
Low-Rank Factorization of Determinantal Point Processes

Mike Gartrell∗

Microsoft
mike.gartrell@acm.org

Ulrich Paquet†

Microsoft
ulripa@microsoft.com

Noam Koenigstein
Microsoft

noamko@microsoft.com

Abstract

Determinantal point processes (DPPs) have garnered atten-
tion as an elegant probabilistic model of set diversity. They
are useful for a number of subset selection tasks, including
product recommendation. DPPs are parametrized by a pos-
itive semi-definite kernel matrix. In this work we present a
new method for learning the DPP kernel from observed data
using a low-rank factorization of this kernel. We show that
this low-rank factorization enables a learning algorithm that is
nearly an order of magnitude faster than previous approaches,
while also providing for a method for computing product rec-
ommendation predictions that is far faster (up to 20x faster
or more for large item catalogs) than previous techniques that
involve a full-rank DPP kernel. Furthermore, we show that
our method provides equivalent or sometimes better test log-
likelihood than prior full-rank DPP approaches.

1 Introduction

Subset selection problems arise in a number of applications,
including recommendation (Gillenwater et al. 2014), doc-
ument summarization (Kulesza and Taskar 2011b; Lin and
Bilmes 2012), and Web search (Kulesza and Taskar 2011a).
In these domains, we are concerned with selecting a good
subset of high-quality items that are distinct. For example, a
recommended subset of products presented to a user should
have high predicted ratings for that user while also being di-
verse, so that we increase the chance of capturing the user’s
interest with at least one of the recommended products.

Determinantal point processes (DPPs) offer an attractive
model for such tasks, since they jointly model set diversity
and item quality or popularity, while offering a compact pa-
rameterization and efficient algorithms for performing infer-
ence. A distribution over sets that encourages diversity is of
particular interest when recommendations are complemen-
tary; for example, when a shopping basket contains a laptop
and a carrier bag, a complementary addition to the basket
would typically be a laptop cover, rather than another lap-
top.

DPPs are probabilistic submodular models can be param-
eterized by a M×M positive semi-definite L matrix, where M

∗Currently at Criteo.
†Currently at DeepMind.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is the size of the item catalog. There has been some work fo-
cused on learning DPPs from observed data consisting of ex-
ample subsets (Affandi et al. 2014; Gillenwater et al. 2014;
Kulesza and Taskar 2011b; Mariet and Sra 2015), which is
a challenging learning task that is conjectured to be NP-
hard (Kulesza and Taskar 2012). Some approaches have in-
volved learning a nonparametric full-rank L matrix (Gillen-
water et al. 2014; Mariet and Sra 2015) that does not con-
strain L to take a particular parametric form. Full-rank DPPs
scale poorly to large item catalogs, since operations such
as sampling, learning, and prediction in a full-rank DPP
costs approximately O(M3). This issue may be resolved
for some operations (learning and/or sampling) by factor-
izing L as a Kronecker product of multiple smaller ker-
nel matrices (Mariet and Sra 2016b), by approximate sam-
pling techniques (Anari, Oveis Gharan, and Rezaei 2016;
Li, Jegelka, and Sra 2016a; 2016b), or by defining an alter-
native probabilistic submodular model that scales to large
M , as recently proposed in (Tschiatschek, Djolonga, and
Krause 2016). In contrast, we present a method for learn-
ing a simple low-rank factorization of L, which scales much
better than full-rank DPP approaches and in some cases
provides better test log-likelihood. The scalability improve-
ments allow us to train our model on larger datasets that are
infeasible with a full-rank DPP, while also opening the door
to computing online recommendations or predictions as re-
quired for many real-world applications. We also show that
a low-rank factorization of L allows us to use a straightfor-
ward learning algorithm, such as stochastic gradient ascent,
that is generally not viable for full-rank DPPs due to issues
associated with projected gradient ascent required for full-
rank DPP learning (Gillenwater et al. 2014).

In addition to the applications mentioned above, DPPs
have been used for a variety of machine learning tasks (Af-
fandi, Fox, and Taskar 2013; Affandi et al. 2013; Chao et al.
2015; Gillenwater, Kulesza, and Taskar 2012; Kulesza and
Taskar 2010; 2012; Kwok and Adams 2012; Mariet and Sra
2016a; Snoek, Zemel, and Adams 2013). We focus on the
recommendation task of “basket completion” in this work,
where we compute predictions for the next item that should
be added to a shopping basket, given a set of items already
present in the basket. In Section 2 we provide some back-
ground on DPPs, discuss how we implement learning and
regularization, and describe how we efficiently compute pre-

dictions. We compare the performance of our low-rank DPP
model to a full-rank DPP on two real-world datasets in Sec-
tion 3.

2 Model

We begin this section with some background on the formu-
lation of DPPs and our low-rank factorization of the DPP L

matrix, followed by a discussion of our optimization-based
learning algorithm and regularization. We also describe how
low-rank DPPs enable efficient computation of conditional
probabilities, which is critical for quickly computing next-
item predictions for the basket completion task.

2.1 Background

DPPs originated in statistical mechanics (Macchi 1975).
In this paper we deal only with discrete DPPs, which de-
scribe a distribution over a discrete ground set of items
Y = 1, 2, . . . ,M , which we also call the item catalog. A dis-
crete DPP on Y is a probability measure P on 2Y (the power
set or set of all subsets of Y), such that for any A ⊆ Y, the
probability P(A) is specified by P(A) ∝ det(LA). In the con-
text of basket completion, Y is the item catalog (inventory of
items on sale), and A is the subset of items in a user’s bas-
ket; there are 2|Y| possible baskets. The notation LA denotes
the principal submatrix of the DPP kernel L indexed by the
items in A. Intuitively, the diagonal entry Lii of the kernel
matrix L captures the popularity or quality of item i, while
the off-diagonal entry Lij = Lji measures the similarity be-
tween items i and j.

The normalization constant for P follows from the obser-
vation that

∑

A′⊆Y det(LA′) = det(L+ I). Therefore, we have

P(A) =
det(LA)

det(L+ I)
. (1)

We use a low-rank factorization of the M ×M L matrix,

L = VV
T , (2)

for the M × K matrix V, where M is the number of items
in the item catalog and K is the number of latent trait di-
mensions. As we shall see in this paper, this low-rank fac-
torization of L leads to significant efficiency improvements
compared to a model that uses a full-rank L matrix when it
comes to model learning and computing predictions. This
also places an implicit constraint on the space of subsets
of Y, since the model is restricted to place zero probabil-
ity mass on subsets with more than K items (all eigenvalues
of L beyond K are zero). We see this from the observation
that a sample from a DPP will not be larger than the rank of
L (Gillenwater 2014).

2.2 Learning

Our learning task is to fit a DPP kernel L based on a col-
lection of N observed subsets A = {A1, . . . , AN} composed
of items from the item catalog Y. These observed subsets A

constitute our training data, and our task is to maximize the

likelihood for data samples drawn from the same distribu-
tion as A. The log-likelihood for seeing A is

f(V) = logP(A|V) =
N
∑

n=1

logP(An|V) (3)

=

N
∑

n=1

log det(L[n])−N log det(L+ I) (4)

where [n] indexes the observations or objects in A. We call
the log-likelihood function f , to avoid confusion with the
matrix L. Recall from (2) that L = VVT .

The next two subsections describe how we perform opti-
mization and regularization for learning the DPP kernel.

2.3 Optimization Algorithm

We determine the V matrix by gradient ascent. Therefore,
we want to quickly compute the derivative ∂f/∂V, which
will be a M ×K matrix. For i ∈ 1, . . . ,M and k ∈ 1, . . . ,K, we
need a matrix of scalar derivatives,

{

∂f

∂V

}

ik

=
∂f

∂vik
.

Taking the derivative of each term of the log-likelihood, we
have

∂f

∂vik
=

∑

n:i∈[n]

∂

∂vik

(

log det(L[n])
)

−N
∂

∂vik

(

log det(L+ I)
)

=
∑

n:i∈[n]

tr

(

L
−1
[n]

∂L[n]

∂vik

)

−N tr

(

(L+ I)−1 ∂(L+ I)

∂vik

)

.

(5)

To compute the first term of the derivative, we see that

tr

(

L
−1
[n]

∂L[n]

∂vik

)

= ai · vk +
M
∑

j=1

ajivjk , (6)

where ai denotes row i of the matrix A = L
−1
[n]

and vk denotes

column k of V[n]. Note that L[n] = V[n]V
T
[n]

. Computing A

has cost O(|An|3), which results from the |An| × |An| matrix
inversion and the matrix multiplication.

To compute the second term of the derivative, we see that

tr

(

(L+ I)−1 ∂(L+ I)

∂vik

)

= bi · vk +
M
∑

j=1

bjivjk (7)

where bi denotes row i of the matrix B = Im − V(Ik +

VTV)−1VT . Computing B has an overall cost of O(K3 +

KM2). The O(K3) cost stems from inverting a K × K ma-
trix; the O(KM2) cost results from the matrix multiplications
used to compute B. Considering both the first and second
terms of the derivative, we have a total per-iteration cost
of O(Nκ3 + K3 + KM2), where κ is the size of the largest
observed instance in the training data. This total cost is
relatively inexpensive, since κ is generally small for many
recommendation applications, and K (the number of latent
trait dimensions) is usually set to a relatively small value.
In comparison, the per-iteration cost of the fastest known
full-rank DPP learning algorithm (Mariet and Sra 2015) is
O(Nκ3 + M3). Our low-rank DPP learning algorithm there-
fore scales substantially better to large item catalogs.

Stochastic Gradient Ascent We implement stochastic
gradient ascent with a form of momentum known as Nes-
terov’s Accelerated Gradient (NAG) (Nesterov 1983):

Wt+1 = βWt + (1− β) ∗ ǫ∇f(Vt + βWt) (8)

Vt+1 = Vt +Wt+1 (9)

where W accumulates the gradients, ǫ > 0 is the learn-
ing rate, β ∈ [0, 1] is the momentum/NAG coefficient, and
∇f(V + βWt) is the gradient at V + βWt.

We use the following schedule for annealing the learning
rate:

ǫt =
ǫ0

1 + t/T
(10)

where ǫ0 is the initial learning rate, t is the iteration counter,
and T is number of iterations for which ǫ should be kept
nearly constant. This serves to keep ǫ nearly constant for the
first T training iterations, which allows the algorithm to find
the general location of the local maximum, and then anneals
ǫ at a slow rate that is known from theory to guarantee con-
vergence to a local maximum (Robbins and Monro 1951). In
practice, we set T so that ǫ is held nearly fixed until the itera-
tion just before the log-likelihood on a validation set begins
to decrease (which indicates that we have likely “jumped”
past the local maximum), and we find that setting β = 0.95

and ǫ0 = 1.0 × 10−5 works well for the datasets used in this
paper. We use a minibatch size of 1000 training instances,
which works well for the datasets we tested.

2.4 Regularization

We add a quadratic regularization term to the log-likelihood,
based on item popularity, to discourage large parameter val-
ues and avoid overfitting. Since not all items in the item
catalog are purchased with the same frequency, we encode
prior assumptions into the regularizer. The motivation for
using item popularity in the regularizer is that the magni-
tude of the K-dimensional item vector can be interpreted as
the popularity of the item, as shown in (Gillenwater 2014;
Kulesza and Taskar 2012).

f(V) =
N
∑

n=1

log det(L[n])−N log det(L+ I)−
α

2

M
∑

i=1

λi‖vi‖
2

(11)

where vi is the row vector from V for item i, and λi is an
element from a vector λ whose elements are inversely pro-
portional to item popularity,

λ =

(

1

C(1)
,

1

C(2)
, . . . ,

1

C(i)

)

, (12)

where C(i) is the number of occurrences of item i in the
training data.

Taking the derivative of each term of the log-likelihood
with this regularization term, we now have

∂f

∂vik
=

∑

n:i∈[n]

tr

(

L
−1
[n]

∂L[n]

∂vik

)

−N tr

(

(L+ I)−1 ∂(L+ I)

∂vik

)

− αλivik .

(13)

We select the regularization hyperparameter, α, using a
line search performed with a validation set.

2.5 Predictions

We seek to compute singleton next-item predictions, given a
set of observed items. An example of this class of problem is
“basket completion”, where we seek to compute predictions
for the next item that should be added to shopping basket,
given a set of items already present in the basket.

We use a k-DPP to compute next-item predictions. A k-
DPP is a distribution over all subsets Y ∈ Y with cardinality
k, where Y is the ground set, or the set of all items in the
item catalog. Next item predictions are done via a condi-
tional density. We compute the probability of the observed
basket A, consisting of k items. For each possible item to be
recommended, given the basket, the basket is enlarged with
the new item to k + 1 items. For the new item, we determine
the probability of the new set of k+1 items, given that k items
are already in the basket. This machinery is also applicable
when recommending a set B, which may contain more than
one added item, to the basket.

A k-DPP is obtained by conditioning a standard DPP on
the event that the set Y , a random set drawn according to the
DPP, has cardinality k. Formally, for the k-DPP Pk we have:

Pk(Y) =
det(LY)

∑

|Y ′|=k det(LY ′)
(14)

where |Y | = k. Unlike (1), the normalizer sums only over
sets that have cardinality k.

As shown in (Kulesza and Taskar 2012), we can condi-
tion a k-DPP on the event that all of the elements in a set A
are observed. We use LA to denote the kernel matrix for this
conditional k-DPP (the same notation is used for the condi-
tional kernel of the corresponding DPP, since the kernels are
the same); we show in Section 2.5 how to efficiently com-
pute this conditional kernel. For a set B not intersecting with
A, where |A|+ |B| = k we have:

Pk(Y = A ∪B|A ⊆ Y) ∝ Pk
L(Y = A ∪B) (15)

∝ P(Y = A ∪B) (16)

∝ det(LA
B) (17)

=
det(LA

B)

ZA
k−|A|

(18)

where here B is a singleton set containing the possible next
item for which we would like to compute a predictive prob-
ability. LA

B denotes the principal submatrix of LA indexed by
the items in B.

Ref. (Kulesza and Taskar 2012) shows that the kernel ma-
trix LA for a conditional DPP is

L
A =

([

(L+ IĀ)−1
]

Ā

)−1
− I (19)

where
[

(L+ IĀ)−1
]

Ā
is the restriction of (L + IĀ)−1 to the

rows and columns indexed by elements in Y − A, and IĀ

is the matrix with ones in the diagonal entries indexed by
elements of Y −A and zeroes everywhere else.

The normalization constant for Eq. 18 is

ZA
k−|A| =

∑

|Y ′|=k−|A|
A∩Y ′=∅

det(LA
Y ′) , (20)

where the sum runs over all sets Y ′ of size k − |A| that are
disjoint from A. How can we compute it analytically?

We see from (Kulesza and Taskar 2012) that

Zk =
∑

|Y ′|=k

det(LY ′) = ek(λ1, λ2, . . . , λM) (21)

where λ1, λ2, . . . , λM are the eigenvalues of L and ek(λ1, λ2,

. . . , λM) is the kth elementary symmetric polynomial on λ1,

λ2, . . . , λM .1

Therefore, to compute the conditional probability for a
single item b in singleton set B, given the appearance of
items in a set A, we have

Pk(Y = A ∪B|A ⊆ Y) =
det(LA

B)

ZA
k−|A|

=
LA
bb

ZA
1

(22)

=
LA
bb

e1(λA
1 , λA

2 , . . . , λA
N
)

(23)

where λA
1 , λA

2 , . . . , λA
N are the eigenvalues of LA and e1(λA

1 ,

λA
2 , . . . , λA

N) is the first elementary symmetric polynomial on
these eigenvalues.

Efficient DPP Conditioning The conditional probability
used for prediction (and hence set recommendation or bas-
ket completion) uses LA in Eq. 19, which requires two in-
versions of large matrices. These are expensive operations,
particularly for a large item catalog (large M). In this section
we describe a way to efficiently condition the DPP L kernel
that is enabled by our low-rank factorization of L.

Ref. (Gillenwater 2014) shows that for a DPP with kernel
L, the conditional kernel LA can be computed from L by the
rank-|A| update

L
A = LĀ − LĀ,AL

−1
A

LA,Ā (24)

where LĀ,A consists of the |Ā| rows and A columns of L.
Substituting V into Eq. 24 gives

L
A = VĀZ

A
V

T
Ā

(25)

where

Z
A = I−V

T
A(VAV

T
A)−1

VA . (26)

ZA is a projection matrix, and is thus idempotent: ZA =

(ZA)2. Since ZA is also symmetric, we have ZA = (ZA)T ,
and substituting ZA = ZA(ZA)T into (25) yields

L
A = VĀZ

A(ZA)TV
T
Ā

(27)

= V
A(VA)T (28)

where VA = VĀZA .

Conditioning the DPP using Eq. 28 requires computing
the inverse of a |A| × |A| matrix and several matrix multipli-
cations, as shown in Eq. 26, which is O(|A|3 + K|Ā|2). This
is much less expensive than the O(M3) matrix inversions in
Eq. 19 when |A| ≪ M , which we expect for most recommen-
dation applications. For example, in online shopping appli-
cations, the size of a shopping basket (|A|) is generally far
smaller than the size of the item catalog (M).

1Recall that when L = VV
T is defined in a low-rank form,

then all eigenvalues λi = 0 for i > K, greatly simplifying the
computation. When L is full rank, this is not the case. Section 3
compares the practical performance of a full-rank and low-rank L.

3 Evaluation

In this section we compare the low-rank DPP model with
a full-rank DPP that uses a fixed-point optimization algo-
rithm called Picard iteration (Mariet and Sra 2015) for learn-
ing. We wish to showcase the advantage of low-rank DPPs
in practical scenarios such as basket completion. First, we
compare test log-likelihood of low-rank and full-rank DPPs
and show that the low-rank model’s ability to generalize is
comparable to that of the full-rank version. We also com-
pare the training times and prediction times of both algo-
rithms and show a clear advantage for the low-rank model
presented in this paper. Our implementations of the low-rank
and full-rank DPP models are written in Julia, and we per-
form all experiments on a Windows 10 system with 32 GB
of RAM and an Intel Core i7-4770 CPU @ 3.4 GHz.

The full-rank DPP model is initialized randomly by draw-
ing from a Wishart distribution, as described in (Mariet and
Sra 2015). The low-rank DPP is also initialized randomly
by drawing each entry in the V matrix from a uniform(0, 1)
distribution, with the same random seed used to initialize the
full-rank DPP.

Comparing test log-likelihood values and training time is
consistent with previous studies (Gillenwater et al. 2014;
Mariet and Sra 2015), and allows a direct comparison of
low-rank and full-rank DPPs, which is the focus of this pa-
per.

Our experiments are based on two datasets:

1. Amazon Baby Registries - This public dataset con-
sists of 111,006 registries of baby products from 15 different
categories (such as “feeding”, “diapers”, “toys”, etc.), where
the item catalog and registries for each category are disjoint.
The public dataset was obtained by collecting baby registries
from amazon.com and was used by previous DPP stud-
ies (Gillenwater et al. 2014; Mariet and Sra 2015). In par-
ticular, (Gillenwater et al. 2014) provides an in-depth de-
scription of this dataset. To maintain consistency with prior
work, we used a random split of 70% of the data for train-
ing and 30% for testing. We use K = 30 trait dimensions
for the low-rank DPP models trained on this data. While the
Baby Registries dataset is relatively large, previous studies
analyzed each of its categories separately. We maintain this
approach for the sake of consistency with prior work.

The low-rank approximation presented in this paper fa-
cilitates scaling-up DPPs to much larger datasets. There-
fore, we conducted experiments on a large-scale real-world
dataset, as we explain next.

2. MS Store - This is a proprietary dataset composed
of shopping baskets purchased in Microsoft’s Web-based
store microsoftstore.com. It consists of 243,147 pur-
chased baskets composed of 2097 different hardware and
software items. We use a random split of 80% of the data for
training and 20% for testing. Recall from Section 2.1 that a
low-rank DPP places zero probability mass on subsets with
more than K items, where K is the number of trait dimen-
sions. With this constraint in mind, we use K = 15 trait di-
mensions for the low-rank DPP models trained on this data,
since the largest observed basket in this dataset is composed
of 15 items.

Baby Registry

Category F-Rank L-Rank

Furniture -7.07391 -7.00022

Carseats -7.20197 -7.27515

Safety -7.08845 -7.01632

Strollers -7.83098 -7.83201

Media -12.29392 -12.39054

Health -10.09915 -10.36373

Toys -11.06298 -11.07322

Bath -11.89129 -11.88259

Apparel -13.84652 -13.85295

Bedding -11.53302 -11.58239

Diaper -13.13087 -13.16574

Gear -12.30525 -12.17447

Feeding -14.91297 -14.87305

Gifts -4.94114 -4.96162

Moms -5.39681 -5.34985

MS Store

F-Rank L-Rank

All Products -15.10 -15.23

Table 1: Average test log-likelihoods values of low-rank (L-
Rank) and full-rank (F-Rank) DPPs.

Since we are interested in the basket completion task,
which requires baskets containing at least two items, we re-
move all baskets containing only one item from each dataset
before splitting the data into training and test sets.

We determine convergence during training of both the
low-rank and full-rank DPP models using

|f(Vt+1)− f(Vt))|

|f(Vt)|
≤ δ

which measures the relative change in training log-
likelihoods from one iteration to the next. We set δ = 1.0 ×

10−5.

3.1 Full Rank vs. Low Rank

We begin with comparing test log-likelihood values of the
low-rank DPP model presented in this paper with the full-
rank DPP trained using Picard iteration. Table 1 depicts the
average test log-likelihood values of both models across the
different categories of the Baby Registries dataset as well
as the MS Store dataset. In the Baby Registry dataset the
full-rank model seems to perform better in 9 categories com-
pared with 6 categories for the low-rank model, and for the
MS Store dataset the full-rank model performed better. In
general, the differences in the log-likelihood values are very
small.

Figure 1 shows the average test log-likelihoods of the full-
rank DPP and the low-rank DPP for the Amazon apparel
dataset as a function of the number of low-rank DPP trait
dimensions, K (apparel is one of the most popular item cat-
egories in the Amazon baby registry dataset). We see that
the low-rank DPP reaches approximate parity with the full-
rank DPP at K = 14, and there is no improvement for larger
values of K. The largest observed basket in this dataset con-
tains 21 items. It is important to note that for a K-rank DPP,
one cannot sample a basket larger than K items. In practice

●

●

●

●

●

●

● ●
●

●

● ● ● ● ● ● ● ● ● ●

Low−rank DPP

Full−rank DPP

−22

−20

−18

−16

−14

5 10 15 20 25 30 35 40

Number of latent trait dimensions (K)

A
ve

ra
g
e
 t
e
s
t
lo

g
−

lik
e
lih

o
o
d

Figure 1: Average test log-likelihood of the low-rank DPP
on the Amazon apparel dataset, as a function of the number
of latent trait dimensions K. The average test log-likelihood
of the full-rank DPP on this dataset is shown for comparison.

this is not an issue for many applications, and a low-rank
DPP can fully approximate the expressive power of a full-
rank DPP when K is set to the size of the largest observed
basket in the data (and sometimes for even smaller values
of K, as is the case for the Amazon apparel dataset). Also,
recall from Section 2.5 that for a K-rank DPP we can still
compute predictions for a basket A, of any arbitrary size |A|,
using the conditional matrix VA.

Training Time A key contribution of the Picard iteration
method was the improvement of training time (convergence
time) by up to an order of magnitude (Mariet and Sra 2015)
compared to previous methods. However, the Picard itera-
tion method requires inverting an M × M full-rank (L + I)

matrix, where M is the number of items in the catalog. This
matrix inversion operation has a O(M3) time complexity. As
discussed in Section 2.3, the cost of training our low-rank
model is far lower when K ≪ M . This translates into con-
siderably faster training times, particularity in cases where
the item catalog is large.

Figure 2(a) depicts the training time in seconds of the full-
rank (F-Rank) model vs. the low-rank (L-Rank) DPP model
described in this paper. Table 2 shows the number of itera-
tions required for each model to reach convergence. Train-
ing times are shown for each of the 15 categories in the Baby
Registry dataset. In all but one category, the training time of
the low-rank model was considerably faster. On average, the
low-rank model is 8.9 times faster to train than the full-rank
model.

Prediction Time In production settings, training is usu-
ally performed in advance (offline), while predictions are
computed per request (online). A typical real-world recom-
mender system models at least thousands of items (and of-
ten much more). The “relationships” between items changes
slowly with time and it is reasonable to train a model once

0 100 200 300 400 500 600 700 800 900 1000

Furniture

Carseats

Safety

Strollers

Media

Health

Toys

Bath

Apparel

Bedding

Diaper

Gear

Feeding

Gifts

Moms

Time (sec)

C
a

te
g

o
ry

L-Rank F-Rank

(a) Training time, in seconds

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Furniture

Carseats

Safety

Strollers

Media

Health

Toys

Bath

Apparel

Bedding

Diaper

Gear

Feeding

Gifts

Moms

Time (ms)

C
a

te
g

o
ry

L-Rank F-Rank

(b) Average Prediction time per basket, in milliseconds

Figure 2: Training and prediction time of low rank DPP (L-
Rank) vs. full rank DPP (F-Rank).

a day or even once a week. The number of possible bas-
kets, however, is vast and depends on the number of items in
the catalog. Therefore, it is wasteful and sometimes impos-
sible to pre-compute all possible basket recommendations
in advance. The preferred choice in most cases would be to
compute predictions online, in real time.

High prediction times may overload online servers, lead-
ing to high response times and even failure to provide rec-
ommendations. The ability to compute recommendations
efficiently is key to any real-world recommender system.
Hence, in real-world scenarios prediction times are usually
much more important than training times.

Previous DPP studies (Gillenwater et al. 2014; Mariet and
Sra 2015) focused on training times and did not offer any im-
provement in prediction times. In fact, as we show next, the
average prediction time spikes for the full-rank DPP when
the size of the item catalog reaches several thousand, and
quickly becomes impractical in real-world settings where
the inventory of items is large and fast online predictions

Category L-Rank F-Rank

Mom 67 1294

Gifts 126 1388

Feeding 68 123

Gear 82 136

Diaper 83 1065

Bedding 88 772

Apparel 48 129

Bath 64 1664

Toys 66 970

Health 68 1337

Media 126 958

Strollers 53 1637

Safety 59 1306

Carseats 54 1218

Furniture 54 1277

Table 2: Number of training iterations to reach convergence,
for low-rank DPP (L-Rank) and full-rank DPP (F-Rank)
models

are required. Our low-rank model facilitates far faster pre-
diction times and scales well for large item catalogs, which
is key to any practical use of DPPs. We believe this contri-
bution opens the door to large-scale use of DPP models in
commercial settings.

In Figure 2(b) we compare the average prediction time
for a test-set basket for each of the 15 categories in the
Baby Registry dataset. This figure shows the average time to
compute predictive probabilities for all possible items that
could added to the basket for a given test basket instance,
where the set of possible items are those items found in
the item catalog but not in the test basket. Since the cata-
log is composed of a maximum of only 100 items for each
Baby Registry category, we see that these prediction times
are quite small. We see a clear advantage for the low-rank
model across all categories: the average prediction time for
the full-rank model is 2.55 ms per basket, compared with
0.39 ms for the low-rank model (6.8 times faster). Since
number of items in the catalog for each baby registry cat-
egory is small, we also measured the prediction time for the
MS Store dataset, which contains 2,097 items. Due to the
much larger item catalog, the average time per a single bas-
ket prediction increases significantly to 1.66 seconds, which
is probably too slow for many real-world recommender sys-
tems. On the other hand, the average prediction time of the
low-rank model is only 83.6 ms per basket, which is 19.9x
faster than the full-rank model.

Our low-rank DPP model also provides substantial sav-
ings in memory consumption compared to the full-rank DPP.
For example, the MS Store dataset, composed of a catalog of
2097 items, would require 2097× 2097× 8 bytes = 35.18 MB
to store the full-rank DPP kernel matrix (assuming 64-bit
floating point numbers), while only 2097 × 15 × 8 bytes =

251.6 KB would be required to store the low-rank V matrix
with K = 15 trait dimensions. Therefore, the low-rank model
requires approximately 140 times less memory to store the
model parameters in this example, and this savings increases
with larger item catalogs.

4 Conclusions

In this paper we have presented a new method for learning
the DPP kernel from observed data, using a low-rank fac-
torization of this kernel. Previous approaches have focused
on learning a full-rank kernel, which does not scale for large
item catalogs due to high memory consumption and expen-
sive operations required during training and when comput-
ing predictions. Through an experimental evaluation using
several real-world datasets in the domain of recommenda-
tions for shopping baskets, we have shown that our low-
rank DPP model is substantially faster and more memory
efficient than previous full-rank DPP approaches for both
training and prediction.

Acknowledgements

We thank Gal Lavee and Shay Ben Elazar for many helpful
discussions. We thank Nir Nice for supporting this work.

References

Affandi, R. H.; Kulesza, A.; Fox, E.; and Taskar, B. 2013.
Nystrom approximation for large-scale determinantal pro-
cesses. In AISTATS, 85–98.

Affandi, R. H.; Fox, E.; Adams, R.; and Taskar, B. 2014.
Learning the parameters of determinantal point process ker-
nels. In ICML, 1224–1232.

Affandi, R. H.; Fox, E.; and Taskar, B. 2013. Approximate
inference in continuous determinantal processes. In NIPS,
1430–1438.

Anari, N.; Oveis Gharan, S.; and Rezaei, A. 2016.
Monte carlo markov chain algorithms for sampling strongly
rayleigh distributions and determinantal point processes. In
29th Annual Conference on Learning Theory, 103–115.

Chao, W.-L.; Gong, B.; Grauman, K.; and Sha, F. 2015.
Large-margin determinantal point processes. In UAI.

Gillenwater, J. A.; Kulesza, A.; Fox, E.; and Taskar, B. 2014.
Expectation-maximization for learning determinantal point
processes. In NIPS, 3149–3157.

Gillenwater, J.; Kulesza, A.; and Taskar, B. 2012. Near-
optimal map inference for determinantal point processes. In
NIPS, 2735–2743.

Gillenwater, J. 2014. Approximate inference for determinan-
tal point processes. Ph.D. Dissertation, University of Penn-
sylvania.

Kulesza, A., and Taskar, B. 2010. Structured determinantal
point processes. In NIPS, 1171–1179.

Kulesza, A., and Taskar, B. 2011a. k-DPPs: Fixed-size de-
terminantal point processes. In ICML, 1193–1200.

Kulesza, A., and Taskar, B. 2011b. Learning determinantal
point processes. In UAI.

Kulesza, A., and Taskar, B. 2012. Determinantal point pro-
cesses for machine learning. Foundations and Trends in Ma-
chine Learning 5(2-3):123–286.

Kwok, J. T., and Adams, R. P. 2012. Priors for diversity in
generative latent variable models. In NIPS, 2996–3004.

Li, C.; Jegelka, S.; and Sra, S. 2016a. Efficient sampling for
k-determinantal point processes. In AISTATS, 1328–1337.

Li, C.; Jegelka, S.; and Sra, S. 2016b. Fast dpp sampling for
nyström with application to kernel methods. arXiv preprint
arXiv:1603.06052.

Lin, H., and Bilmes, J. 2012. Learning mixtures of submod-
ular shells with application to document summarization. In
UAI.

Macchi, O. 1975. The coincidence approach to stochastic
point processes. Advances in Applied Probability 83–122.

Mariet, Z., and Sra, S. 2015. Fixed-point algorithms for
learning determinantal point processes. In ICML, 2389–
2397.

Mariet, Z., and Sra, S. 2016a. Diversity networks. In Inter-
national Conference on Learning Representations.

Mariet, Z., and Sra, S. 2016b. Kronecker determinantal
point processes. arXiv preprint arXiv:1605.08374.

Nesterov, Y. 1983. A method of solving a convex program-
ming problem with convergence rate O(1/sqr(k)). Soviet
Mathematics Doklady 27:327–376.

Robbins, H., and Monro, S. 1951. A stochastic approx-
imation method. The Annals of Mathematical Statistics
22(3):400–407.

Snoek, J.; Zemel, R.; and Adams, R. P. 2013. A determi-
nantal point process latent variable model for inhibition in
neural spiking data. In NIPS, 1932–1940.

Tschiatschek, S.; Djolonga, J.; and Krause, A. 2016. Learn-
ing probabilistic submodular diversity models via noise con-
trastive estimation. In AISTATS, 770–779.

