Convexity and Bayesian Constrained Local Models Ulrich Paquet

Imense Ltd., Cambridge, UK

A selection of Bayesian Constrained Local Model (BCLM) alignments from the Labeled Faces in the Wild (LFW) data set.

What's it all about?

- Facial (nonrigid object) feature alignment.
- A Bayesian formulation of Constrained Local Models (CLMs): likelihood + prior.
- Various feature "patch classifiers" can be seamlessly incorporated into **likelihood** functions.
- In a *detection-alignment-recognition* face recognition pipeline, the alignment stage's **prior** can be explicitly based on the first stage face detector.

Notation. x indexes feature locations across an object (face). If $\mathbf{x}_i =$ $(x_i, y_i) = \text{centre of feature } i, \text{ then } \mathbf{x} = (x_1, y_1, \dots, x_I, y_I).$

Point distribution model. A distribution on typical faces received from a detector, e.g. Viola–Jones (VJ).

• Lower dimensional $\mathbf{z} \in \mathbb{R}^{K}$ has prior $\mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$ and is transformed to \mathbf{x} with

$$\mathbf{x} = oldsymbol{\mu} + oldsymbol{\Lambda} \mathbf{z}$$
 .

- A generative model; noise-free Bayesian PCA.
- μ and Λ are estimated from marked-up VJ detected faces (posterior) densities for them can be incorporated). Pipeline assumption.

Feature locations ${f x}$ generated from (1) and random draws from ${f z}$ ~ $\mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}).$

Convex energy functions. Centered at \mathbf{c}_i , the **texture model** for aligning feature i is represented by $(\mathbf{A}_i \text{ pos. def.})$

$$\mathcal{E}_i(\mathbf{x}_i) = \frac{1}{2} (\mathbf{x}_i - \mathbf{c}_i)^\top \mathbf{A}_i(\mathbf{x}_i - \mathbf{c}_i) \;.$$

• Assumption: $\mathcal{E}_i(\mathbf{x}_i)$ is small if pixel \mathbf{x}_i lies close to the true location of fiducial point i, and large otherwise.

(1)

(2)

An explicit Bayesian formulation

- Offset of the local energy function from the mean feature location: $\Delta \mathbf{m}_i = \mathbf{c}_i - \boldsymbol{\mu}_i$ = observed and dependent on \mathbf{z} in a generative model.
- Negative log likelihood for \mathbf{z} given observation $\Delta \mathbf{m}_i$ and some knowledge of \mathbf{c}_i and \mathbf{A}_i ,

$$\mathcal{E}_i(\mathbf{x}_i) = \mathcal{E}_i(\boldsymbol{\mu}_i + \boldsymbol{\Lambda}_i \mathbf{z}) = \frac{1}{2}(\Delta \mathbf{m}_i - \boldsymbol{\Lambda}_i \mathbf{z})$$

gives a local alignme

$$oldsymbol{\mu}_i + oldsymbol{\Lambda}_i \mathbf{z}) = rac{1}{2} (\Delta \mathbf{m}_i - oldsymbol{\Lambda}_i \mathbf{z})^\top \mathbf{A}_i (\Delta \mathbf{m}_i - oldsymbol{\Lambda}_i \mathbf{z}) \ ,$$

ent likelihood $p(\Delta \mathbf{m}_i | \mathbf{z}) = rac{1}{Z} \exp(-\mathcal{E}_i(\mathbf{x}_i)),$ or
 $p(\Delta \mathbf{m}_i | \mathbf{z}) = \mathcal{N}(\Delta \mathbf{m}_i; oldsymbol{\Lambda}_i \mathbf{z}, \mathbf{A}_i^{-1}) \ .$

Bayes' theorem. The the posterior distribution of **z** is Gaussian,

$$p(\mathbf{z}|\Delta \mathbf{m}) = \frac{p(\Delta \mathbf{m}|\mathbf{z})p(\mathbf{z})}{p(\Delta \mathbf{m})} = \frac{\prod_{i} p(\Delta \mathbf{m}_{i}|\mathbf{z})p(\mathbf{z})}{p(\Delta \mathbf{m})} = \mathcal{N}(\mathbf{z};\boldsymbol{\nu},\mathbf{S})$$
(3)
variance $\mathbf{S} = (\mathbf{\Lambda}^{\top} \mathbf{A} \mathbf{\Lambda} + \mathbf{I})^{-1}$ and mean $\boldsymbol{\nu} = \mathbf{S} \mathbf{\Lambda}^{\top} \mathbf{A} \Delta \mathbf{m}$.

with cova

Multiple sets of feature detectors. Different patch alignment classifiers $r = 1, \ldots, R$ give different $\mathbf{c}_i^{(r)}$ and $\mathbf{A}_i^{(r)}$.

• Multiple observations $\Delta \mathbf{m}_i^{(r)} = \mathbf{c}_i^{(r)} - \boldsymbol{\mu}_i$ give a Gaussian posterior for \mathbf{z} with covariance and mean

$$\mathbf{S} = \left[\mathbf{\Lambda}^{\top} \left(\sum_{r} \mathbf{A}^{(r)} \right) \mathbf{\Lambda} + \mathbf{I} \right]^{-1} \text{ and } \boldsymbol{\nu} = \mathbf{S} \mathbf{\Lambda}^{\top} \sum_{r} \mathbf{A}^{(r)} \Delta \mathbf{m}^{(r)}$$

Energy functions from patch classifiers

- Let $\mathbf{x}_i = (x_i, y_i)$ = centre of a $P \times P$ patch of pixels $\mathcal{I}(\mathbf{x}_i)$ in image \mathcal{I} .
- Define the binary variable $a_i \in \{-1, +1\}$ such that

$$p_i(\mathbf{x}_i) = p(a_i = 1 | \mathcal{I}(\mathbf{x}_i), \mathcal{M}_i)$$
(4)

is the probability that \mathbf{x}_i is centered at the *i*th fiducial point, given its surrounding patch $\mathcal{I}(\mathbf{x}_i)$ and a patch classification model \mathcal{M}_i .

Local convex energy functions. Parameters \mathbf{c}_i and \mathbf{A}_i in (2) can be found analytically by minimizing

$$\arg\min_{\mathbf{A}_{i},\mathbf{c}_{i}} \sum_{\mathbf{x}_{i} \in \mathcal{W}(\mathbf{x}_{i}^{*};L)} p_{i}(\mathbf{x}_{i}) \mathcal{E}_{i}(\mathbf{x}_{i}) , \qquad (5)$$

which equivalently fits a Gaussian density to weighted data in $\mathcal{W}(\mathbf{x}_i^*; L)$. With $s = \sum_{\mathbf{x}_i \in \mathcal{W}(\mathbf{x}_i^*;L)} p_i(\mathbf{x}_i)$ the minimum is straight-forward:

$$\mathbf{c}_{i} = \frac{1}{s} \sum_{\mathbf{x}_{i} \in \mathcal{W}(\mathbf{x}_{i}^{*};L)} p_{i}(\mathbf{x}_{i}) \mathbf{x}_{i} \text{ and } \mathbf{A}_{i}^{-1} = \frac{1}{s} \sum_{\mathbf{x}_{i} \in \mathcal{W}(\mathbf{x}_{i}^{*};L)} p_{i}(\mathbf{x}_{i}) (\mathbf{x}_{i} - \mathbf{c}_{i}) (\mathbf{x}_{i} - \mathbf{c}_{i})^{\top}.$$

Alignment classifiers outputs $p_i(\mathbf{x}_i)$ and convex energy function approximations $\mathcal{E}_i(\mathbf{x}_i)$ for the right eye and nose corners, for each pixel \mathbf{x}_i in a window $\mathcal{W}(\mathbf{x}_{i}^{*}; L)$ of width L pixels centered on some \mathbf{x}_{i}^{*} .

Logistic regression. For speed (as no kernel function evaluations are required)

 $p(a_i | \mathcal{I}(\mathbf{x}_i), \mathbf{w}_i) = \sigma(a_i \mathbf{w}_i^\top \mathcal{I}(\mathbf{x}_i))$ (6)is used. Hence \mathbf{w}_i defines a patch classifier, and $\sigma(z) = 1/(1+e^{-z})$. Training data sets were built around faces from publicly available Internet images, that were detected by a VJ detector (mirroring the LFW assumption).

Results and illustrations

Bayesian Constrained Local Model algorithm.

- L_{\min} ; initial warp $\boldsymbol{\nu} = \mathbf{0}$
- repeat until $L < L_{\min}$:
- using (6); find \mathbf{c}_i and \mathbf{A}_i in (5)

$$-\Delta \mathbf{m} \leftarrow \mathbf{c} - \boldsymbol{\mu}$$
 and \mathbf{A}

$$\mathbf{I})^{-1} \mathbf{\Lambda} \mathbf{A} \Delta \mathbf{m} ; L \leftarrow L - 2$$

• return: $\mathbf{x}^* \leftarrow \boldsymbol{\mu} + \boldsymbol{\Lambda} \boldsymbol{
u}$

(CQF).

• initialize: (preprocessed) face image \mathcal{I} from detector; patch experts $\{\mathbf{w}_i\}_{i=1}^I$; Λ and μ ; initial window size L; minimum window size

Imense

-for i = 1 to I do: find $\mathbf{x}_i^* \leftarrow \boldsymbol{\mu}_i + \boldsymbol{\Lambda}_i \boldsymbol{\nu}$ and determine $\mathcal{W}(\mathbf{x}_i^*; L)$; determine $p_i(\mathbf{x}_i)$ for each possible alignment centre $\mathbf{x}_i \in \mathcal{W}(\mathbf{x}_i^*; L)$ $\leftarrow \operatorname{diag}(\{\mathbf{A}_i\}) ; \boldsymbol{\nu} \leftarrow (\boldsymbol{\Lambda}^\top \mathbf{A} \boldsymbol{\Lambda} +$

The alignment error for different methods on the LFW data set, including an Active Appearance Model (AAM) and generic Convex Quadratic Fit