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Abstract

A series of corrections is developed for the fixed points gbé&otation Propaga-
tion (EP), which is one of the most popular methods for apipnate probabilistic

inference. These corrections can lead to improvementseoihflerence approxi-
mation or serve as a sanity check, indicating when EP yieldsaliable results.

1 Introduction

The expectation propagation (EP) message passing algorithm is often considered as tthedef
choice for approximate Bayesian inference when both goodracy and computational efficiency
are required [5]. One recent example is a comparison of Eff exitensive MCMC simulations for
Gaussian process (GP) classifiers [4], which has shown dtanty the predictive distribution, but
also the typically much harder marginal likelihood (thetjien function) of the data, are approxi-
mated remarkably well for a variety of data sets. Howeveilexuch empirical studies hold great
value, they can not guarantee the same performance on attaesets or when completely different
types of Bayesian models are considered.

In this paper methods are developed to assess the qualihe &R approximation. We compute
explicit expressions for the remainder terms of the appnaxion. This leads to various corrections
for partition functions and posterior distributions. Undlee hypothesis that the EP approximation
works well, we identify quantities which can be assumed teiall and can be used in a series
expansion of the corrections with increasing complexitye Tomputation of low order corrections
in this expansion is often feasible, typically require omgpderate computational efforts, and can
lead to an improvement to the EP approximation or to the atéia that the approximation cannot
be trusted.

2 Expectation Propagation in a Nutshell

Since it is the goal of this paper to compute corrections ¢oBR approximation, we will not dis-
cuss details of ERIgorithms but rather characterise the fixed points which are reacheshwhch
algorithms converge.

EP is applied to probabilistic models with an unobservednatariablex having an intractable
distributionp(x). In application®(x) is usually the Bayesian posterior distribution conditidioa

a set of observations. Since the dependency on the latiables is not important for the subsequent
theory, we will skip them in our notation.



Itis assumed thai(x) factorizes into a product @érms f,, such that
1
p(x) =~ E[fn(X), (1)

where the normalising partition functiofi = [ dx [[,, f.(x) is also intractable. We then assume
an approximation t@(x) in the form

9(x) = [[ 9. () @)

where the termg,,(x) belong to a tractable, e.g. exponential family of distribns. To compute
the optimal parameters of thg term approximation a set of auxiliatifted distributions is defined

via
1 (g0 fu)
i) = o <—gn(x) ) . @)

Here asingle approximating terny,, is replaced by an original terryfi,. Assuming that this re-
placement leaves, still tractable, the parameters g are determined by the condition thgix)
and allg,,(x) should be made as similar as possible. This is usually aetliey requiring that these
distributions share a set of generalised moments (whicallystoincide with the sufficient statistics
of the exponential family). Note, that we willot assume that thiexpectation consistency [8] for
the moments is derived by minimising a Kullback—Leibleratiyence, as was done in the original
derivations of EP [5]. Such an assumption would limit thelagybility of the approximate inference
and exclude e.g. the approximation of models with binaipglsariables by a Gaussian model as
in one of the applications in the last section.

The corresponding approximation to the normalising partifunction in (1) was given in [8] and
[7] and reads in our present notatton

ZEPZHZn. (4)

3 Corrections to EP

An expression for the remainder terms which are neglecteldlz P approximation can be obtained
by solving for f,, in (3), and taking the product to get

[1560-1 (20209009 _ 7 40 1 (=) 5)

- q(x) q(x)

HenceZ = [ dx [[, fn(x) = ZgpR, with

k= [ ax q<x>1;[(q”(x’) and p<x>:%q<x>1;[(q”(x’) | ©)

q(x) q(x)

This shows that corrections to EP are small when all distiobs ¢,, are indeed close t@ justifying
the optimality criterion of EP. For related expansions,[2e8, 9].

Exact probabilistic inference with the corrections desedi here again leads to intractable computa-
tions. However, we can derive examrturbation expansionsinvolving a series of corrections with
increasing computational complexity. Assuming that ERady yields a good approximation, the
computation of a small number of these terms maybe suffitéenibtain the most dominant correc-
tions. On the other hand, when the leading corrections carhiaie or do not sufficiently decrease
with order, this may indicate that the EP approximation &turate. Two such perturbation expan-
sions are be presented in this section.

The definition of partition functiong,, is slightly different from previous works.



3.1 Expansion I: Clusters

The most basic expansion is based on the variables) = q;(;’;) — 1 which we can assume to be

typically small, when the EP approximation is good. Expagdhe products in (6) we obtain the
correction to the partition function

R= /dx g(x) [] (1 +en(x) 7)
=1+ Z <5n1 (X)en, (x)>q + Z <5n1 (X)Enz (X)ens (x)>q +..., (8)

which is a finite series in terms of growing clusters of “iteting” variables:,,(x). Here the
brackets. . .), denote expectations with respect to the distributiohlote, that the first order term
>, (en(x)), = 0 vanishes by the normalization gf andg. As we will see later, the computation
of corrections is feasible wheypy is just a finitemixture of K simpler densities from the exponential
family to whichq belongs. Then the number of mixture components irjttieterm of the expansion
of R is just of the orde®(K7) and an evaluation of low order terms should be tractable.

In a similar way, we get
90 (143,200 + 3, oy na (920, () +-) ©
1+ Zn1<n2 (€ny (X)en, (X)>q +. ’

In order to keep the resulting density normalized to one, haukl keep as many terms in the
numerator as in the denominator. As an example, the first aateection tog(x) is

P(x) =D gn(x) = (N = 1)g(x) . (10)

p(x) =

3.2 Expansion II: Cumulants

One of most important applications of EP is to the case oissitzal models with Gaussian process
priors. Herex is a latent variable with Gaussian prior distribution andar@anceE[xx '] = K
whereK is the kernel matrix. In this case we haWet 1 termsfy, f1, ..., fx in (1) wherefy(x) =
go(x) = exp[—3x"K~'x]. Forn > 1 eachf,(x) = t,(z,) is thelikelihood term for the n‘"
observation which depends only on a single compongrtf the vectorx.

The corresponding approximating terms are chosen to be s@au®f the formg,(z)

V=332’ The2N parameters;,, and),, are determined in such a way thai) and the dis-
tributionsg,, (x) have the same first and secamerginal moments (z,,) and(z2). In this case, the
computation of corrections (7) would require the compotatf multivariate integrals of increasing
dimensionality. Hence, a different type of expansion sesmoge appropriate. The main idea is to
expand with respect to the higher order cumulants of theildigtonsg,, .

To derive this expansion, we simplify (6) using the fact th@at) = q(x\,|2»)q(2,) andg,(x) =
q(X\n |70 )qn (2r), where we have (with a slight abuse of notation) introdugied,) andg,, (),
the marginals of/(x) andg, (x). Thusp(x) = + ¢(x)F(x) andR = [ dx q(x)F(x), where
Qn(xn))
F(x)= — ] . 11
) 1;[ ( q(an) D

Sinceg(x,, ) and theg, (x,,) have the same first two cumulants, corrections can be exqutdssthe
higher cumulants of the ¢,,(z,,) (note, that the higher cumulants @fx,,) vanish). The cumulants
¢ Of g, (x,,) are defined by theitharacteristic functions y,, (k) via

dk i 1 CIn
n(zn) = /% e *eny (k) and  In (k) :Z(z)l% kb (12)
l !

Expressing the Gaussian margina(s,,) by their first and second cumulants, the meansand
the variances,,,, and introducing the function

ra (k) = Z(i)lcll—!” K (13)

>3
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which contains the contributions of all higher order cumtgawe get

Fix) = H <] dkrn exp [—ikn(zn —my) — %Snnk% + 7 (k)] ) (14)

[ dkn exp [—ikn(zn — my) — 3 Spnk?]

:/dn /1;[% . l_;&;nﬁ] exp l;rn <nn_z(“’%7:“)] (15)

where in the last equality we have introduced a shift of \deisr,, = k,, + z(ms;’:")

n

An expansion can be performed with respect to the cumularttsel termsy,, which had been ne-
glected in the EP approximation. The basic computationsiast easily explained for the correction
R to the partition function.

3.2.1 Correction to the partition function

Since¢(x) is a multivariate Gaussian of the forgix) = A (x;m,S), the correctionR to the
partition Z involves a double Gaussian average over the vectand the set of),,. This can be
simplified by combining them into single complex zero mean Gaussian random vector defined as

Zp = Np — 1% such that
R = <exp [Z Tn (Zn)] > (16)

The most remarkable property of the Gaussiasits covariance which is easily found to be

(zizj), = — Sij wheni # j, and (z7), =0. (17)
“ SiSj i

The last equation has important consequences for the suguerms in an expansion @!

Assuming that the,, are small we perform a power series expansiomadt

1nR—1n<exp[2n:rn(zn)}> :Z<Tn>z+%<(27"n)2> —%(;<rn>z)2:|:... (18)

1 CinClim Snm :
DI T IS g g (Smsmm) ... (19)
m#n m#n >3

Here we have repeatedly used the fact that each fagtor expectationgz 22, ) have to be paired
(by Wick’s theorem) with a factoe,,, wherem # n (diagonal terms vanish by (17)). This gives
nonzero contributions only, whén= s and there ar& ways for pairing?

This expansion gives a hint why EP may work typically well foultivariate models when covari-
ancesS;; are small compared to the variancgs. While we may expect thdh Zgp = O(N)
whereN is the number of variables,, the vanishing of the “self interactions” indicates thatrec-
tions may not scale withv.

3.2.2 Correction to marginal moments

The predictive density of a novel observation can be trebtedxtending the Gaussian prior to
include a new latent variable, with E[z.x] = k. andE[z2] = k., and appears as an average of a
likelihood term over the posterior marginal of.

A correction for the predictive density can also be deriveterms of the cumulant expansion by
averaging the conditional distributigriz.|x) = N (z.; k] K~ 'x, 02) with 02 = k, — k] K~ 'k..
Using the expression (15) we obtain (where welget 1 in (6) to lowest order)

) =[x pl) p) = N 52.) <1 + X (- a2 )+ >

X~ N (x40, )

2The terms in the expansion might be organisedrégnman graphs, where “self interaction” loops are
absent.



-195—— ‘ ‘ ‘ ‘ ‘ Figure 1. InZ approximations obtained from
q(x)'s factorization in (2), for sec. 4.1's mixture
model, as obtained by: variational Bayes (see [1]
for details) as red squares; = % in Minka’s a-
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with the 24 order correction in (8) as green di-
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wherep,, = k] K 'm and variance? = k, — k(K + A~!)"'k, andA = diag(\) denotes
the parameters in the Gaussian temgys The average in (20) is over a Gaussiawith £~ =
(K — ki'kk) ™' + A v andp = (2. — e, )0 ?2K 'k, + m. By simplifying the inner
expectation over the complex Gaussian variahlege obtain

1
Cin 1 Ty — M,
p(x) =N (24 o, 52.) |1+ E E —'(—) <hl (7)> 4.
n >3 i VSnn Snn X~ N (%54, 3)

(21)
whereh; is thel*" Hermite polynomial. The Hermite polynomials are averageer @ Gaussian
density where the only occurrencexfis through(z.. — 1., ) in u, so that the expansion ultimately
appears as a polynomialin.. A correction to the predictive density follows from aveiramt. ()
over (21).

4 Applications

4.1 Mixture of Gaussians

This section illustrates an example where a large first noaticorrection term in (8) reflects an
inaccurate EP approximation. We explain this fdfacomponent Gaussian mixture model.

ConsiderN observed data points, with likelihood termsf,, (x) = >, m.N (o e, T 1), with

n > 1 and with the mixing weights-,, forming a probability vector. The latent variables are then
x = {m., s, T }2X ;. For our prior onx we use a Dirichlet distribution and product of Normal-
Wisharts densities so thgy(x) = D(w) [[,, NW(p,, ). When we multiply thef,, terms we
see that intractability for the mixture model arises beeahe® number of terms in the marginal
likelihood is KV, rather than because integration is intractable. The ctatipn of lower-order
terms in (8) should therefore be immediately feasible. Tp@aximationg(x) and eacly,, (x) are
chosen to be of the same exponential family formfgsx), where we don't requirg,,(x) to be
normalizable.

For brevity we omit the details of the EP algorithm for thisctnre model, and assume here that an
EP fixed point has been found, possibly using some dampigg1FShows various approximations
to the log marginal likelihoodn Z for ¢,, coming from theacidity data set. It is evident that the
“true peak” doesn’t match the peak obtained by approxinrderénce, and we will wrongly predict
which K maximizes the log marginal likelihood. Without having teoet to Monte Carlo methods,
the second order correction féf = 3 both corrects our prediction and already confirms that the
original approximation might be inadequate.

4.2 Gaussian Process Classification

The GP classification model arises when we obséyveata points¢,, with class labelsy,, €
{—1,1}, and modely through a latent function: with the GP prior mentioned in sec. 3.2. The
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Figure 2: A comparison of a perturbation expansion of (19irgt Monte Carlo estimates of the
true correctiorin R, using the USPS data set from [4].

likelihood terms fory,, are assumed to bg (z,,) = ®(y,x,), whered(-) denotes the cumulative
Normal density.

Eqg. (19) shows how to compute the cumulant expansion by diivef the EP fixed point with the
characteristic function of,, (z,,): From the EP fixed point we havgx) = AN (x; m,S) andg,, o
eMmTn=z e consequently the marginal density of in ¢(x)/gn (2, ) from (3) iSN (zn; 1, v2),
wherev=2 =1/8,,,, — A, andu = v=2(my, /Spn — ). Using (3) again we have

1

Gn () = = (ynwn) N (n; 1, 0%) - (22)
The characteristic function af, (x,,) is obtained by the inversion of (12),
i ep— k202 P (W) . Ynlh _ Ynpt + ikv?
n(k) = (eFen) = ethu—zk™v , with w = —= and w = —F————, (23
X ( ) < > (I)(w) w 112 At o2 (23)

with expectations- - -) being with respect tq, («,,). Raw moments are computed through deriva-

tives of the characteristic function, i.éx)) = z“-jng)(o). The cumulants;,, are determined
from the derivatives ofn x,, (k) evaluated at zero (or equally from raw moments, esg. =

2wn)” — 3(xn) (22) + (23)), such that
csn = o’ B[26% + 3wB + w® — 1] (24)
can = —a'B[66° + 12wB% + Tw?B + w® — 48 — 3w] , (25)
wherea = v?/v/1 +v2 andB = N (w;0,1)/®(w).

An extensive MCMC evaluation of EP for GP classification oriauas data sets was recently given
by [4], showing that the log marginal likelihood of the datmde approximated remarkably well.
An even more accurate estimation of the approximation asrgiven by considering the second
order correction in (19) (computed here up'te- 4). For GPC we generally found that the= 3
term dominate$ = 4, and we do not include any higher cumulants here. Fig. 2tititss thdn R
correction on the binary subproblem of the USPS 3's vs. Bjgsldata set, withV = 767, as was
used by [4]. We used the same kerbé(, (') = 0% exp(—3 (¢ — ¢'[|?/¢?) as [4], and evaluated
(19) on a similar grid oin ¢ andln o values. For the same grid values we obtained Monte Carlo
estimates ofn Z, and hencén R. They are plotted in fig. 2(b) for the cases where they estinat

to sufficient accuracy (up to four decimal places) to obtagmaothly varying plot ofn R.> The
correction from (19), as computed here(1$N?), and compares favourably @(N?3) complexity

of EP for GPC.

3The Monte Carlo estimates in [4] are accurate enough for BiipfP’s close approximation fa Z, but
not enough to make any quantified statement aho&t
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In fig. 3 we show the coefficients of the polynomial correc&¢®1) in powers of:,. to the predictive
densityp(x. ), using3'! and4'" cumulants. The small corrections arise as whenever tgyms,
are positive and large compared to the posterior variaraeGaussian termf, (x) = ¢, (x,) ~ 1

for almost all values of,, which have significant probability under the Gaussian itistion that

is proportional tog(x)/gn(z,). For these termg, (z) is thereforealmost Gaussian and higher
cumulants are small. A example where this will no longer leecise is a GP model with (x,,) = 1
for|z,| < aandt,(x,) = 0for|z,| > a. Thisis aregression modgl = z,,+v,, where i.i.d. noise
variables,, have uniform distribution and the observed outputs areeab zi.e.y, = 0. For this
case, the exact posterior variance does not shrink to zeno iethe number of data points goes
to infinity. The EP approximation however has the variancerekese to zero and our corrections
increase with sample size.

o

Coefficients of x
I
N

4.3 Ising models

Somewhat surprising (and probably less known) is the faat EP and our corrections apply
well to a fairly limiting case of the GP model where the terme af the formt, (z,) =
e (§(zy + 1) + 6(z, — 1)), whered(x) is the Dirac distribution. These terms, together with
a “Gaussian’fo(x) = exp[>_,_; Jijziz;| (where we do not assume that the matfiis negative
definite), makes this GP model an Ising model with binaryaldgsx,, = +1. As shown in [8],
this model can still be treated with the same type of Gaudsian approximations as ordinary GP
models, allowing for surprisingly accurate estimation lué inearand covariance. Here we will
show the effect of our corrections for toy models, where exderence is possible by enumeration.

The tilted distributionsy,, (x,,) are biased binary distributions with cumulants;, = —2m,,(1 —
m2), can = —2 + 8m2 — 6m?, etc. We will consider two different scenarios for rand@randJ
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Figure 4: The left plot shows the MAD of the estimated covac@amatrix from the exact one for
different values ofs for EP (blue), EP2"? order! = 4 corrections (blue with triangles), Bethe or
loopy belief propagation (LBP; dashed green) and Kikuchjemeralized LBP (dash—dotted red).
The Bethe and Kikuchi approximations both give covariarsterates for all variable pairs as the
model is fully connected. The right plot shows the absol@eation ofln Z from the true value
using second order perturbations with- 3, 4,5 (I = 3 is the smallest change). The remaining line
styles are the same as in the left plot.



described in detail in [8]. In the first scenario, with = 10, the J;;’s are generated independently
at random according td;; = fw;; andw;; ~ N(0,1). For varying3, the maximum absolute
deviation (MAD) of the estimated covariance matrices frdra éxact onenax; ; |E;?;T‘ — Ygract]

is shown in fig. 4 left. The absolute deviation on the log piartifunction is shown in fig. 4 right.

In the Wainwright-Jordan set-uf' = 16 nodes are either fully connected or connected to nearest
neighbors in a 4-by—4 grid. The external field (observatstrgngths); are drawn from aniform
distributiond; ~ U[—dobs, dobs] With dons = 0.25. Three types of coupling strength statistics are
considered: repulsive (anti-ferromagnetit) ~ U[—2dcoup, 0], mixed J;; ~ U[—dcoup, +deoup]
and attractive (ferromagnetid); ~ U[0, +2dcoup]. Table 1 gives the MAD of marginals averaged
of 100 repetitions. The results for both set-ups give risia¢éoconclusion that when the EP approx-
imation works well then the correction give an order of mégghe of improvement. In the opposite
situation, the correction might worsen the results.

Table 1: Average MAD of marginals in a Wainwright-Jordanspt comparing loopy belief prop-
agation (LBP), log-determinant relaxation (LD), EP, EPhwit= 5 correction (EP+), and EP with
only one spanning tree approximating term (EP tree).

Problem type Method

Graph | Coupling [ deouwp | LBP [ LD | EP | EP+ | EPtree
Repulsive| 0.25 | 0.037 | 0.020 | 0.003 | 0.00058487| 0.0017
Repulsive| 0.50 [ 0.071] 0.018] 0.031] 0.0157 [ 0.0143
Full Mixed 0.25 | 0.004 | 0.020 | 0.002 | 0.00042727| 0.0013

Mixed 0.50 [ 0.055][ 0.021] 0.022] 0.0159 [ 0.0151
Attractive | 0.06 | 0.024 | 0.027 | 0.004 0.0023 0.0025
Attractive | 0.12 [ 0.435] 0.033] 0.117] 0.1066 [ 0.0211

Repulsive| 1.0 | 0.294 | 0.047 | 0.153 0.1693 0.0031
Repulsive| 2.0 | 0.342] 0.041] 0.198 0.4244 0.0021
Grid Mixed 1.0 | 0.014| 0.016| 0.011 0.0122 0.0018

Mixed 2.0 | 0.095| 0.038| 0.082 0.0984 0.0068
Attractive | 1.0 | 0.440| 0.047| 0.125 0.1759 0.0028
Attractive | 2.0 | 0.520 | 0.042| 0.177 0.4730 0.0002

5 Outlook

We expect that it will be possible to develop similar cori@ts$ to other approximate inference
methods, such as the variational approach or the “power Pppfoximations which interpolate
between the variational method and EP. This may help thetas#ggcide which approximation is
more accurate for a given problem. We will also attempt aryaisof the scaling of higher order
terms in these expansions to see if they are asymptotic erdéinite radius of convergence.
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