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Abstract

Inference in discrete graphical models is often computationally intractable, re-
quiring the summation of exponentially many terms. Amongst relaxations to this
problem, we consider an Expectation Propagation (EP) approximation, and derive
a general framework for corrections to EP and apply the framework to inference
in binary Bayesian networks (Ising models). We show how to systematically com-
pute higher order cumulant corrections of marginal likelihoods, marginal distribu-
tions, and moments, and use it to show state-of-the accuracy in difficult bench-
marks.

1 Introduction

Reliable estimation of marginal likelihoods, predictive or marginal distributions and moments are
crucial for the practical application of Bayesian inference. Expectation propagation (EP) has proven
to be especially well-suited for Gaussian latent variable models. What is less well known is that
EP can also be applied to discrete inference problems. In this contribution we will derive a general
framework for corrections to the EP and apply the framework to inference in binary Bayes networks
(Ising models).

EP can be considered as the zeroth order approximation in a specific cumulant (Edgeworth) expan-
sion, and has the pleasing property amongst variational methods that at the stationary point of the
marginal likelihood approximation, it is exact up to the second order cumulants. The corrections
we derive here incorporate the remaining non-Gaussian cumulants that are neglected when tractable
approximations to latent Gaussian models are made. The typical O(N3) complexity with system
size N of EP is retained in this approach because it lowest order corrections are computed after
convergence of EP in O(N3). We investigate how the structure of the variational approximation can
be chosen within different tractable families to give factorized and tree-structured approximations
with state-of-the accuracy in difficult benchmarks.

This paper specifically addresses corrections to the Gaussian approximating family, and follows on
earlier work by the authors [4]. It is by no means unique in its approach to correcting the approxima-
tion, as is evinced by cluster-based expansions [6], marginal corrections for EP [2] and corrections
to Loopy Belief Propagation [1, 7].
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2 Ising model

In this workshop paper, we consider an Ising model over x = (x1, . . . , xN ) as a specific case of
a Gaussian latent variable model, which we generally define as a product of terms tn(xn) with a
quadratic exponential f0(x), i.e. p(x) = 1

Z

∏
n tn(xn) f0(x) with partition function (normalizer)

Z =
∫ ∏

n tn(xn) f0(x) dx.

An Ising model can be constructed by letting the terms tn restrict xn to ±1 (through Dirac delta
functions), and introducing the symmetric coupling matrix J and field θ into f0 with

p(x) =
1

Z

∏
n

[
1

2
δ(xn + 1) +

1

2
δ(xn − 1)

]
exp

{
1

2
xTJx+ θTx

}
. (1)

In the Ising model, the partition function Z is intractable, as it sums f0(x) over 2N binary values
of x. In the variational approaches, the intractability is addressed by allowing approximations to Z
and other marginal distributions, decreasing the computational complexity from being exponential
to polynomial in N , and typically cubic for EP.

3 Expectation Propagation

An approximation to Z or other marginalizations can be made by allowing p(x) in to factorize into
a product of factors fa. This factorization is not unique; for example, a three-term product may be
factorized as (t1)(t2)(t3), but could equally factorize as (t1t2)(t2t3)/(t2), when the resulting free
energy is be that of the tree-structured EC approximation [5]. To therefore allow for regrouping,
combining, splitting, and dividing terms, a power Da is associated with each fa, such that

p(x) =
1

Z

∏
a

fa(x)
Da (2)

with intractable normalization (or partition function) Z =
∫
dx
∏

a fa(x)
Da . To define an approx-

imation to p, terms ga, which take an exponential family form, are chosen such that

q(x) =
1

Zq

∏
a

ga(x)
Da (3)

has the same structure as p’s factorization. Although not shown explicitly, fa and ga have a depen-
dence on the same subset of variables xa. The optimal parameters of the ga-term approximations
are found through a set of auxiliary tilted distributions, defined by

qa(x) =
1

Za

(
q(x)fa(x)

ga(x)

)
. (4)

Here a single approximating term ga is replaced by an original term fa. Assuming that this replace-
ment leaves qa still tractable, the parameters in ga are determined by the condition that q(x) and
all qa(x) should be made as similar as possible. This is usually achieved by requiring that these
distributions share a set of generalised moments which usually coincide with the sufficient statistics
of the exponential family. For example with sufficient statistics ϕ(x) we require that

⟨ϕ(x)⟩qa = ⟨ϕ(x)⟩q for all a . (5)

The partition function associated with this approximation is ZEP = Zq

∏
a Z

Da
a .

Continuous approximations to discrete problems. As p(x) is a latent Gaussian model, the g-
terms in eq. (3) are chosen in this paper to give a Gaussian approximation

q(x) =
1

Zq
exp{λTϕ(x)} = N (x ; µ,Σ) .

The sufficient statistics ϕ(x) and natural parameters λ of the Gaussian are defined as

ϕ(x) = (x,−1
2xx

T ) and λ = (γ,Λ) ,

where λTϕ(x) = γTx− 1
2 tr[ΛxxT ] = γTx− 1

2x
TΛx. We define g0(x) = exp{λT

0 ϕ(x)}, where
λ0 = (γ(0),Λ(0)), such that it is essentially a rescaling of factor f0. In the Ising model in eq. (1),
this means that Λ(0) = −J and γ(0) = θ.
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Tree structured example. Let G define a spanning tree structure over all x, and let τ = (m,n) ∈
G define the edges in the tree. Let dn be the number of edges emanating from node xn in the graph.
Through a clever regrouping of terms into a “junction tree” form with∏

n

tn(xn) =

∏
τ=(m,n)[ tm(xm)tn(xn) ]∏

n tn(xn)dn−1
=

∏
τ fτ (x)∏

n fn(x)
dn−1

, (6)

the term-approximation will be tree-structured. In this example the Da powers are 1 for edge factors
fτ and (1− dn) for node factors fn. Suppressing g0 = f0, we define the approximation through∏

τ gτ (x)∏
n gn(x)

dn−1
=

∏
τ exp{λ⊤

τ ϕ(x)}∏
n exp{λ⊤

n ϕ(x)}dn−1
.

The natural parameters of gn(x) = exp{λT
nϕ(x)} are chosen to be λn = (γ

(n)
n ,Λ

(n)
nn ), cor-

responding to ϕn(xn) = (xn,−1
2x

2
n).

1 Furthermore, let gτ (x) be similarly parameterized by
λτ = (γ

(τ )
m , γ

(τ )
n ,Λ

(τ )
mm,Λ

(τ )
nn ,Λ

(τ )
mn), with by symmetry Λ

(τ )
nm = Λ

(τ )
mn. The resulting q(x) therefore

has parameter vector λ = λ0 +
∑

τ λτ −
∑

n(dn − 1)λn.2

4 Corrections to EP

We present a derivation of the cumulant expansion of R in eq. (16). The strategy can be re-used to
correct other quantities of interest, like marginal distributions or the predictive density of new data
when p(x) is a Bayesian probabilistic model.

Exact expression for correction. We define the (intractable) correction R as Z = RZEP. We
can derive a useful expression for R in a few steps as follows: First we solve fa in eq. (4), and
substituting this into eq. (2) obtain

∏
a

fa(x)
Da =

∏
a

(
Zaqa(x)ga(x)

q(x)

)Da

= ZEP q(x)
∏
a

(
qa(x)

q(x)

)Da

. (7)

We introduce F (x) ≡
∏

a(qa(x)/q(x))
Da to derive the expression for the correction R = Z/ZEP

by integrating eq. (7)

R =

∫
dx q(x)F (x) (8)

and using Z =
∫
dx
∏

a fa(x)
Da . Similarly we can write:

p(x) =
1

Z

∏
a

fa(x)
Da =

ZEP

Z
q(x)F (x) =

1

R
q(x)F (x) . (9)

Corrections to the marginal and predictive densities of p(x) can be computed from this formulation.
This expression will become especially useful because the terms in F (x) turn out to be “local”, and
only depend on the marginals of the variables associated with factor a. Let fa(x) depend on the
subset xa of x, and let x\a (“x without a”) denote the remaining variables. The distributions in
eqs. (3) and (4) differ only with respect to their marginals on xa, qa(xa) and q(xa), and therefore
qa(x)/q(x) = qa(xa)/q(xa). Now we can rewrite F (x) in terms of marginals:

F (x) =
∏
a

(
qa(xa)

q(xa)

)Da

. (10)

The key quantity, then, is F , after which the key operation is to compute its expected value. The rest
of this section is devoted to the task of obtaining a “handle” on F .

1For clarity the other γ and Λ parameters in λn are not shown, as they are clamped at zero.
2Only the term approximation is tree-structured through λτ and λn, whilst λ0 from g0 is not.
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Characteristic functions and cumulants. The distributions present in each of the ratios in F (x)
in eq. (10) share their first two cumulants, mean and covariance. As the q(xa)’s are Gaussian and do
not contain any higher order cumulants (three and above), F can be expressed in terms of the higher
cumulants of the marginals qa(xa). When the term-product approximation is fully factorized, these
are simply cumulants of one-dimensional distributions.

Let Na be the number of variables in subvector xa—in our results Na is one, or two for a tree-
structured approximation. We let ka be an Na-dimensional vector ka = (k1, . . . , kNa)a. The
characteristic function of qa is χa(ka) =

∫
dxa eik

T
a xa qa(xa) =

⟨
eik

T
a xa
⟩
qa

, and is obtained

through its Fourier transform. Inversely, qa(xa) = 1
(2π)Na

∫
dka e−ikT

a xaχa(ka). The cumulants
cαa of qa are the coefficients that appear in the Taylor expansion of logχa(ka) around the ka = 0
zero vector3

logχa(ka) =
∞∑
l=1

il
∑
|α|=l

cαa

α!
kα
a .

There are two characteristic functions that come into play in F (x) and R in eq. (9). The first is that
of the tilted distribution, logχa(ka), and the other is the characteristic function of the EP marginal
q(xa), defined as χ(ka) = ⟨eikT

a xa⟩q . By virtue of matching the first two moments, and q(xa) being
Gaussian,

ra(ka) = logχa(ka)− logχ(ka) =
∑
l≥3

il
∑
|α|=l

cαa

α!
kα
a (11)

contains the remaining higher-order cumulants where the tilted and approximate distributions differ.

The correction as a complex expectation. The expected value of F , which is required for the
correction, has a dependence on a product of ratios of distributions qa(xa)/q(xa), which simplifies
to qa(xa)/q(xa) = ⟨exp ra(ka)⟩ka|xa

, with ka shifted into the complex plane with p(ka|xa) =

N (ka ;−iΣ−1
a (xa − µa) , Σ

−1
a ). We find that R, from eq. (8), is equal to

R =
⟨
F (x)

⟩
x∼q(x)

=

⟨∏
a

⟨
exp ra(ka)

⟩Da

ka|xa

⟩
x

. (12)

When x is given, the ka-variables are independent, but when the uncertainty in q(x) is taken into
account, the ka-variables are zero-mean complex Gaussian ⟨ka⟩ = 0 and are coupled with a zero
self-covariance! In other words, if Σab = cov(xa,xb), the covariance cov(ka,kb) between the
variables in the set {ka} is

cov(ka,kb) =

{
0 if a = b
−Σ−1

a ΣabΣ
−1
b if a ̸= b

. (13)

When Da = 1, the above expectation can be written directly over {ka} and expanded. In the
general case, the inner expectation is first expanded (to treat the Da powers) before computing an
expectation over {ka}. In both cases the expectation will involve polynomials in k-variables, and
the expected values of Gaussian polynomials can be evaluated with Wick’s theorem [3].

5 Factorized approximations

In the fully factorized approximation, with fn(xn) = tn(xn), the exact distribution in eq. (9) de-
pends on the single node marginals F (x) =

∏
n qn(xn)/q(xn). Following eq. (12), the correction

to the free energy is taken directly over the centered complex-valued Gaussian random variables k =
(k1, . . . , kN ), which have a covariance ⟨kmkn⟩ = 0 if m = n and ⟨kmkn⟩ = −Σmn/(ΣmmΣnn)
if m ̸= n. In the section to follow, all expectations shall be with respect to k, which will be dropped
where it is clear from the context.

3We introduced some notation to facilitate manipulating a multivariate series. The vector α =
(α1, . . . , αNa), with αj ∈ N0 denotes a multi-index on the elements of ka. Other notational conventions
that employ α (writing kj instead of kaj) are: |α| =

∑
j αj , kα

a =
∏

j k
αj

j , and α! =
∏

j αj !. For example,
when Na = 2, say for the edge-factors in a spanning tree, the set of multi-indices α where |α| = 3 are (3, 0),
(2, 1), (1, 2), and (0, 3).
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Table 1: Average absolute deviation (AAD) of marginals and absolute deviation log partition
function in a Wainwright-Jordan set-up. Results compare loopy belief propagation (LBP), log-
determinant relaxation (LD), EC, EC with l = 4 second order correction (EC c), an EC tree (EC t),
and EC tree with l = 4 second order correction (EC tc). Results in bold face highlight best results,
while italics indicate where the cumulant expression is less accurate than the original approximation.

Problem type AAD marginals Absolute deviation logZ
Graph Coupling dcoup LBP LD EC EC c EC t EC EC c EC t EC tc

Full

Repulsive 0.25 .037 .020 .003 .0006 .0017 .0310 .0061 .0104 .0010
0.50 .071 .018 .031 .0157 .0143 .3358 .0697 .1412 .0440

Mixed 0.25 .004 .020 .002 .0004 .0013 .0235 .0013 .0129 .0009
0.50 .055 .021 .022 .0159 .0151 .3362 .0655 .1798 .0620

Attractive 0.06 .024 .027 .004 .0023 .0025 .0236 .0028 .0166 .0006
0.12 .435 .033 .117 .1066 .0211 .8297 .1882 .2672 .2094

Grid

Repulsive 1.0 .294 .047 .153 .1693 .0031 1.7776 .8461 .0279 .0115
2.0 .342 .041 .198 .4244 .0021 4.3555 2.9239 .0086 .0077

Mixed 1.0 .014 .016 .011 .0122 .0018 .3539 .1443 .0133 .0039
2.0 .095 .038 .082 .0984 .0068 1.2960 .7057 .0566 .0179

Attractive 1.0 .440 .047 .125 .1759 .0028 1.6114 .7916 .0282 .0111
2.0 .520 .042 .177 .4730 .0002 4.2861 2.9350 .0441 .0433

Second order perturbation expansion. Thus far, R is re-expressed in terms of site contributions.
The expression in eq. (12) is exact, albeit still intractable, and will be treated through a power series
expansion. Assuming that the rn are small, eq. (12) is expanded and the lower order terms kept:

logR = log

⟨
exp

[∑
n

rn(kn)

]⟩
=
∑
n

⟨rn⟩+
1

2

⟨(∑
n

rn

)2⟩
− 1

2

(∑
n

⟨rn⟩

)2

+ · · ·

=
1

2

∑
m ̸=n

⟨rmrn⟩+ · · · (14)

The simplification in the second line is a result of the variance terms being zero from eq. (13). The
single marginal terms also vanish (and hence EP is correct to first order) because both ⟨kn⟩ = 0 and⟨
k2n
⟩
= 0. The expectation ⟨rmrn⟩, as it appears in eq. (14), is treated by substituting rn with its

cumulant expansion rn(kn) =
∑

l≥3 i
lclnk

l
n/l! from eq. (11). Wick’s theorem now plays a pivotal

role in evaluating the expectations that appear in the expansion:

⟨rm rn⟩ =
∑
l,s≥3

il+s cln csm
l!s!

⟨ksmkln⟩ =
∑
l≥3

i2ll!
cln csm
(l!)2

⟨kmkn⟩l =
∑
l≥3

clm cln
l!

(
Σmn

ΣmmΣnn

)l

.

(15)

The second last simplification above follows from contractions in Wick’s theorem. All the self-
pairing terms, when for example one of the l kn’s is paired with another kn, are zero because⟨
k2n
⟩
= 0. To therefore get a non-zero result for

⟨
ksmkln

⟩
, each factor kn has to be paired with some

factor km, and this is possible only when l = s. Wick’s theorem sums over all pairings, and there
are l! ways of pairing a kn with a km, giving the result in eq. (15). Finally, plugging eq. (15) into
eq. (14) gives the second order correction

logR =
1

2

∑
m ̸=n

∑
l≥3

clm cln
l!

(
Σmn

ΣmmΣnn

)l

+ · · · . (16)

6 Ising model results

This section discusses various aspects of corrections to EP as applied to the Ising model, eq. (1), that
is a Bayesian network with binary variables and pairwise potentials.
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Figure 1: Error on marginal (left) and logZ (right) for grid and mixed couplings as a function of
coupling strength.

We consider the set-up proposed by [8] in which N = 16 nodes are either fully connected or
connected to nearest neighbors in a 4-by-4 grid. The external field (observation) strengths θi are
drawn from a uniform distribution θi ∼ U [−dobs, dobs] with dobs = 0.25. Three types of coupling
strength statistics are considered: repulsive (anti-ferromagnetic) Jij ∼ U [−2dcoup, 0], mixed Jij ∼
U [−dcoup,+dcoup], and attractive (ferromagnetic) Jij ∼ U [0,+2dcoup].

Cumulant expansion. For the factorized approximation we use eq. (14) for the logZ correction.
Expressions for corrections to marginal means and the corresponding tree structured correction will
be presented elsewhere.

Table 1 gives the average absolute deviation (AAD) of marginals AAD = 1
N

∑
i |p(xi = 1) −

p(xi = 1|method)| = 1
2N

∑
i |mi − mest

i | , as well as the absolute deviation of logZ averaged
of 100 repetitions. We observe that for the Grid simulations, the corrected marginals in factorized
approximation are less accurate than the original approximation. In Figure 1 we vary the coupling
strength for a specific set-up (Grid Mixed) and observe a cross-over between the correction and
original for the error on marginals as the coupling strength increases. We conjecture that when the
error of the original solution is high then the number of terms needed in the cumulant correction
increases. The estimation of the marginal seems more sensitive to this than the logZ estimate.
The tree approximation is very precise for the whole coupling strength interval considered and the
fourth order cumulant in the second order expansion is therefore sufficient to get often quite large
improvements over the original tree approximation.

References
[1] M. Chertkov and V. Y. Chernyak. Loop series for discrete statistical models on graphs. Journal of Statistical

Mechanics: Theory and Experiment, 2006:P06009, 2006.
[2] B. Cseke and T. Heskes. Approximate marginals in latent Gaussian models. Journal of Machine Learning

Research, 12:417–457, 2011.
[3] S. Janson. Gaussian Hilbert spaces. Cambridge Tracts in Mathematics 129. Cambridge University Press,

1997.
[4] M. Opper, U. Paquet, and O. Winther. Improving on expectation propagation. In Advances in Neural

Information Processing Systems, pages 1241–1248. 2009.
[5] M. Opper and O. Winther. Expectation consistent approximate inference. Journal of Machine Learning

Research, 6:2177–2204, 2005.
[6] U. Paquet, M. Opper, and O. Winther. Perturbation corrections in approximate inference: Mixture mod-

elling applications. Journal of Machine Learning Research, 10:935–976, 2009.
[7] E. Sudderth, M. Wainwright, and A. Willsky. Loop series and Bethe variational bounds in attractive graph-

ical models. In Advances in Neural Information Processing Systems, pages 1425–1432. MIT Press, Cam-
bridge, MA, 2008.

[8] M. J. Wainwright and M. I. Jordan. Log-determinant relaxation for approximate inference in discrete
Markov random fields. IEEE Transactions on Signal Processing, 54(6):2099–2109, 2006.

6


