feasible solutions to (4.26), and ea
h point in C will be a feasible point. Fig-

ure 4.3 illustrates a one-dimensional hyperplane (or line) C that 
onstrains two-dimensional

solutions x = (x

1

; x

2

).

The approa
h presented below 
ies the swarm through the set of feasible solutions, in

this 
ase hyperplane C.
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x1

f x x( , )1 2

x2

Figure 4.3: Minimising f under a linear equality 
onstraint.

Feasible dire
tions

Given a feasible point x (a parti
le's position, for instan
e), it will be ne
essary to 
y from

x to other feasible points. This 
an be done with feasible dire
tions. Let

H = fx j Ax = 0g

de�ne the set of solutions of the homogeneous system Ax = 0. H is a subspa
e of R

n

, and

sin
e H is 
losed under ve
tor addition and s
alar multipli
ation, it is also a ve
tor spa
e.

If 


0

is any element of C, then H is de�ned by C minus some o�set 


0

, or the set of ve
tors

C � 


0

= f
� 


0

j 
 2 Cg.

If x is feasible and h 2 H , the point x + �h is also feasible for every value of �, sin
e

A(x+ah) = Ax+�Ah = b+�0 = b. Any move from a feasible point along h will produ
e

another feasible point. Any nonzero dire
tion h 2 H is 
alled a feasible dire
tion for the


onstraints Ax = b in (4.26).

If the initial swarm is feasible, and the parti
les 
y with only feasible dire
tions as their

velo
ity ve
tors, then the swarm will stay within the sear
h spa
e. This is summarized in

Theorem 4.2, whi
h 
an be proved by a simple indu
tive argument:

Theorem 4.2

If all initial velo
ity ve
tors v

(0)

i

are solutions to the homogeneous system Ax = 0, and all

initial parti
les p

(0)

i

lie in the hyperplane de�ned by Ax = b, then for any time t
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I) Av

(t)

i

= 0

II) Ap

(t)

i

= b

III) Az

(t)

i

= b

IV) A
b
z

(t)

= b

i.e. the swarm will 
y through the hyperplane de�ned by the 
onstraints.

Proof

Without losing generality, subs
ript i, denoting a spe
i�
 parti
le in the swarm, is dropped.

Basis step:

I) v

(0)

= 0 (by initialisation) is the trivial solution to Ax = 0

II) p

(0)

is initialised on the hyperplane Ax = b

III) z

(0)

= p

(0)

) Az

(0)

= b

IV)
b
z

(0)

2 fz

(0)

1

; z

(0)

2

; : : : ; z

(0)

s

g

j f(
b
z

(0)

) = minf f(z

(0)

1

); f(z

(0)

2

); : : : ; f(z

(0)

s

)g

) A
b
z

(0)

= b

Indu
tive step:

Suppose Av

(k)

= 0, Ap

(k)

= b, Az

(k)

= b and A
b
z

(k)

= b. Then

I) Av

(k+1)

= A

�

wv

(k)

+ 


1

r

(k)

1

[z

(k)

� p

(k)

℄ + 


2

r

(k)

2

[
b
z

(k)

� p

(k)

℄

�

= wAv

(k)

+ 


1

r

(k)

1

(Az

(k)

�Ap

(k)

) + 


2

r

(k)

2

(A
b
z

(k)

�Ap

(k)

)

= wAv

(k)

+ 


1

r

(k)

1

(b� b) + 


2

r

(k)

2

(b� b)

= w0+ 


1

r

(k)

1

0+ 


2

r

(k)

2

0

= 0

II) Ap

(k+1)

= A(v

(k+1)

+ p

(k)

)

= Av

(k+1)

+Ap

(k)

= 0+ b

= b

III) Az

(k+1)

=

8

<

:

Az

(k)

if f(p

(k+1)

) � f(z

(k)

)

Ap

(k+1)

if f(p

(k+1)

) < f(z

(k)

)

= b

IV)
b
z

(k+1)

2 fz

(k+1)

1

; z

(k+1)

2

; : : : ; z

(k+1)

s

g j f(
b
z

(k+1)

)

= minff(z

(k+1)

1

); f(z

(k+1)

2

); : : : ; f(z

(k+1)

s

)g

) A
b
z

(k+1)

= b

�
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This shows that the swarm will 
y through the solution hyperplane C de�ned by the set

of feasible solutions.

Change of PSO for 
onstrained optimisation

It is 
lear from the above that, if the swarm is initialised to a set of feasible solutions, all

solutions found will be feasible. However, this does not mean that the optimum solution


an be found.

Theorem 4.1 provides a 
ondition on the initial swarm that guarantees that any point

inside the sear
h spa
e 
an be found. This sear
h spa
e was R

n

. With the given 
onstraints,

the sear
h spa
e will be some hyperplane inside R

n

. The initial swarm 
an be 
hosen su
h

that any point in this hyperplane 
an be found.

By de�nition, any dire
tion h satisfying Ah = 0 lies in the null spa
e of A. If the rank

of A is r, let

S

?

=

�

p

(0)

1

�
b
z

(0)

; p

(0)

2

�
b
z

(0)

; : : : ; p

(0)

n�r

�
b
z

(0)

	

denote a generi
 set of n � r linearly independent ve
tors, su
h that A(p

(0)

i

�
b
z

(0)

) =

Ap

(0)

i

� A
b
z

(0)

= b � b = 0. This implies that S

?

forms a basis for the n � r dimensional

null spa
e of A. S

?

provides a 
onvenient way to represent all feasible points. Given any

point p

(0)

su
h that Ap

(0)

= b, every feasible point 
an be written as p

(0)

plus some linear


ombination of S

?

.

For 
onstrained optimisation, f is optimised in an n � r dimensional hyperplane inside

R

n

, with r = rank(A). Thus a swarm of s parti
les S

(0)

= fp

(0)

1

; p

(0)

2

; : : : ; p

(0)

s

g will

be able to �nd the optimal value if and only if there exists a subset S

?

� S

(0)

�
b
z

(0)

=

fp�
b
z

(0)

j p 2 S

(0)

g that forms a basis for R

n�r

. In this 
ase the minimum swarm size will

be

inf jS

(0)

j = n� r + 1 (4.27)

If the whole swarm is thus initialised to lie within the hyperplane Ax = b, and S

?

�

S

(0)

�
b
z

(0)

de�nes a basis for R

n�r

, then f 
an be optimised in the standard way. It is due

to this property that Linear Parti
le Swarm Optimisation is ideally suited to solving these

kinds of optimisation problems.

Initialising parti
les within the sear
h plane

The next task is to �nd a way to initialise su
h a swarm with s parti
les. Most importantly,

all parti
les should lie within the sear
h plane. This 
an be done by redu
ing the augmented

matrix [Ajb℄ to row-e
helon form [A

0

jb

0

℄ with Gauss-Jordan redu
tion, and 
hoosing ve
tors

in the hyperplane by using this matrix, as summarized below:
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Algorithm 4.2 - Initialising parti
les within the sear
h plane

1. Redu
e the augmented matrix [Ajb℄ to transform the 
oeÆ
ient matrix A of the given


onstraints to row-e
helon form. The number of pivots in this form will be equal to r,

the rank of A.

[Ajb℄ � [A

0

jb

0

℄ =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 : : : 0 a

0

1r+1

: : : a

0

1n

b

0

1

0 1 : : : 0 a

0

2r+1

: : : a

0

2n

b

0

2
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : 1 a

0

rr+1

: : : a

0

rn

b

0

r

0 0 : : : 0 0 : : : 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : 0 0 : : : 0 0
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7

7

7

7

7

7
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5

(No pivots appear after 
olumn r)

2. Use [A

0

jb

0

℄ to generate a total of n� r linearly independent random ve
tors su
h that

Ap

(0)

i

= b for i = 1 : : : n� r.

A random ve
tor p = (p

1

; p

2

; : : : ; p

n

)

T

satisfying Ap = b 
an be 
onstru
ted by


hoosing values for p

k

randomly, with k = r + 1; : : : ; n (k 2 non-pivot 
olumns). Now

for ea
h j = 1; : : : ; r (j 2 pivot 
olumns), let

p

j

= b

0

j

�

n

X

k=r+1

a

0

jk

p

k

3. Generate one more ve
tor p

(0)

n�r+1

=

P

n�r

i=1

1

n�r

p

(0)

i

. Now,

Ap

(0)

n�r+1

= A

n�r

X

i=1

1

n� r

p

(0)

i

=

n�r

X

i=1

1

n� r

Ap

(0)

i

=

n�r

X

i=1

1

n� r

b = b

This ve
tor is a 
ombination of all other ve
tors and is linearly dependent on all ve
tors

1; : : : ; n� r. Any S

(0)

�
b
z

(0)

will form a basis for R

n�r

, sin
e subtra
ting any 
hoi
e

of
b
z

(0)

will give a linearly independent set.

4. Choose the initial positions of parti
les n� r+2 to s at random by using the method

des
ribed in Step 2 to 
reate a swarm of size s.

4.3.3 Over
oming premature 
onvergen
e

The LPSO algorithm (Algorithm 4.1) dis
ussed above has one property that is very disad-

vantageous, and that is the possibility of premature 
onvergen
e.
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If v

(0)

is initialised to 0 and the position of the global best parti
le does not 
hange,

sear
hes will 
ontinue on lines 
onne
ting ea
h parti
le with the global best. So the whole

hyperplane is not sear
hed, but only lines.

In another s
enario, 
onsider p

i

= z

i

=
b
z, where velo
ity updates will depend only on

the value of wv

(t)

i

, as dis
ussed in [53, 54℄. If a parti
le's 
urrent position 
oin
ides with the

global best position, the parti
le will only move away from this point if its previous velo
ity

and w are non-zero. Premature 
onvergen
e will o

ur when previous velo
ities are 
lose to

zero, and parti
les stop moving on
e they 
at
h up with the global best parti
le.

To over
ome this premature 
onvergen
e, the Guaranteed Convergen
e Parti
le Swarm

Optimiser (GCPSO) was developed [53, 54℄. In this algorithm, the velo
ity update for the

global best parti
le is 
hanged to for
e it to sear
h for a better solution in an area around the

position of that parti
le. A 
onvergen
e proof for the GCPSO, and results to substantiate

its su

ess 
an be found in [53, 54℄.

The GCPSO 
annot be used as given in [53, 54℄, sin
e un
onstrained random adjustments

may generate infeasible solutions. A variation is ne
essary be
ause parti
les 
annot be

altered with any random ve
tor, but only with feasible dire
tions. The new algorithm,

referred to as Converging LPSO (CLPSO), ensures that the 
onstraints from equation (4.26)

are still met.

Let � be the index of the global best parti
le, then

z

�

=
b
z (4.28)

Change the velo
ity update equation (4.20) for the global best parti
le � , so that

v

(t+1)

�

= �p

(t)

�

+
b
z

(t)

+ �

(t)

�

(t)

(4.29)

where �

(t)

is a s
aling fa
tor and �

(t)

� UNIF (�1; 1)

n

with the property that A�

(t)

= 0,

or �

(t)

lies in the null spa
e of A. The ve
tor �

(t)


an be 
onstru
ted from the redu
ed

augmented matrix [A

0

jb

0

℄, with A in row-e
helon form. Su
h a method is des
ribed in Step

2 of Se
tion 4.3.2. Now,

Av

(t+1)

�

= A

�

� p

(t)

�

+
b
z

(t)

+ �

(t)

�

(t)

�

= �Ap

(t)

�

+A
b
z

(t)

+ �

(t)

A�

(t)

= �b+ b+ 0

= 0

and so the swarm will still 
y through the hyperplane as des
ribed in Theorem 4.2. Sin
e

p

(t+1)

�

= v

(t+1)

�

+ p

(t)

�

=
b
z

(t)

+ �

(t)

�

(t)
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the new position of the global best parti
le will be its personal best
b
z

(t)

, with a random

ve
tor �

(t)

�

(t)

from the null spa
e of A added. It is only the global best parti
le that is

moved with the above velo
ity update (4.29), all other parti
les in the swarm are still moved

with the original equations (4.20) and (4.21).

Removal of initial 
onditions for CLPSO

Adding random ve
tors to the algorithm 
hanges the initial 
onditions: Theorem 4.1 is based

on LPSO whi
h does not make any allowan
e for random 
hanges to parti
le positions. Sin
e

�

(t)

is random, the 
ondition that some S

?

� S

(0)

�
b
z

(0)

that de�nes a basis for R

n�r

(with

rank(A) = r) should exist, 
an be dropped for CLPSO.

4.3.4 Proof of 
onvergen
e for CLPSO

To prove the 
onvergen
e of CLPSO to at least a lo
al minimum, a more general 
ondition

for 
onvergen
e of a random sear
h algorithm is �rst dis
ussed and proved. Consider the

following problem and 
on
eptual algorithm:

P Given a measurable fun
tion f : R

n

! R and S � R

n

. We seek a point x 2 S whi
h at

least �nds a lo
al minimum of f on S or yields an approximation of a lo
al minimum of f

on S.

Algorithm 4.3 - Con
eptual algorithm

1. Find x

(0)

2 S and set k = 0

2. Generate �

(k)

from (R

n

;B; �

k

)

3. x

(k+1)

= D(x

(k+1)

; �

(k)

), 
hoose �

k+1

, k := k + 1, go to step 1

The probability spa
e (R

n

;B; �

k

) is su
h that B is the �-�eld of Borel subsets of R

n

, and �

k

is a probability measure on B su
h that �

k

(R

n

) = 1. The algorithm starts with an initial

solution x

(0)

, and at ea
h iteration a possible new solution �

(k)

is generated from (R

n

;B; �

k

).

The fun
tion D, explained below, maps S � R

n

to S.

It is suÆ
ient to show that if the random sear
h algorithm satis�es two 
onditions { the

algorithm 
ondition and the 
onvergen
e 
ondition { then it will at least 
onverge to a lo
al

minimum. Ea
h of these 
ondisions are presented below.

Algorithm 
ondition The mapping D : S � R

n

! S should satisfy f(D(x; �)) � f(x)

and if � 2 S, then f(D(x; �)) � f(�).
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Let M

k

be the support of �

k

, the smallest 
losed subset of R

n

with measure of one. Al-

most all random sear
h algorithms are adaptive, implying that �

k

depends on the solutions

x

(0)

; : : : ;x

(k�1)

generated by the previous iterations of the algorithm. The �

k

are then

viewed as 
onditional probability measures. Let m be the Lebesgue measure of a set. The

sear
h method dis
ussed here is a 
alled a lo
al sear
h method, whi
h means that the �

k

with

bounded support M

k

have, for all ex
ept a possibly �nite k, m(S \M

k

) < m(S). Methods


alled global sear
h methods have m(S \M

k

) = m(S) for all k.

To avoid having to sear
h for an element in a set of null measure, the sear
h will be

for the essential in�mum of f . This assures that, for a pathologi
al 
ase like f(x) = x

2

for

x 6= 0, and f(x) = �1 for x = 0, the true minimum at -1 need not be found, but simply an x

for whi
h f(x) is arbitrarily 
lose to zero. Thus the sear
h for the in�mum will be repla
ed

by a sear
h for the essential in�mum. De�ne the minimum of f on S as

� = ess inf f = supfz : f(x) � z a.e.g

and assume that � is �nite.

1

Sin
e the nature of the sear
h is for the essential in�mum and therefore may pre
lude

the a
tual minimum, it is ne
essary to establish 
onvergen
e to a small region of values

surrounding the minimum. Let the optimality region for the (global) minimum be de�ned

as

R

�;0

= fx 2 S : f(x) < �+ �g

Fun
tion f has an essential lo
al minimum at 


i

2 S if there exists an n-dimensional

interval I

i

� S around 


i

, su
h that f(


i

) � f(x) a.e. for all x 2 I

i

. For ea
h of the

(possibly in�nite) lo
al minima 


i

with i � 1, de�ne the optimality region (that is suÆ
ient

for the sear
h algorithm to �nd) as

R

�;i

= fx 2 I

i

: f(x) < f(


i

) + �g

Now let R

�

=

S

i

R

�;i

be the optimality region for problem P.

Convergen
e 
ondition SuÆ
ient 
ondition for 
onvergen
e to at least a lo
al minimum

(of a lo
al sear
h algorithm): For any x

(k)

2 S, there exists a 
 > 0 and a 0 < � � 1 su
h

that

�

k

�

f(x

(k+1)

) � f(x

(k)

)� 
 or x

(k)

2 R

�

�

� � (4.30)

1

Thus the minimum is de�ned as the supremum of all z values su
h that f is greater than or equal to z

almost everywhere (a.e.), i.e. everywhere ex
ept possibly on some null set. Letting � = �1 will not alter

the spirit of the algorithm, if a very large negative value is taken as a suÆ
ient `approximation' of �1.
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Proof Take the 
omplement of (4.30) to get

�

k

�

f(x

(k+1)

) > f(x

(k)

)� 
 and x

(k)

=2 R

�

�

� 1� �

for all 
 > 0.

From the de�nition of D, f(x

(k+1)

) > f(x

(k)

)� 
 for all 
 > 0 is not possible, and so

�

k

(x

(k)

=2 R

�

) � 1� �

Let fx

(k)

g

k�0

be the sequen
e generated by D. Therefore it needs to be shown that

lim

k!1

P (x

(k)

2 R

�

) = 1. De�ne A to be the event that x

(k)

2 R

�

before iteration p. Then,

P (A) = 1� P (

�

A)

= 1�

p�1

Y

i=0

�

i

(x

(i)

=2 R

�

)

� 1� (1� �)

p

and so P (A)! 1 as p! +1.

To 
omplete the proof, 
onsider the 
ase when x

(p)

2 R

�

, and �

p

(f(x

(p+1)

) � f(x

(p)

)�


) > 0. Then there is a positive probability that x

(p+1)

=2 R

�

, and if that is the 
ase, the

above argument assures us that x

(k)

will 
onverge to R

�

on
e again. From the de�nition

of R

�

and D, this will be to a lo
al or possibly global minimum less than x

(p)

. (When

�

p

(f(x

(p+1)

) � f(x

(p)

) � 
) = 0, the sequen
e will remain in R

�

at a lo
al or the global

minimum.)

�

To prove that CLPSO 
onverges at least to a lo
al minimum, and does not stagnate

and 
onverge prematurely, it needs to be shown that both the algorithm 
ondition and the


onvergen
e 
ondition de�ned above will hold. Let S = R

n

.

Algorithm 
ondition The global best
b
z

(t)

is set to the position of the best performan
e

in the swarm, i.e.

b
z

(t)

2 fz

(t)

1

; z

(t)

2

; : : : ; z

(t)

s

g

�

�

f(
b
z

(t)

)

= maxff(z

(t)

1

); f(z

(t)

2

); : : : ; f(z

(t)

s

)g

and

z

(t)

i

=

8

<

:

z

(t�1)

i

if f(p

(t)

i

) � f(z

(t�1)

i

)

p

(t)

i

if f(p

(t)

i

) < f(z

(t�1)

i

)

The above update equations imply that the algorithm 
ondition holds.
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Convergen
e 
ondition Parti
le update equations are

p

(t+1)

i

= p

(t)

i

+ wv

(t)

i

+ 


1

r

(t)

1

[z

(t)

i

� p

(t)

i

℄ + 


2

r

(t)

2

[
b
z

(t)

� p

(t)

i

℄

and for the global best parti
le

p

(t+1)

�

=
b
z

(t)

+ �

(t)

�

(t)

Sampling a new point (that might be better than
b
z

(t)

) will be done for ea
h of s parti
les,

and thus we will de�ne M

t

, the support for �

t

at iteration t, as the set from whi
h ea
h

of these s values 
an be pi
ked. For ea
h parti
le p

i

(ex
ept for the global best parti
le �)

de�ne M

t;i

as the 
onvex hull de�ned by

�

p

(t)

i

�

,

�

p

(t)

i

+ wv

(t)

i

�

,

�

p

(t)

i

+ 


1

[z

(t)

i

� p

(t)

i

℄

�

, and

�

p

(t)

i

+ 


2

[
b
z

(t)

� p

(t)

i

℄

�

.

Sin
e r

(t)

1

; r

(t)

2

� UNIF (0; 1), the new parti
le p

(t+1)

i

will lie within M

t;i

. Also de�ne

M

t;�

as the n-dimensional hyper
ube with sides of length �

(t)

, 
entered at
b
z

(t)

. Let

M

t

=

s

[

i=1

M

t;i

be the support of probability measure �

t

. Sin
e M

t;�

�M

t

a point arbitrarily 
lose to
b
z

(t)


an be 
hosen, and hen
e there is always a 
 > 0 and 0 < � � 1 su
h that

�

t

�

f(
b
z

(t+1)

) � f(
b
z

(t)

)� 
 or
b
z

(t)

2 R

�

�

� �

�

4.4 Inequality-
onstrained optimisation

Inequality-
onstrained optimisation problems 
an be redu
ed to problems involving only

non-negativity 
onstraints on a set of variables. In Se
tion 4.1.3 the notion of sla
k variables,

where a standard optimisation problem is 
onverted to one where all inequalities involve

only a single variable, was introdu
ed. The LPSO, and 
onsequently the CLPSO as well,

are expanded to handle non-negativity 
onstraints on a set of variables. As the aim of the

CLPSO is (in the 
ontext of this thesis) to solve a SVM's 
onstrained optimisation problem,

the method explained below fo
uses on box 
onstraints of the form a � x

j

� b. These


onstraints for
e the parti
les to only 
y inside a n-dimensional hyper
ube, but the method

developed will work equally well if no upper bound on the variables existed.

Consider the way a parti
le p

i

is being updated:

p

(t+1)

i

= v

(t+1)

i

+ p

(t)

i

(4.31)
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In the above equation, it is also assumed that p

(t)

i

lies inside the problem's feasible region


. That is, inside the n-dimensional hyper
ube. For notational 
onvenien
e, the subs
ript

i will be dropped. That is,

p

(t)

= (p

(t)

1

; p

(t)

2

; : : : ; p

(t)

n

)

T

(4.32)

For the above parti
le, for all values p

(t)

j

it will be true that a � p

(t)

j

� b. However, when

the velo
ity ve
tor v

(t+1)

is added, it may be
ome true that a value of p

(t+1)

j

may violate

these 
onstraints.

In this 
ase, the velo
ity ve
tor needs to be s
aled so that all values p

(t+1)

j

will fall inside

the 
onstraints. To s
ale the velo
ity ve
tor, a s
ale fa
tor is 
omputed for ea
h p

(t+1)

j

that

lies outside of the 
onstraints. This fa
tor will s
ale the ve
tor element to lie exa
tly on the

bound. Sin
e the s
ale fa
tor of one element may s
ale other elements to lie outside of the

bounds, the minimum of all these s
ale fa
tors are taken to s
ale the velo
ity ve
tor. Using

this simple te
hnique, the movement of the parti
les are restri
ted to the hyper
ube.

As an example, let a = 0 and b = 2 su
h that 0 � p

(t)

j

� 2 in the following position

ve
tor, and 
onsider the addition of a velo
ity ve
tor:

p

(t)

= (

1

8

1

8

6

8

0 0

7

8

1

8

)

T

v

(t+1)

= ( 0 0 �

8

8

0 0

10

8

18

8

)

T

p

(t+1)

= (

1

8

1

8

�

2

8

0 0

17

8

19

8

)

T

< 0 > 2 > 2

It is 
lear that the new parti
le lies outside the [0; 2℄

7

hyper
ube. For s
aling, a value Æ

needs to be found su
h that p

(t+1)

= Æv

(t+1)

+ p

(t)

will lie inside these 
onstraints. This Æ

must be 
hosen su
h that p

(t+1)

3

, whi
h is smaller than a = 0, will now satisfy p

(t+1)

3

� 0.

The value of Æ must also enfor
e p

(t+1)

6

� 2 and p

(t+1)

7

� 2.

Continuing the example, Æ is 
omputed for ea
h violating dimension. The value of p

(t+1)

3

is �

2

8

, but it should ideally be `
ut' to lie within its 
losest boundary, zero. Substituting

zero for p

(t+1)

3

gives the s
aling fa
tor Æ with whi
h the velo
ity ve
tor should be s
aled to

a
hieve this ideal value:

p

(t+1)

3

= Æ

3

v

(t+1)

3

+ p

(t)

3

Æ

3

=

�

p

(t+1)

3

� p

(t)

3

�

=v

(t+1)

3

=

�

0�

6

8

�

=(�

8

8

) =

6

8

(4.33)

Similarly, the value for p

(t+1)

6

is

17

8

, but should ideally be s
aled down to two, to lie within

its 
losest border:

Æ

6

=

�

p

(t+1)

6

� p

(t)

6

�

=v

(t+1)

6

=

�

2�

7

8

�

=(

10

8

) =

9

10

(4.34)
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The value for p

(t+1)

7

is

19

8

, but should also be s
aled down to two, to lie within its 
losest

border:

Æ

7

=

�

p

(t+1)

7

� p

(t)

7

�

=v

(t+1)

7

Æ

7

=

�

2�

1

8

�

(

18

8

) =

15

18

(4.35)

From these possible s
ale values that were 
omputed in (4.33), (4.34), and (4.35), the smallest

Æ is 
hosen to s
ale the velo
ity ve
tor with. Thus the value of Æ will be

6

8

. Multiplying Æ

with v

(t+1)

and updating the parti
le gives a new position p

(t+1)

that lies exa
tly within

the 
onstraints.

p

(t)

= (

1

8

1

8

6

8

0 0

7

8

1

8

)

T

Æv

(t+1)

= ( 0 0 �

6

8

0 0

15

16

27

16

)

T

p

(t+1)

= (

1

8

1

8

0 0 0

29

16

29

16

)

T

From the above example, an algorithm to keep a swarm of parti
les within an n-

dimensional hyper
ube [a; b℄

n

, 
an be generalised.

Algorithm 4.4 - Satisfying inequality 
onstraints

1. Determine the new position that a parti
le will 
y to (but do not move it there)

p

(t+1)

= v

(t+1)

+ p

(t)

2. For ea
h dimension j in the new position that lies outside [a; b℄

n

, 
ompute a s
aling

fa
tor Æ

j

Æ

j

=

�

a� p

(t)

j

�

=v

(t+1)

j

if p

(t+1)

j

< a

Æ

j

=

�

b� p

(t)

j

�

=v

(t+1)

j

if p

(t+1)

j

> b

Note that, sin
e p

(t)

j

2 [a; b℄ and p

(t+1)

j

=2 [a; b℄, the value of Æ will always be positive.

3. Set Æ = minfÆ

j

j p

(t+1)

j

=2 [a; b℄g

4. Finally, move the parti
le to the new position with

p

(t+1)

= Æv

(t+1)

+ p

(t)

to lie within the 
onstrained hyper
ube [a; b℄

n

.

The method des
ribed above in Algorithm 4.3 is used and experimentally veri�ed as part

of the CLPSO used for training Support Ve
tor Ma
hines.

It is now possible to 
y the swarm su
h that both linear and bounded 
onstraints are

always met. However, the above approa
h of `
utting against the borders' indu
es a new

hurdle that the LPSO has to over
ome.
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x2

x1

b

a b

a

Figure 4.4: Parti
les be
oming a linear 
ombination of ea
h other.

The LPSO requires that the set of ve
tors 
reated by subtra
ting the parti
le's 
urrent

position from the global best solution ve
tor, together with the swarm's set of velo
ity

ve
tors, must span the entire sear
h spa
e. If all parti
les are `
ut' against a single 
onstraint

(say a in a � p

j

� b, as shown in Figure 4.4), the parti
le positions may all be
ome

linear 
ombinations of ea
h other, and if the global best also lies on the spe
i�
 
onstraint,

the property of spanning the sear
h spa
e will be lost. This problem 
an be remedied by

randomly s
attering the swarm, or adding a random ve
tor to ea
h parti
le to move its


urrent position to the inside of the box 
onstraints, when no improvement is made in the

obje
tive fun
tion for a �xed number of iterations.

Due to the way the global best parti
le is moved in CLPSO, a random ve
tor is always

added to a position in the swarm. The random ve
tor ensures that, with a probability

greater than zero for ea
h iteration, that the global best parti
le will be moved away from

the bound to be inside (a; b).

4.5 Con
luding

In this 
hapter the original form of the PSO algorithm was extended to solving 
onstrained

optimisation problems. Two new PSO algorithms were developed. The Linear PSO (LPSO)

makes it possible to traverse a sear
h spa
e as a hyperplane, and 
onditions for LPSO to

rea
h any point within the sear
h spa
e were rigorously analysed. LPSO does however make

allowan
e for premature 
onvergen
e. To remedy the problem of premature 
onvergen
e,

the Converging LPSO (CLPSO) was developed. A formal proof of CLPSO 
onvergen
e was

given. Finally, a method of handling inequality (box) 
onstraints was presented.

Experimental results follow in the next 
hapter, and illustrate LPSO and CLPSO on a

number of problems, as well as their performan
e as an optimiser in Support Ve
tor Ma
hine

training.



Chapter 5

Experimental results

The purpose of the following 
hapter, presenting experimental results, is twofold: The 
on-

vergen
e of Linear PSO (LPSO) and Converging LPSO (CLPSO) is tested, and the CLPSO

is implemented as the 
onstrained optimisation algorithm that is used in training a Support

Ve
tor Ma
hine (SVM).

Experimental results are shown to illustrate the di�eren
es between the LPSO and the

CLPSO in linearly minimising 
onstrained fun
tions. The minima found by these two PSOs

are 
ompared for 
orre
tness against the minima found by a geneti
 algorithm implementa-

tion, 
alled Geno
op II.

As a 
on
lusion, the CLPSO is used in the SVM training algorithm, de�ned in Se
tion

2.4. The algorithm is empiri
ally 
ompared against two standard SVM training methods,

namely de
omposition and sequential minimal optimisation.

5.1 Linear Parti
le Swarm Optimiser

5.1.1 Experimental results

In order to test the performan
e of LPSO and CLPSO to minimising problems 
onstrained

by a set of linear 
onstraints Ax = b, let

A =

2

6

6

6

6

6

6

6

6

4

0 �3 �1 0 0 2 �6 0 �4 �2

�1 �3 �1 0 0 0 �5 �1 �7 �2

0 0 1 0 0 1 3 0 �2 2

2 6 2 2 0 0 4 6 16 4

�1 �6 �1 �2 �2 3 �6 �5 �13 �4

3

7

7

7

7

7

7

7

7

5

; b =

2

6

6

6

6

6

6

6

6

4

3

0

9

�16

30

3

7

7

7

7

7

7

7

7

5

(5.1)

De�ning matrix A and ve
tor b in the above way gives a set of 
onstraints for testing

ten-dimensional fun
tions.

63
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In all experiments the inertia weight w was set to 0.7, while the values of 


1

and 


2

were

set to 1.4. The 
hoi
e is due to [17℄, where it is shown that parameter settings 
lose to these

(w = 0:7298 and 


1

= 


1

= 1:49618) give a

eptable results. The value of �

(t)

was kept


onstant at 1.

The 
orre
tness of the results are tested against those found by Geno
op II, a geneti


algorithm for optimising 
onstrained problems [31℄. Experiments on Geno
op II are done

in a twofold manner:

1. A good minimum is needed against whi
h 
omparisons 
an be made. In ea
h 
ase

a good minimum for ea
h 
onstrained fun
tion was found by evolving the geneti


algorithm with a population size of 100, for a total of 4000 generations.

2. For purposes of 
omparison with LPSO and CLPSO, Geno
op II was also evolved with

the same number of 
hromosomes (parti
les) and generations (iterations) as LPSO and

CLPSO.

In the following experimental results, the `good minimum' found by Geno
op II (with a

population size of 100 and after 4000 generations) is indi
ated �rst. After the good minimum

is shown, the simulations used for 
omparison with LPSO and CLPSO are dis
ussed.

Test 1

The �rst fun
tion tested, f

1

, is a se
ond order polynomial (paraboli
) fun
tion. For purposes

of testing the free dimensions were randomly initialised in the interval [�100; 100℄. The

problem is de�ned as

Minimise f

1

(x) =

P

i

x

2

i

; x 2 R

10

Subje
t to Ax = b (5.2)

where A and b are de�ned in equation (5.1).

Geno
op II The best solution found by Geno
op II, with a population size of 100 and

4000 generations, was f

1

(x

?

) = 32:137 with

x

?

= (0:567;�0:487; 1:736;�1:181;�3:404; 3:357; 0:9;�1:795;�0:528; 0:075)

T

Geno
op II was evolved for a total of 250 generations, for population sizes of 5, 10, 15,

and 20 
hromosomes. The average 
onvergen
e over 100 simulations is shown in Figure

5.1(a). The average is determined over the best �tness values at a spe
i�
 generation, over

all simulations. The maximum and minimum values over all simulations are 
omputed in

a similar fashion, and are shown in Figures 5.1(b) and 5.1(
) respe
tively. The de
reasing



Chapter 5. Experimental results 65

10

100

1000

10000

100000

0 50 100 150 200 250

av
er

ag
e 

gl
ob

al
 b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(a) Average

100

1000

10000

100000

0 50 100 150 200 250

m
ax

im
um

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(b) Maximum

10

100

1000

10000

100000

0 50 100 150 200 250

m
in

im
um

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(
) Minimum

10

100

1000

10000

100000

0 50 100 150 200 250

st
an

da
rd

 d
ev

ia
tio

n 
of

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(d) Standard Deviation

Figure 5.1: Results of 100 Geno
op II simulations on the 
onstrained parabola f

1

de�ned in

equation (5.2).

Table 5.1: Results of 100 Geno
op II simulations on the 
onstrained parabola f

1

de�ned in equation

(5.2), after 250 generations. (`
hromosomes' is abbreviated as 
hrms.)

Geno
op II 5 
hrms. 10 
hrms. 15 
hrms. 20 
hrms.

Average 739.438 304.884 69.154 54.846

Maximum 1:626� 10

3

1:168� 10

3

124.820 107.584

Minimum 38.322 37.612 33.837 32.544

Standard Deviation 840.279 387.746 26.749 16.939
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Figure 5.2: Results of 100 simulations of LPSO on the 
onstrained parabola f

1

de�ned in equation

(5.2).

maximum (worst) performan
es give a 
lear indi
ation that the geneti
 algorithm 
onverges

for all simulations. The standard deviation of the best �tness values over 100 simulations

is shown in Figure 5.1(d). These results are summarised in Table 5.1, and are 
ompared to

the PSO under the CLPSO results.

LPSO Figure 5.2 shows the 
onvergen
e of LPSO over 250 iterations, or time steps, of

the LPSO algorithm. The results are taken from a total of 100 simulations on swarm sizes

of 5, 10, 15, and 20. The average at a spe
i�
 iteration is 
omputed over the 100 gbest

values at that spe
i�
 iteration number, and the averages over all iterations are illustrated

in Figure 5.2(a). The maximums and minimums are 
omputed in a similar way, with the

maximum being the largest of the 100 gbest values at a spe
i�
 iteration, and the minimum

being the smallest of the 100 gbest values at a spe
i�
 iteration. This is shown in Figures

5.2(b) and 5.2(
). The standard deviation of all the LPSO's gbest values at a 
ertain time
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(Figure 5.2(d)), shows the similarity in the 
onvergen
e of the 100 swarms.

The average LPSO results for ea
h set of simulations are 
ompletely di�erent, and illus-

trates how the swarms of parti
les 
at
h up with the global best parti
le, and 
onverges to

a sub-optimal solution. Only a swarm of 20 parti
les were able to 
onverge to the optimal

solution during ea
h simulation. This is illustrated by 
omparing the standard deviations of

ea
h set of simulations's gbest values. After 250 iterations (time steps), the standard devia-

tion the 20-parti
le LPSO's gbest is only 7:176� 10

�12

, implying that all swarms 
onverged

to the optimal solution. The standard deviations of swarms with 5, 10, and 15 parti
les

are substantially larger, implying that the swarms 
onverged to di�erent solutions, with the

varian
e in 
onvergen
e in
reasing as the swarm size de
reases. This is the expe
ted result,

due to parti
les 
at
hing up and 
onverging to the global best solution [53℄. The results

after 250 iterations are shown in Table 5.2.

The large average gbest of 7:034�10

3

for a swarm of 5 parti
les { 
ompared to the averages

of 10, 15, and 20 parti
les { is also expe
ted. The minimum number of parti
les needed to

ensure that the swarm spans the entire sear
h spa
e, is inf jS

(0)

j = n�r+1 = 10�5+1 = 6

(refer to equation (4.27)). Consequently, a swarm with 5 parti
les 
annot possibly span the

entire sear
h spa
e, whi
h explains the large average gbest.

CLPSO The results of CLPSO over 250 time steps are shown in Figure 5.3, with the

averages, maximums, minimums, and standard deviations 
omputed in the same way as was

done with the LPSO above.

The CLPSO simulations (for 5, 10, 15, and 20 parti
les) all 
onverged on average to the

minimum, or a value 
lose to it. The minimum solution found was

x

?

= (0:566;�0:485; 1:738;�1:181;�3:402; 3:357; 0:9;�1:795;�0:528; 0:074)

T

with

f

1

(x

?

) = 32:137

The rate of 
onvergen
e is higher for larger swarms. Figure 5.3(a) shows how the speed

of 
onvergen
e in
reases as the swarm size grows from 5 to 10, 15, and 20 parti
les. The

standard deviations in Table 5.2 show that there is a very small varian
e in the gbest found

by ea
h swarm in the di�erent sets of simulations, indi
ating that all swarms were 
lose to

or at the minimum solution after 250 time steps.

Sin
e the initial 
ondition (refer to equation (4.27)) on a swarm is dropped for the

CLPSO, a swarm of 5 parti
les also sear
hed the entire sear
h spa
e and found the minimum.

This 
an be seen by 
omparing the average and minimum of a 5-parti
le swarm in Table

5.2. The di�eren
e between LPSO and CLPSO 
an be 
learly seen when Figures 5.2(a) and
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Figure 5.3: Results of 100 simulations of CLPSO on the 
onstrained parabola f

1

de�ned in equation

(5.2).
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Table 5.2: Results of 100 LPSO and CLPSO simulations on the 
onstrained parabola f

1

de�ned

in equation (5.2), after 250 iterations.

LPSO 5 parti
les 10 parti
les 15 parti
les 20 parti
les

Average 7:034� 10

3

445.316 35.071 32.137

Maximum 4:630� 10

4

4:505� 10

3

244.077 32.137

Minimum 37.420 32.137 32.137 32.137

Standard Deviation 8:007� 10

3

803.006 21.500 7:176� 10

�12

CLPSO 5 parti
les 10 parti
les 15 parti
les 20 parti
les

Average 35.197 32.139 32.137 32.137

Maximum 252.826 32.183 32.138 32.137

Minimum 32.138 32.137 32.137 32.137

Standard Deviation 22.132 6:689� 10

�3

1:832� 10

�4

3:016� 10

�6

5.3(a) are 
ompared. The CLPSO 
onverges on average to the minimum; the LPSO shows

premature 
onvergen
e for smaller swarm sizes, sin
e when the global best does not improve

over a large number of iterations, the swarm 
at
hes up with it. Note that the probability

of �nding better solutions in
rease with LPSO swarm size, and thus the probability of


onvergen
e also in
reases.

In 
omparison to Geno
op II, the CLPSO has a substantially smaller standard deviation

of gbest values at iteration 250. This is due to the fa
t that CLSPO has already 
onverged,

while Geno
op II has, for the larger part of simulations, not yet 
onverged to the minimum.

Test 2

Fun
tion f

2

is a quadrati
 fun
tion similar to those 
ommonly found in quadrati
 program-

ming problems. This fun
tion was 
hosen be
ause it is also similar to the dual Lagrangian

optimised in SVM training. Again, the free dimensions were randomly initialised in the

interval [�100; 100℄. The problem is de�ned as

Minimise f

2

(x) =

P

i

P

j

e

�(x

i

�x

j

)

2

x

i

x

j

+

P

i

x

i

; x 2 R

10

Subje
t to Ax = b (5.3)

where A and b are de�ned in equation (5.1).



Chapter 5. Experimental results 70

10

100

1000

10000

100000

0 200 400 600 800 1000

av
er

ag
e 

gl
ob

al
 b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(a) Average

10

100

1000

10000

100000

0 200 400 600 800 1000

m
ax

im
um

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(b) Maximum

10

100

1000

10000

0 200 400 600 800 1000

m
in

im
um

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(
) Minimum

1

10

100

1000

10000

100000

0 200 400 600 800 1000

st
an

da
rd

 d
ev

ia
tio

n 
of

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(d) Standard Deviation

Figure 5.4: Results of 100 Geno
op II simulations on the 
onstrained quadrati
 fun
tion f

2

de�ned

in equation (5.3).
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Table 5.3: Results of 100 Geno
op II simulations on the 
onstrained quadrati
 fun
tion f

2

de�ned

in equation (5.3), after 1000 generations. (`
hromosomes' is abbreviated as 
hrms.)

Geno
op II 5 
hrms. 10 
hrms. 15 
hrms. 20 
hrms.

Average 104.192 49.945 42.393 39.500

Maximum 262.656 82.221 60.110 56.613

Minimum 37.939 35.393 35.772 35.410

Standard Deviation 59.873 10.996 6.861 6.785

Geno
op II The best solution found by Geno
op II, with a population size of 100 and

4000 generations, was f

2

(x

?

) = 35:377 with

x

?

= (0:076;�0:28; 0:446;�0:373;�3:956; 3:762; 1:119;�1:865;�0:539; 0:178)

T

Geno
op II was evolved for a total of 1000 generations, for population sizes of 5, 10, 15, and

20 
hromosomes. The averages, maximums, minimums and standard deviations over 100

simulations are shown in Figure 5.4, and are 
omputed in the same way as Test 1. Again,

these results are summarised in Table 5.3, and are 
ompared to the PSO under the CLPSO

results.

LPSO The results of LPSO over 1000 time steps are shown in Figure 5.5, with the averages,

maximums, minimums, and standard deviations 
omputed in the same way as explained in

Test 1 above.

The averages, maximums and standard deviations illustrate the same behaviour as the

results in Test 1 (optimising the 
onstrained f

1

with LPSO). It is worthwhile to note that the

minimum found by the LPSO, as seen in Figure 5.5(
) and Table 5.4, is the true minimum,

ex
ept for the 5-parti
le 
ase. This again illustrates that the LPSO's 5 parti
les do not span

the entire sear
h spa
e, whi
h is 6-dimensional.

CLPSO The results of CLPSO over 1000 time steps are shown in Figure 5.6, with the

averages, maximums, minimums, and standard deviations 
omputed in the same way as

explained in Test 1 above.

It is 
lear from Figure 5.6(a) that, after 1000 iterations, the CLSPO is still 
onverging.

After 2000 iterations (not shown in the �gures), the average gbest values were 76.677 for 5

parti
les, 66.084 for 10 parti
les, 56.731 for 15 parti
les, and 39.537 for 20 parti
les. The

averages after 2000 iterations are all smaller than the averages at 1000 generations, shown

in Table 5.4.
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Figure 5.5: Results of 100 simulations of LPSO on the 
onstrained quadrati
 fun
tion f

2

de�ned

in equation (5.3).
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Figure 5.6: Results of 100 simulations of CLPSO on the 
onstrained quadrati
 fun
tion f

2

de�ned

in equation (5.3).
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Table 5.4: Results of 100 LPSO and CLPSO simulations on the 
onstrained quadrati
 fun
tion f

2

de�ned in equation (5.3), after 1000 iterations.

LPSO 5 parti
les 10 parti
les 15 parti
les 20 parti
les

Average 8:463� 10

3

758.525 125.727 59.762

Maximum 7:793� 10

4

1:123� 10

4

1:719� 10

3

246.905

Minimum 240.101 35.400 35.377 35.377

Standard Deviation 1:051� 10

4

1:496� 10

3

231.095 39.831

CLPSO 5 parti
les 10 parti
les 15 parti
les 20 parti
les

Average 82.077 68.570 59.001 39.832

Maximum 197.389 196.067 196.065 71.380

Minimum 35.377 35.377 35.377 35.377

Standard Deviation 60.959 53.865 49.957 10.887

Table 5.4 illustrates the average, maximum, minimum, and standard deviation of the

gbest 
onvergen
e of 100 simulations of swarms with 5, 10, 15, and 20 parti
les, after 1000

time steps. The minimum gbest was

f

2

(x

?

) = 35:377

at

x

?

= (0:076;�0:281; 0:445;�0:373;�3:956; 3:762; 1:12;�1:865;�0:538; 0:178)

T

If the average minimum values found in Figures 5.4(a) and 5.6(a) are 
ompared, CLPSO

shows a faster rate of 
onvergen
e than Geno
op II. The standard deviation after 1000

iterations or generations is smaller for Geno
op II (
ompare Tables 5.3 and 5.4), indi
ating

greater 
onsisten
y in 
onvergen
e between the di�erent simulations.

Test 3

The third fun
tion tested, f

3

, is a Rosenbro
k fun
tion in ten dimensions. The 
onstrained

f

3

di�ers from both f

1

and f

2

be
ause it is not a 
onvex fun
tion. The free dimensions were

randomly initialised in the interval [�100; 100℄. The problem is de�ned as

Minimise f

3

(x) =

P

n�1

i=1

(100(x

i+1

� x

2

i

)

2

+ (1� x

i

)

2

); x 2 R

10

Subje
t to Ax = b (5.4)
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Figure 5.7: Results of 100 Geno
op II simulations on the 
onstrained Rosenbro
k fun
tion f

3

de�ned in equation (5.4).

where A and b are de�ned in equation (5.1).

Geno
op II The best solution found by Geno
op II, with a population size of 100 and

4000 generations, was f

3

(x

?

) = 21485:361 with

x

?

= (0:84;�1:516; 2:359;�0:669;�3:352; 2:991; 1:053;�1:949;�0:273;�0:028)

T

Geno
op II was evolved for a total of 2000 generations, for population sizes of 5, 10, 15, and

20 
hromosomes. The averages, maximums, minimums and standard deviations over 100

simulations are shown in Figure 5.7, and are 
omputed in the same way as Test 1. Again,

these results are summarised in Table 5.5, and are 
ompared to the PSO under the CLPSO

results.

LPSO The results of LPSO over 2000 time steps are shown in Figure 5.8, with the averages,

maximums, minimums, and standard deviations 
omputed in the same way as explained in
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Table 5.5: Results of 100 Geno
op II simulations on the 
onstrained Rosenbro
k fun
tion f

3

de�ned

in equation (5.4), after 2000 generations. (`
hromosomes' is abbreviated as 
hrms.)

Geno
op II 5 
hrms. 10 
hrms. 15 
hrms. 20 
hrms.

Average 58249.328 21630.020 21546.332 21485.714

Maximum 2:005� 10

5

22030.988 21836.797 21486.646

Minimum 22334.971 21490.840 21487.098 21485.363

Standard Deviation 62513.767 154.443 85.311 0.400
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Figure 5.8: Results of 100 simulations of LPSO on the 
onstrained Rosenbro
k fun
tion f

3

de�ned

in equation (5.4).
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Figure 5.9: Results of 100 simulations of CLPSO on the 
onstrained Rosenbro
k fun
tion f

3

de�ned

in equation (5.4).

Test 1 above.

The LPSO swarms of 10, 15, and 20 parti
les managed to �nd the minimum value of

the fun
tion, or 
ame 
lose to it at iteration number 2000. After 2000 iterations, the LPSO

swarms were still �nding better solutions, as is illustrated in Figure 5.8(a).

CLPSO The results of CLPSO over 2000 time steps are shown in Figure 5.9, with the

averages, maximums, minimums, and standard deviations 
omputed in the same way as

explained in Test 1 above.

The 20-parti
le CLSPO 
onsistently 
onverged to the minimum, as 
an be seen from

Figure 5.9 and Table 5.6. Figure 5.9(a) also shows that the average �tness de
reases dra-

mati
ally to the minimum after the swarm has 
onverged below a 
ertain �tness level. It

also shows that the swarms of 5 and 10 parti
les did not stagnate, but are still 
onverging

at the 2000

th

iteration. The sudden and 
omplete 
onvergen
e when the swarm de
reases
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Table 5.6: Results of 100 LPSO and CLPSO simulations on the 
onstrained Rosenbro
k fun
tion

f

3

de�ned in equation (5.4), after 2000 iterations.

LPSO 5 parti
les 10 parti
les 15 parti
les 20 parti
les

Average 1:375� 10

9

4:444� 10

6

3:710� 10

5

1:260� 10

5

Maximum 3:556� 10

10

2:177� 10

8

2:054� 10

7

1:045� 10

7

Minimum 1:955� 10

5

21554.158 21483.373 21485.925

Standard Deviation 4:485� 10

9

2:278� 10

7

2:407� 10

6

1:043� 10

6

CLPSO 5 parti
les 10 parti
les 15 parti
les 20 parti
les

Average 6:522� 10

8

7:446� 10

5

21485.305 21485.305

Maximum 2:233� 10

10

7:112� 10

7

21485.305 21485.305

Minimum 21485.306 21485.305 21485.305 21485.305

Standard Deviation 2:395� 10

9

7:120� 10

6

9:834� 10

�8

9:401� 10

�8

below a spe
i�
 �tness value is 
on�rmed by the standard deviations of Figure 5.9(d), where

the varian
e in gbest for swarms of 20 parti
les be
omes 
lose to zero.

The raise in varian
e after a good minimum was found (see Figure 5.9(d)), 
an be

attributed to the random sear
h performed by CLPSO. As minutely better minimums are

found, the gbest values will start to di�er slightly, 
ausing a rise in standard deviation in

the order of 10

�7

.

The CLPSO found

x

?

= (0:84;�1:514; 2:359;�0:67;�3:352; 2:991; 1:053;�1:949;�0:274;�0:028)

T

after 2000 time steps. The value of f

3

at x

?

was

f

3

(x

?

) = 21485:305

The average best �tness of Geno
op II is substantially better than that of both LPSO

and CLPSO for small population or swarm sizes (see Figures 5.7(a) and 5.9(a)). This 
an

be as
ribed to a greater amount of mutation on the 
hromosomes (parti
les), and therefore

a greater diversity in the solutions tested. The better 
onvergen
e for small population or

swarm sizes is supported by the di�eren
e in the standard deviations over the simulations,

shown in Tables 5.5 and 5.6. For larger populations or greater swarm sizes, Geno
op II and

CLPSO have very similar performan
e.
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5.1.2 LPSO and CLPSO Convergen
e 
hara
teristi
s

Some remarks, all 
on�rming the theoreti
al properties needed for LPSO and CLPSO to

su

essfully 
onverge to a minimum, 
an be made from the above experimental results.

1. A swarm of 5 parti
les is smaller than the minimum swarm size, as derived in equation

(4.27), of

inf jS

(0)

j = n� r + 1 = 10� 5 + 1 = 6

Thus LPSO will not 
over all sear
h dimensions, and results 
an be expe
ted to be

suboptimal. Indeed, the average gbest (minimum) of the 
onstrained f

1

in equation

(5.2) was at 7:034�10

3

after 250 time steps, while CLPSO managed to �nd an average

gbest of 35.197 with �ve parti
les. The 
omparison is shown in Table 5.2. With �ve

parti
les and t = 1000, LPSO's average best for f

2

de�ned in (5.3) was 8:463 � 10

3

,

while CLPSO's best f

2

was 82.007 (see Table 5.4).

2. As 
an be 
learly seen in Figures 5.2, 5.5, and 5.8, the swarm 
at
hes up with the

global best parti
le before rea
hing a minimum to 
ause premature 
onvergen
e. This

problem is over
ome by CLPSO, as the empiri
al results in Figures 5.3, 5.6, and 5.9

illustrate.

5.2 Support Ve
tor Ma
hine Training

After showing the 
onvergen
e and properties of the newly developed LPSO and CLPSO,

the CLPSO algorithm will be implemented in training SVMs. This se
tion illustrates the

su

ess and simpli
ity of the method, and also dis
usses some bottlene
ks that have to be

over
ome to make the algorithm pra
ti
ally 
ompetitive.

5.2.1 Implementing the SVM training algorithm

Two issues remain to be resolved in implementing the SVM training algorithm des
ribed

in Se
tion 2.4. Both issues 
onsist of �nding feasible ve
tors: The �rst is to �nd an initial

feasible solution � for the algorithm to start with. The se
ond is, given a working set B, to

initialise the swarm of parti
les that is going to optimise B, su
h that the swarm is feasible.

Finding an initial feasible solution �

To resolve the �rst issue, a feasible solution that satis�es the linear 
onstraint �

T

y = 0,

with 
onstraints 0 � �

i

� C also met, is needed at the start of the de
omposition algorithm.

The initial solution is 
onstru
ted in the following way:
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Let 
 be some real number between 0 and C, and 
 some positive integer less than both

the number of positive examples (y

i

= +1) and negative examples (y

i

= �1) in the training

set. Randomly pi
k a total of 
 positive examples, and 
 negative examples, and initialise

their 
orresponding �

i

to 
. By setting all other �

i

to zero, the initial solution will be

feasible.

The value 2
 gives the total number of initial support ve
tors, and sin
e these initial

support ve
tors are a randomly 
hosen guess, it is suggested that the value of 
 be kept

small.

1

Initialising a feasible swarm of parti
les

To resolve the se
ond issue, 
onsider the 
onstrained optimisation problem solved by the

CLPSO, repeated here for 
onvenien
e:

max

�

B

W (�

B

) = �

T

B

1�

1

2

�

T

B

Q

BB

�

B

��

T

B

Q

BN

�

N

(5.5)

subje
t to

�

T

B

y

B

+�

T

N

y

N

= 0

�

B

� 0

C1��

B

� 0 (5.6)

In optimising the q-dimensional subproblem, CLPSO requires that all parti
les be ini-

tialised su
h that �

T

B

y

B

+�

T

N

y

N

= 0 is met. This is done as follows:

1. Set ea
h parti
le in the swarm to the q-dimensional ve
tor �

B

.

2. Add a random q-dimensional ve
tor Æ satisfying y

T

B

Æ = 0 to ea
h parti
le, under the


ondition that the parti
le will still lie in the hyper
ube [0; C℄

q

.

Initialising the swarm in this way ensures that the initial swarm lies in the set of feasible

solutions P = fp j Ap = ��

T

N

y

N

g, allowing the 
ight of the swarm to be de�ned by feasible

dire
tions.

5.2.2 Pra
ti
al 
on
erns and improvements

A number of pra
ti
al issues need to be addressed to implement the algorithm numeri
ally.

One issue is on de
iding when a solution is `optimal enough,' and the Karush-Kuhn-Tu
ker

1

In reality, any non-zero feasible ve
tor 
an be used as an initial solution; 
hoosing 
 positive and negative

examples only gives a simple way of 
onstru
ting su
h a ve
tor. Larger values of 
 imply a larger set of

initial support ve
tors, and the training algorithm simply spends extra time in removing the non-support

ve
tors from this set.
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onditions are adapted to be 
orre
t within an error threshold from the true 
onditions.

The SVM training algorithm presented in Chapter 2 assumes in�nite pre
ision arithmeti
.

Sin
e ma
hine numbers allow only �nite a

ura
y, the problem of error a

umulation and

round-o� errors is addressed. A strategy is also given to optimise the dot produ
t between

two sparse ve
tors.

An approximation to the optimality 
onditions

The Karush-Kuhn-Tu
ker 
onditions (2.33) that de�ne the stopping 
riteria for the training

algorithm, spe
ify that an �

(t)

i

between zero and C must imply that y

i

(s

(t)

i

+ b

(t)

) should

be exa
tly equal to one. In pra
ti
e this is not always possible, and a small positive error

� on the KKT 
onditions will be tolerated to allow the algorithm to terminate. The value

of � 
lose to 0.01 or 0.02 will typi
ally give a very a

urate optimisation [24℄. The pra
ti
al

KKT 
onditions are therefore

�

(t)

i

= 0 ) y

i

(s

(t)

i

+ b

(t)

) > 1� �

0 < �

(t)

i

< C ) 1� � < y

i

(s

(t)

i

+ b

(t)

) < 1 + �

�

(t)

i

= C ) y

i

(s

(t)

i

+ b

(t)

) < 1 + � (5.7)

Error a

umulation and round-o� errors

The nature of the 
onstrained LPSO algorithm allows for division and multipli
ation by

very large and very small real numbers. This 
an give rise to numeri
al pre
ision problems.

One of the 
onstraints on the SVM optimisation problem is that the sum of all y

i

�

i

must

be equal to zero. It may be true that, due to rounding errors, this sum 
an shift from zero.

To solve this problem, a 
he
k is done to determine

error =

l

X

i=1

y

i

�

i

To reset the sum to zero, one of the zero Lagrange multipliers �

i

is set to the absolute

value of error. If error is positive, an �

i


orresponding to a negative example y

i

is randomly


hosen. If the opposite is true and error is negative, an �

i


orresponding to a positive

example y

i

is randomly 
hosen. As optimisation 
ontinues, this adjusted Lagrange multiplier

will be pi
ked for reoptimisation, with the equality 
onstraint holding.

The update is done when error rises above a 
ertain threshold; in the experiments

presented here, error was in the order of 10

�6

. In pra
ti
e this update rarely happens, but


an o

ur.
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Optimising the dot produ
t between two sparse ve
tors

The time taken to 
ompute the dot produ
t between two sparse ve
tors 
an be greatly

optimised if all multipli
ations with zero are simply ignored. The dot produ
t between two

n-dimensional ve
tors x

i

and x

j

is de�ned as

x

i

� x

j

= x

i1

x

j1

+ x

i2

x

j2

+ : : :+ x

in

x

jn

Sin
e a sparse ve
tor 
ontains many zero elements, many multipli
ations will be with zero

and therefore unne
essary. The following algorithm is adapted from [41℄, and s
ans through

both ve
tors to 
ompute the dot produ
t:

/* Array x1, with length n1, is an array that stores only

xi's nonzero 
omponents. The original positions of these


omponents in ve
tor xi is stored in array id1. Arrays

x2 and id2 with size n2 is used to store sparse ve
tor xj.

*/

p1 = 0, p2 = 0, dot = 0

while (p1 < n1 && p2 < n2)

{

a1 = id1[p1℄, a2 = id2[p2℄

if (a1 == a2)

{

dot += x1[p1℄*x2[p2℄

p1++, p2++

}

else if (a1 > a2)

p2++

else

p1++

}

5.2.3 Experimental results

The SVM training algorithm presented in Se
tion 2.4 was tested on the MNIST dataset [33℄.

The in
uen
e of di�erent working set sizes, as well as the s
alability of the approa
h, is ex-

amined. Finally, the training results are 
ompared to two other algorithms, a de
omposition

method and the method of sequential minimal optimisation.
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7420 7421 7422 7423 7424

7426

7425

7427 7428 7429 7430 7431

7432 7433 7434 7435 7436 7437

7438 7439 7440 7441 7442 7443

7444 7445 7446 7447 7448 7449

7450 7451 7452 7453 7454 7455

Figure 5.10: A few examples from the MNIST dataset.

The MNIST dataset

The MNIST database is an opti
al 
hara
ter dataset, and 
onsists of a training set of 60,000

handwritten digits [33℄. This database is a subset of a larger set available from the National

Institute of Standards Bureau (NIST). As shown in Figure 5.10, the examples are 28 by 28

pixel grey-level images. This is equivalent to ea
h example being a 784-dimensional ve
tor.

Ea
h pixel value 
orresponds to an integer in the range 0 (white) to 255 (bla
k). It is a


ommon database for ben
hmarking learning te
hniques and pattern re
ognition methods.

Training the SVM

For training a SVM on the MNIST dataset, the 
hara
ter `8' was 
hosen to represent the

set of positive examples, while the remaining digits de�ned the negative examples. Training

was done with a polynomial kernel of degree �ve:

k(x

i

;x

j

) = (x

i

� x

j

+ 1)

5

(5.8)

Due to the size of the dot produ
t between two images, raised to the �fth power, the pixel
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Table 5.7: In
uen
e of di�erent working set sizes on the �rst 20,000 elements of the MNIST dataset

Working Working Time SVs

set size set sele
tions

4 8,782 02:17:43 1,631

6 8,213 03:11:40 1,637

8 7,502 03:51:24 1,639

10 10,023 06:27:06 1,648

12 9,667 07:26:23 1,652

values were s
aled to the range [0; 0:1℄. This gives Lagrange multipliers �

i

that are easier

for the CLPSO to handle. (The kernel fun
tion of two uns
aled bla
k images would be

(784 � 255

2

+ 1)

5

, while the kernel fun
tion of the s
aled versions gives a more pra
ti
al

(784� 0:01 + 1)

5

� 835).

For an optimal solution to be found in the following PSO experiments, the KKT 
ondi-

tions in equation (5.7) needed to be satis�ed within an error threshold of � = 0:02. Opti-

misation of the working set terminated when the KKT 
onditions on the working set were

met with an error of 0.001, or when the swarm has optimised for a hundred iterations.

The following parameters de�ned the experimental CLPSO: By letting 
 = 10, a total of

20 initial support ve
tors were 
hosen to start the algorithm. The swarm size s used in ea
h

experiment was 10, while the inertia weight w was set to 0.7. The a

eleration 
oeÆ
ients




1

and 


2

were both set to 1.4 [53℄. Sin
e the obje
tive fun
tion is 
onstrainted by a set

of box 
onstraints, the velo
ity ve
tors were not 
lamped. For ea
h experiment the upper

bound C was kept at 100.0 (a 
ommonly used upper bound in SVM training).

The PSO training algorithm was written in Java, and does not make use of 
a
hing and

shrinking methods to optimize its speed. The sparsity of input data is used to speed up the

evaluation of kernel fun
tions. All experiments were preformed on a 1.00 GHz AMD Duron

pro
essor.

Experimental results show su

essful and a

urate training on the MNIST database. The

in
uen
e of di�erent working set sizes on the CLPSO training algorithm, its s
alability, as

well as its relation to other SVM training algorithms, were examined.
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Table 5.8: S
alability: training on the MNIST dataset

MNIST PSO Working PSO PSO SMO SMO SVM

light

SVM

light

elements set sele
tions time SVs time SVs time SVs

10,000 3,898 00:29:49 1,022 00:01:29 1,032 00:02:02 1,034

20,000 8,782 02:17:43 1,631 00:06:14 1,647 00:10:43 1,641

30,000 12,428 04:50:11 1,988 00:13:22 2,012 00:23:04 2,001

40,000 15,725 08:14:26 2,353 00:22:46 2,355 00:41:09 2,367

50,000 22,727 15:05:09 2,728 01:46:38 2,740 01:31:48 2,726

60,000 25,914 20:54:15 3,025 04:38:11 3,043 08:01:05 3,026

In
uen
e of working set sizes

Experiments on di�erent working set sizes were done on the �rst 20,000 elements of the

MNIST database. Results are shown in Table 5.7, and indi
ate that a working set of size

q = 4 gives the fastest 
onvergen
e time and fewest support ve
tors. A working set of size 2


an be solved analyti
ally, as is true in the 
ase of Sequential Minimal Optimisation (SMO).

The results in Table 5.7 are not ne
essarily an indi
ation of the speed of the PSO on the

working set, as sele
tion of the working set also burdens the speed of the algorithm (the

q

2

greatest and least values of y

i

rW (�)

i

need to be sele
ted from a list of thousands).

S
alability of the PSO approa
h

S
alability of the PSO algorithm was tested by training on the �rst 10,000, 20,000, et
.

examples from the MNIST dataset, as shown in Table 5.8. In ea
h 
ase a working set of

size 4 was used. The experimental results indi
ate that the PSO training algorithm shows

quadrati
 s
alability, and s
ales as � l

2:1

(with l being the training set size).

Comparison to other algorithms

In Table 5.8, the PSO approa
h is 
ompared to SMO and a de
omposition method, SVM

light

[24℄. WinSVM was developed by C. Longbin [29℄ from the SVM

light

sour
e 
ode, and was

used as an implementation of SMO. Unlike these methods, the 
urrent PSO algorithm does

not make use of 
a
hing and shrinking to optimise its speed.

Results similar to Table 5.7 indi
ate that SVM

light

gives the fastest rate of 
onvergen
e

with a working set size q = 8, whi
h is used in Table 5.8's 
omparison.
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Experimental results show SMO s
aling as � l

2:8

, and SVM

light

s
aling as � l

3:0

. Both

these algorithms are substantially faster than training a SVM with PSO on the MNIST

dataset, but the PSO approa
h shows better s
aling abilities (� l

2:1

). Due to the fa
t that

the PSO training algorithm starts with a very small set of possible support ve
tors, with all

other �

i

set to zero, the PSO method 
onsistently �nds a few support ve
tors less than the

other approa
hes.

The main drawba
k from the 
urrent PSO approa
h is its slow performan
e times, but

from this initial study many optimisations 
an be implemented on both de
omposition and

PSO methods.

5.3 Con
luding

The su

ess of the CLPSO in optimising linearly 
onstrained fun
tions was experimentally

illustrated in this 
hapter. The ne
essity to 
hange the LPSO to a lo
ally 
onverging algo-

rithm was also shown.

It was shown that a PSO 
an be used to train a SVM. Some properties of LPSO make it

parti
ularly useful to solve the SVM 
onstrained QP problem. The PSO algorithm is simple

to implement, and does not require any ba
kground of numeri
al methods. A

urate and

s
alable training results were shown on the MNIST dataset, with the PSO algorithm �nding

fewer support ve
tors and better s
alability than other approa
hes. Although the algorithm

is simple, its speed poses a pra
ti
al bottlene
k, whi
h 
an be improved from this initial

study.



Chapter 6

Con
lusion and Future Work

This thesis aimed to answer the question - \
an a Parti
le Swarm Optimiser be used to train

a Support Ve
tor Ma
hine, and to what extent will it be su

essful?"

The resear
h 
ondu
ted for this thesis stood on two pillars. The �rst pillar was Support

Ve
tor Ma
hines (SVMs) and algorithms to train them, and a de
omposition-training al-

gorithm was developed based on similar algorithms. The se
ond pillar was Parti
le Swarm

Optimisation (PSO), whi
h is implemented as the optimisation method in the SVM training

algorithm.

Con
luding on the se
ond pillar, it was shown that parti
le swarms 
an easily be used

to optimise a fun
tion with equality 
onstraints of the form Ax = b. A variation of PSO,

the \Linear Parti
le Swarm Optimiser" (LPSO), was introdu
ed to optimise these types of

problems, and 
onditions for the LPSO to be able to �nd any point in the feasible sear
h

spa
e, was developed. There is a positive probability that LPSO 
an 
onverge prematurely.

The problem of LPSO's premature 
onvergen
e was over
ome by 
reating a \Converging

LPSO" (CLSPO). A proof was given to show that CLPSO will at least 
onverge to a lo
al

minimum. An important property of the two new PSO algorithms is that, if the whole

swarm is initialised to lie within the hyperplane Ax = b, then the swarm 
an optimise the

obje
tive fun
tion without having to worry about the set of 
onstraints. This property was

formally proved, and shows that LPSO and CLPSO are ideally suited to solving equality-


onstrained optimisation problems. The su

ess of CLPSO (and premature 
onvergen
e

of LPSO) in optimising linearly 
onstrained fun
tions was experimentally illustrated. The

experimental results were 
ompared to results a
hieved with Geno
op II, a geneti
 algorithm

for 
onstrained optimisation. Experimental results show a general similarity in 
onvergen
e

between Geno
op II and CLPSO.

To 
on
lude on the �rst pillar, it was shown that a PSO 
ould be used to train a

SVM. Some properties of CLPSO make it parti
ularly useful to solve the SVM 
onstrained

87
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quadrati
 programming problem, and it was used in the de
omposition algorithm to solve

the SVM's 
onstrained subproblems. The CLPSO algorithm is simple to implement, and

does not require any ba
kground of numeri
al methods. A

urate and s
alable training

results were shown on the MNIST dataset.

Although the CLPSO algorithm is simple, its speed in SVM training poses a pra
ti
al

bottlene
k. Future resear
h may in
lude improvement to the speed of the algorithm by

improving the CLPSO, and the 
ashing of kernel evaluations 
an be implemented.

Further resear
h 
an also explore the possibility of parallel training of SVMs. Instead of

sele
ting a single working set for optimisation, a number of working sets 
an be sele
ted and

optimised in parallel. If the working sets are distin
t, the subproblems will be independent

of ea
h other, making this method a strong 
andidate for further investigation.

The standard methods of improving the original PSO 
an also be implemented on both

LPSO and CLPSO. There is also s
ope for a proper analysis of CLPSO in the 
ontext of

random sear
h algorithms.

Finally, many interesting 
onstrained problems are waiting to be solved!
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