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A selection of Bayesian Constrained Local Model (BCLM) alignments from

the Labeled Faces in the Wild (LFW) data set.

What’s it all about?

•Facial (nonrigid object) feature alignment.

•A Bayesian formulation of Constrained Local Models (CLMs): like-

lihood + prior.

•Various feature “patch classifiers” can be seamlessly incorporated

into likelihood functions.

• In a detection–alignment–recognition face recognition pipeline, the

alignment stage’s prior can be explicitly based on the first stage face

detector.

Notation. x indexes feature locations across an object (face). If xi =

(xi, yi) = centre of feature i, then x = (x1, y1, . . . , xI, yI).

Point distribution model. A distribution on typical faces received

from a detector, e.g. Viola–Jones (VJ).

•Lower dimensional z ∈ R
K has prior N (z;0, I) and is transformed to x

with

x = µ + Λz . (1)

•A generative model; noise-free Bayesian PCA.

•µ and Λ are estimated from marked-up VJ detected faces (posterior

densities for them can be incorporated). Pipeline assumption.

Feature locations x generated from (1) and random draws from z ∼
N (z;0, I).

Convex energy functions. Centered at ci, the texture model for

aligning feature i is represented by (Ai pos. def.)

Ei(xi) =
1

2
(xi − ci)

⊤Ai(xi − ci) . (2)

•Assumption: Ei(xi) is small if pixel xi lies close to the true location of

fiducial point i, and large otherwise.

An explicit Bayesian formulation

•Offset of the local energy function from the mean feature location:

∆mi = ci − µi = observed and dependent on z in a generative model.

•Negative log likelihood for z given observation ∆mi and some knowledge

of ci and Ai,

Ei(xi) = Ei(µi + Λiz) =
1

2
(∆mi −Λiz)⊤Ai(∆mi −Λiz) ,

gives a local alignment likelihood p(∆mi|z) = 1
Z exp(−Ei(xi)), or

p(∆mi|z) = N (∆mi;Λiz,A−1
i ) .

Bayes’ theorem. The the posterior distribution of z is Gaussian,

p(z|∆m) =
p(∆m|z)p(z)

p(∆m)
=

∏

i p(∆mi|z)p(z)

p(∆m)
= N (z;ν,S) (3)

with covariance S = (Λ⊤AΛ + I)−1 and mean ν = SΛ⊤A∆m.

Multiple sets of feature detectors. Different patch alignment classi-

fiers r = 1, . . . , R give different c
(r)
i and A

(r)
i .

•Multiple observations ∆m
(r)
i = c

(r)
i − µi give a Gaussian posterior for z

with covariance and mean

S =

[

Λ⊤
(

∑

r

A(r)
)

Λ + I

]−1

and ν = SΛ⊤
∑

r

A(r)∆m(r) .

Energy functions from patch classifiers

•Let xi = (xi, yi) = centre of a P × P patch of pixels I(xi) in image I.

•Define the binary variable ai ∈ {−1,+1} such that

pi(xi) = p(ai = 1 | I(xi),Mi) (4)

is the probability that xi is centered at the ith fiducial point, given its

surrounding patch I(xi) and a patch classification modelMi.

Local convex energy functions. Parameters ci and Ai in (2) can be

found analytically by minimizing

arg min
Ai,ci

∑

xi∈W(x∗
i
;L)

pi(xi) Ei(xi) , (5)

which equivalently fits a Gaussian density to weighted data in W(x∗i ;L).

With s =
∑

xi∈W(x∗
i
;L) pi(xi) the minimum is straight-forward:

ci =
1

s

∑

xi∈W(x∗
i
;L)

pi(xi)xi and A−1
i =

1

s

∑

xi∈W(x∗
i
;L)

pi(xi)(xi − ci)(xi − ci)
⊤ .

Alignment classifiers outputs pi(xi) and convex energy function approxi-

mations Ei(xi) for the right eye and nose corners, for each pixel xi in a

window W(x∗i ;L) of width L pixels centered on some x∗i .

Logistic regression. For speed (as no kernel function evaluations are

required)

p(ai | I(xi),wi) = σ(aiw
⊤
i I(xi)) (6)

is used. Hence wi defines a patch classifier, and σ(z) = 1/(1+ e−z). Train-

ing data sets were built around faces from publicly available Internet im-

ages, that were detected by a VJ detector (mirroring the LFW assumption).

Results and illustrations

Bayesian Constrained Local Model algorithm.

• initialize: (preprocessed) face image I from detector ; patch experts

{wi}Ii=1 ; Λ and µ ; initial window size L ; minimum window size

Lmin ; initial warp ν = 0

• repeat until L < Lmin :

– for i = 1 to I do: find x∗i ← µi+Λiν and determineW(x∗i ;L) ; de-

termine pi(xi) for each possible alignment centre xi ∈ W(x∗i ;L)

using (6) ; find ci and Ai in (5)

–∆m ← c − µ and A ← diag({Ai}) ; ν ← (Λ⊤AΛ +

I)−1Λ⊤A∆m ; L← L− 2

• return: x∗← µ + Λν

A few example errors from the LFW data set.
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The alignment error for different methods on the LFW data set, including

an Active Appearance Model (AAM) and generic Convex Quadratic Fit

(CQF).


