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ABSTRACT
Determinantal point processes (DPPs) have garnered atten-
tion as an elegant probabilistic model of set diversity. They
are useful for a number of subset selection tasks, including
product recommendation. DPPs are parametrized by a pos-
itive semi-definite kernel matrix. In this work we present
a new method for learning the DPP kernel from observed
data using a low-rank factorization of this kernel. We show
that this low-rank factorization enables a learning algorithm
that is nearly an order of magnitude faster than previous ap-
proaches, while also providing for a method for computing
product recommendation predictions that is far faster (up
to 20x faster or more for large item catalogs) than previ-
ous techniques that involve a full-rank DPP kernel. Fur-
thermore, we show that our method provides equivalent
or sometimes better predictive performance than prior full-
rank DPP approaches, and better performance than several
other competing recommendation methods in many cases.
We conduct an extensive experimental evaluation using sev-
eral real-world datasets in the domain of product recommen-
dation to demonstrate the utility of our method, along with
its limitations.

1. INTRODUCTION
Subset selection problems arise in a number of applica-

tions, including recommendation [9], document summariza-
tion [16, 21], and Web search [15]. In these domains, we
are concerned with selecting a good subset of high-quality
items that are distinct. For example, a recommended subset
of products presented to a user should have high predicted
ratings for that user while also being diverse, so that we
increase the chance of capturing the user’s interest with at
least one of the recommended products.

Determinantal point processes (DPPs) offer an attractive
model for such tasks, since they jointly model set diversity
and quality or popularity, while offering a compact parame-
terization and efficient algorithms for performing inference.
A distribution over sets that encourages diversity is of par-
ticular interest when recommendations are complementary;
for example, when a shopping basket contains a laptop and
a carrier bag, a complementary addition to the basket would
typically be a laptop cover, rather than another laptop.

DPPs can be parameterized by a M ×M positive semi-
definite L matrix, where M is the size of the item catalog.
There has been some work focused on learning DPPs from
observed data consisting of example subsets [1, 9, 16, 24],
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which is a challenging learning task that is conjectured to
be NP-hard [17]. The most recent of this work has involved
learning a nonparametric full-rank L matrix [9, 24] that does
not constrain L to take a particular parametric form, which
becomes problematic with large item catalogs, as we will see
in this paper. In contrast, we present a method for learn-
ing a low-rank factorization of L, which scales much better
than full-rank approaches and in some cases provides bet-
ter predictive performance. The scalability improvements
allow us to train our model on larger datasets that are in-
feasible with a full-rank DPP, while also opening the door
to computing online recommendations as required for many
real-world applications.

In addition to the applications mentioned above, DPPs
have been used for a variety of machine learning tasks [12,
14, 17, 18, 29]. We focus on the recommendation task of
“basket completion” in this work, where we compute predic-
tions for the next item that should be added to a shopping
basket, given a set of items already present in the basket.
This task is at the heart of online retail experiences, such as
the Microsoft Store.1

Our work makes the following contributions:

1. We present a low-rank DPP model, including algo-
rithms for learning from observed data and computing
predictions in the basket-completion scenario.

2. We perform a detailed experimental evaluation of our
model on several real-world datasets, and show that
our approach scales substantially better than a full-
rank DPP model, while providing equivalent or better
predictive performance than the full-rank model. We
attribute our improvements in predictive performance
to the novel use of regularization in our model.

3. In addition to comparing our approach to a full-rank
DPP, we also compare to several other models for bas-
ket completion and show significant improvements in
predictive performance in many cases.

Section 2 gives a formal description of our model and de-
scribes our algorithms for learning and prediction. In Sec-
tion 3 we present a detailed evaluation of our model in terms
of predictive performance, and training and prediction run
time. We survey related work in Section 4.

1www.microsoftstore.com
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2. MODEL

2.1 Background
A DPP is a distribution over configurations of points.2

In this paper we deal only with discrete DPPs, which de-
scribe a distribution over a discrete ground set of items
Y = 1, 2, . . . ,M , which we also call the item catalog. A
discrete DPP on Y is a probability measure P on 2Y (the
power set or set of all subsets of Y), such that for any Y ⊆ Y,
the probability P(Y ) is specified by P(Y ) ∝ det(LY ). In the
context of basket completion, Y is the item catalog (inven-
tory of items on sale), and Y is the subset of items in a

user’s basket; there are 2|Y| possible baskets. The notation
LY denotes the principal submatrix of the DPP kernel L in-
dexed by the items in Y . Intuitively, the diagonal entry Lii
of the kernel matrix L captures the importance or quality of
item i, while the off-diagonal entry Lij = Lji measures the
similarity between items i and j.

The normalization constant for P follows from the ob-
servation that

∑
Y ′⊆Y det(LY ′) = det(L + I). The value

det(LY ) associates a “volume” to basket Y , and its proba-
bility is normalized by the “volumes” of all possible baskets
Y ′ ⊆ Y. Therefore, we have

P(Y ) =
det(LY )

det(L + I)
. (1)

We use a low-rank factorization of the M ×M L matrix,

L = VVT , (2)

for the M ×K matrix V, where M is the number of items
in the item catalog and K is the number of latent trait di-
mensions. As we shall see in this paper, this low-rank fac-
torization of L leads to significant efficiency improvements
compared to a model that uses a full-rank L matrix when it
comes to model learning and computing predictions. This
also places an implicit constraint on the space of subsets
of Y, since the model is restricted to place zero probability
mass on subsets with more than K items (all eigenvalues of
L beyond K are zero). We see this from the observation
that a sample from a DPP will not be larger than the rank
of L [8].

2.2 Learning
Our learning task is to fit a DPP kernel L based on a col-

lection of N observed subsets A = {A1, . . . , An} composed
of items from the item catalog Y. These observed subsets
A constitute our training data, and our task is to maximize
the likelihood for data samples drawn from the same distri-
bution as A. The log-likelihood for seeing A is

f(V) = logP(A|V) =

N∑
n=1

logP(An|V) (3)

=

N∑
n=1

log det(L[n])−N log det(L + I) (4)

2DPPs originated in statistical mechanics [23], where they
were used to model distributions of fermions. Fermions are
particles that obey the Pauli exclusion principle, which in-
dicates that no two fermions can occupy the same quantum
state. As a result, systems of fermions exhibit a repulsion
or “anti-bunching” effect, which is described by a DPP. This
repulsive behavior is a key characteristic of DPPs, which
makes them a capable model for diversity.

where [n] indexes the observations or objects in A. We call
the log-likelihood function f , to avoid confusion with the
matrix L. Recall from (2) that L = VVT .

The next two subsections describe how we perform opti-
mization and regularization for learning the DPP kernel.

2.3 Optimization Algorithm
We determine the V matrix by gradient ascent. Therefore,

we want to quickly compute the derivative ∂f/∂V, which
will be a M ×K matrix. For i ∈ 1, . . . ,M and k ∈ 1, . . . ,K,
we need a matrix of scalar derivatives,{

∂f

∂V

}
ik

=
∂f

∂vik
.

Taking the derivative of each term of the log-likelihood, we
have

∂f

∂vik
=

∑
n:i∈[n]

∂

∂vik

(
log det(L[n])

)
−N ∂

∂vik

(
log det(L + I)

)
=

∑
n:i∈[n]

tr

(
L−1

[n]

∂L[n]

∂vik

)
−N tr

(
(L + I)−1 ∂(L + I)

∂vik

)
.

(5)

To compute the first term of the derivative, we see that

tr

(
L−1

[n]

∂L[n]

∂vik

)
= ai · vk +

M∑
j=1

ajivjk , (6)

where ai denotes row i of the matrix A = L−1
[n] and vk

denotes column k of V[n]. Note that L[n] = V[n]V
T
[n]. Com-

puting A is a usually a relatively inexpensive operation,
since the number of items in each training instance An is
generally small for many recommendation applications.

To compute the second term of the derivative, we see that

tr

(
(L + I)−1 ∂(L + I)

∂vik

)
= bi · vk +

M∑
j=1

bjivjk (7)

where bi denotes row i of the matrix B = Im − V(Ik +
VTV)−1VT . Computing B is a relatively inexpensive op-
eration, since we are inverting a K × K matrix with cost
O(K3), and K (the number of latent trait dimensions) is
usually set to a small value.

2.3.1 Stochastic Gradient Ascent
We implement stochastic gradient ascent with a form of

momentum known as Nesterov’s Accelerated Gradient (NAG)
[26]:

Wt+1 = βWt + (1− β) ∗ ε∇f(Vt + βWt) (8)

Vt+1 = Vt + Wt+1 (9)

where W accumulates the gradients, ε > 0 is the learn-
ing rate, β ∈ [0, 1] is the momentum/NAG coefficient, and
∇f(V + βWt) is the gradient at V + βWt.

We use the following schedule for annealing the learning
rate:

εt =
ε0

1 + t/T
(10)

where ε0 is the initial learning rate, t is the iteration counter,
and T is number of iterations for which ε should be kept
nearly constant. This serves to keep ε nearly constant for
the first T training iterations, which allows the algorithm to



find the general location of the local maximum, and then an-
neals ε at a slow rate that is known from theory to guarantee
convergence to a local maximum [28]. In practice, we set T
so that ε is held nearly fixed until the iteration just before
the test log-likelihood begins to decrease (which indicates
that we have likely “jumped” past the local maximum), and
we find that setting β = 0.95 and ε0 = 1.0×10−5 works well
for the datasets used in this paper. Instead of computing
the gradient using a single training instance for each itera-
tion, we compute the gradient using more than one training
instance, called a “mini-batch”. We find that a mini-batch
size of 1000 instances works well for the datasets we tested.

2.4 Regularization
We add a quadratic regularization term to the log-likeli-

hood, based on item popularity, to discourage large param-
eter values and avoid overfitting. Since not all items in the
item catalog are purchased with the same frequency, we en-
code prior assumptions into the regularizer. The motivation
for using item popularity in the regularizer is that the mag-
nitude of the K-dimensional item vector can be interpreted
as the popularity of the item, as shown in [8, 17].

f(V) =

N∑
n=1

log det(L[n])−N log det(L + I)− α

2

M∑
i=1

λi‖vi‖2

(11)

where vi is the row vector from V for item i, and λi is
an element from a vector λ whose elements are inversely
proportional to item popularity,

λ =

(
1

C(1)
,

1

C(2)
, . . . ,

1

C(i)

)
, (12)

where C(i) is the number of occurrences of item i in the
training data.

Taking the derivative of each term of the log-likelihood
with this regularization term, we now have

∂f

∂vik
=

∑
n:i∈[n]

∂

∂vik

(
log det(L[n])

)
−N ∂

∂vik

(
log det(L + I)

)

− α

2

M∑
i=1

λi
∂

∂vik

(
‖vi‖2

)
=

∑
n:i∈[n]

tr

(
L−1

[n]

∂L[n]

∂vik

)
−N tr

(
(L + I)−1 ∂(L + I)

∂vik

)
− αλivik .

(13)

2.5 Predictions
We seek to compute singleton next-item predictions, given

a set of observed items. An example of this class of problem
is“basket completion”, where we seek to compute predictions
for the next item that should be added to shopping basket,
given a set of items already present in the basket.

We use a k-DPP to compute next-item predictions. A
k-DPP is a distribution over all subsets Y ∈ Y with cardi-
nality k, where Y is the ground set, or the set of all items
in the item catalog. Next item predictions are done via a
conditional density. We compute the probability of the ob-
served basket A, consisting of k items. For each possible
item to be recommended, given the basket, the basket is en-
larged with the new item to k + 1 items. For the new item,

we determine the probability of the new set of k + 1 items,
given that k items are already in the basket. This machinery
is also applicable when recommending a set B, which may
contain more than one added item, to the basket.

A k-DPP is obtained by conditioning a standard DPP on
the event that the set Y , a random set drawn according to
the DPP, has cardinality k. Formally, for the k-DPP Pk we
have:

Pk(Y ) =
det(LY )∑

|Y ′|=k det(LY ′)
(14)

where |Y | = k. Unlike (1), the normalizer sums only over
sets that have cardinality k.

As shown in [17], we can condition a k-DPP on the event
that all of the elements in a set A are observed. We use
LA to denote the kernel matrix for this conditional k-DPP
(the same notation is used for the conditional kernel of the
corresponding DPP, since the kernels are the same); we show
in Section 2.5.1 how to efficiently compute this conditional
kernel. For a set B not intersecting with A, where |A|+|B| =
k we have:

Pk(Y = A ∪B|A ⊆ Y) ∝ PkL(Y = A ∪B) (15)

∝ P(Y = A ∪B) (16)

∝ det(LAB) (17)

=
det(LAB)

ZAk−|A|
(18)

where here B is a singleton set containing the possible next
item for which we would like to compute a predictive prob-
ability. LAB denotes the principal submatrix of LA indexed
by the items in B.

Ref. [17] shows that the kernel matrix LA for a conditional
DPP is

LA =
([

(L + IĀ)−1]
Ā

)−1 − I (19)

where
[
(L + IĀ)−1

]
Ā

is the restriction of (L + IĀ)−1 to the
rows and columns indexed by elements in Y − A, and IĀ
is the matrix with ones in the diagonal entries indexed by
elements of Y −A and zeroes everywhere else.

The normalization constant for Eq. 18 is

ZAk−|A| =
∑

|Y ′|=k−|A|
A∩Y ′=∅

det(LAY ′) , (20)

where the sum runs over all sets Y ′ of size k − |A| that are
disjoint from A. How can we compute it analytically?

We see from [17] that

Zk =
∑
|Y ′|=k

det(LY ′) = ek(λ1, λ2, . . . , λM ) (21)

where λ1, λ2, . . . , λM are the eigenvalues of L and ek(λ1, λ2,
. . . , λM ) is the kth elementary symmetric polynomial on λ1,
λ2, . . . , λM .3

Therefore, to compute the conditional probability for a
single item b in singleton set B, given the appearance of

3Recall that when L = VVT is defined in a low-rank form,
then all eigenvalues λi = 0 for i > K, greatly simplifying
the computation. When L is full rank, this is not the case.
Section 3 compares the practical performance of a full-rank
and low-rank L.



items in a set A, we have

PkL(Y = A ∪B|A ⊆ Y) =
det(LAB)

ZAk−|A|
(22)

=
LAbb
ZA1

(23)

=
LAbb

e1(λA1 , λ
A
2 , . . . , λ

A
N )

(24)

where λA1 , λ
A
2 , . . . , λ

A
N are the eigenvalues of LA and e1(λA1 ,

λA2 , . . . , λ
A
N ) is the first elementary symmetric polynomial on

these eigenvalues.

2.5.1 Efficient DPP Conditioning
The conditional probability used for prediction (and hence

set recommendation or basket completion) uses LA in Eq. 19,
which requires two inversions of large matrices. These are
expensive operations, particularly for a large item catalog
(large M). In this section we describe a way to efficiently
condition the DPP L kernel that is enabled by our low-rank
factorization of L.

Ref. [8] shows that for a DPP with kernel L, the condi-
tional kernel LA with minors satisfying

P(Y = Y ∪A|A ⊆ Y) =
det(LAY )

det(LA + I)
(25)

on Y ⊆ Y \ A, can be computed from L by the rank-|A|
update

LA = LĀ − LĀ,AL−1
A LA,Ā (26)

where LĀ,A consists of the |Ā| rows and A columns of L.
Substituting V into Eq. 26 gives

LA = VĀZAVT
Ā (27)

where

ZA = I−VT
A(VAVT

A)−1VA . (28)

ZA is a projection matrix, and is thus idempotent: ZA =
(ZA)2. Since ZA is also symmetric, we have ZA = (ZA)T ,
and substituting ZA = ZA(ZA)T into (27) yields

LA = VĀZA(ZA)TVT
Ā (29)

= VA(VA)T (30)

where

VA = VĀZA . (31)

Conditioning the DPP using Eq. 30 requires computing the
inverse of a |A| × |A| matrix, as shown in Eq. 28, which
is O(|A|3). This is much less expensive than the matrix
inversions in Eq. 19 when |A| � M , which we expect for
most recommendation applications. For example, in online
shopping applications, the size of a shopping basket (|A|) is
generally far smaller than the size of the item catalog (M).

3. EVALUATION
In this section we compare the low-rank DPP model with

a full-rank DPP that uses a fixed-point optimization algo-
rithm called Picard iteration [24] for learning. We wish to
showcase the advantage of low-rank DPPs in practical sce-
narios such as basket completion. First, we compare test
log-likelihood of low-rank and full-rank DPPs and show that

the low-rank model’s ability to generalize is comparable to
that of the full-rank version. We also compare the train-
ing times and prediction times of both algorithms and show
a clear advantage for the low-rank model presented in this
paper. Our implementations of the low-rank and full-rank
DPP models are written in Julia, and we perform all exper-
iments on a Windows 10 system with 32 GB of RAM and
an Intel Core i7-4770 CPU @ 3.4 GHz.

Comparing test log-likelihood values and training time is
consistent with previous studies [9, 24]. Log-likelihood val-
ues however are not always correlated with other evaluation
metrics. In the recommender systems community it is usu-
ally more accepted to use other metrics such as precision@k
and mean percentile rank (MPR). In this paper we also
compare DPPs (low-rank and full-rank) to other competing
methods using these more “traditional” evaluation metrics.

Our experiments are based on several datasets:

1. Amazon Baby Registries - This public dataset con-
sists of 111,006 registries of baby products from 15 differ-
ent categories (such as “feeding”, “diapers”, “toys”, etc.),
where the item catalog and registries for each category
are disjoint. The public dataset was obtained by collect-
ing baby registries from amazon.com and was used by
previous DPP studies [9, 24]. In particular, [9] provides
an in-depth description of this dataset. To maintain con-
sistency with prior work, we used a random split of 70%
of the data for training and 30% for testing. We use
K = 30 trait dimensions for the low-rank DPP models
trained on this data. While the Baby Registries dataset
is relatively large, previous studies analyzed each of its
categories separately. We maintain this approach for the
sake of consistency with prior work.

We also construct a dataset composed of the concatena-
tion of the three most popular categories: apparel, dia-
per, and feeding. This three-category dataset allows us
to simulate data that could be observed for department
stores that offer a wide range of items in different product
categories. Its construction is deliberate, and concate-
nates three disjoint subgraphs of basket-item purchase
patterns. This dataset serves to highlight differences be-
tween DPPs and models based on matrix factorization
(MF), as there are no items or baskets shared between
the three subgraphs. Collaborative filtering-based MF
models – which model each basket and item with a latent
vector – will perform poorly for this dataset, as the latent
vectors of baskets and items in one subgraph could be ar-
bitrarily rotated, without affecting the likelihood or pre-
dictive error in any of the other subgraphs. MF models
are invariant to global rotations of the embedded vectors.
However, for the concatenated dataset, these models are
also invariant to arbitrary rotations of vectors in each
disjoint subgraph for the concatenated data set, as there
are no shared observations between the three categories.
A global ranking based on inner products could then be
arbitrarily affected by the basket and item embeddings
arising from each subgraph.

The low-rank approximation presented in this paper facil-
itates scaling-up DPPs to much larger datasets. There-
fore, we conducted experiments on two additional real-
world datasets, as we explain next.

2. MS Store - This is a proprietary dataset composed
of shopping baskets purchased in Microsoft’s Web-based



Baby Registry
Category F-Rank L-Rank
Furniture -7.07391 -7.00022
Carseats -7.20197 -7.27515
Safety -7.08845 -7.01632
Strollers -7.83098 -7.83201
Media -12.29392 -12.39054
Health -10.09915 -10.36373
Toys -11.06298 -11.07322
Bath -11.89129 -11.88259
Apparel -13.84652 -13.85295
Bedding -11.53302 -11.58239
Diaper -13.13087 -13.16574
Gear -12.30525 -12.17447
Feeding -14.91297 -14.87305
Gifts -4.94114 -4.96162
Moms -5.39681 -5.34985

MS Store
F-Rank L-Rank

All Products -15.10 -15.23

Table 1: Average test log-likelihoods values of low-
rank (L-Rank) and full-rank (F-Rank) DPPs.

store microsoftstore.com. It consists of 243,147 purchased
baskets composed of 2097 different hardware and software
items. We use a random split of 80% of the data for train-
ing and 20% for testing. For the low-rank DPP model
trained on this data, we use K = 15 trait dimensions.

3. Belgian Retail Supermarket - This is a public dataset [4,
3] composed of shopping baskets purchased over three
non-consecutive time periods from a Belgian reatil su-
permarket store. There are 88,163 purchased baskets,
composed of 16,470 unique items. We use a random split
of 80% of the data for training and 20% for testing. We
use K = 76 trait dimensions for the low-rank DPP model
trained on this data.

Since we are interested in the basket completion task,
which requires baskets containing at least two items, we re-
move all baskets containing only one item from each dataset
before splitting the data into training and test sets.

We determine convergence during training of both the
low-rank and full-rank DPP models using

|f(Vt+1)− f(Vt))|
|f(Vt)|

≤ δ

which measures the relative change in training log-likelihoods
from one iteration to the next. We set δ = 1.0× 10−5.

3.1 Full Rank vs. Low Rank
We begin with comparing test log-likelihood values of the

low-rank DPP model presented in this paper with the full-
rank DPP trained using Picard iteration. Table 1 depicts
the average test log-likelihoods values of both models across
the different categories of the Baby Registries dataset as
well as the MS Store dataset. In the Baby Registry dataset
the full-rank model seems to perform better in 9 categories
compared with 6 categories for the low-rank model, and for
the MS Store dataset the full-rank model performed better.
The differences in the log-likelihood values are small, and as
we show in Section 3.2 these differences do not necessarily
translate into better results for other evaluation metrics.
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Figure 1: Training and prediction time of low rank
DPP (L-Rank) vs. full rank DPP (F-Rank).

3.1.1 Training Time
A key contribution of the Picard iteration method was the

improvement of training time (convergence time) by up to
an order of magnitude [24] compared to previous methods.
However, the Picard iteration method requires inverting an
M ×M full-rank (L + I) matrix, where M is the number of
items in the catalog. This matrix inversion operation has a
O(M3) time complexity. In the low-rank model, this oper-
ation is replaced by an inversion of a K ×K matrix where
K �M , and training is performed by stochastic gradient as-
cent. This translates into considerably faster training times,
particularity in cases where the item catalog is large.

Figure 1(a) depicts the training time in seconds of the
full-rank (F-Rank) model vs. the low-rank (L-Rank) DPP
model described in this paper. Table 2 shows the number
of iterations required for each model to reach convergence.
Training times are shown for each of the 15 categories in the
Baby Registry dataset. In all but one category, the training
time of the low-rank model was considerably faster. On
average, the low-rank model is 8.9 times faster to train than
the full-rank model.



Category L-Rank F-Rank
Mom 67 1294
Gifts 126 1388

Feeding 68 123
Gear 82 136

Diaper 83 1065
Bedding 88 772
Apparel 48 129

Bath 64 1664
Toys 66 970

Health 68 1337
Media 126 958

Strollers 53 1637
Safety 59 1306

Carseats 54 1218
Furniture 54 1277

Table 2: Number of training iterations to reach con-
vergence, for low-rank DPP (L-Rank) and full-rank
DPP (F-Rank) models

3.1.2 Prediction Time
In production settings, training is usually performed in

advance (offline), while predictions are computed per request
(online). A typical real-world recommender system models
at least thousands of items (and often much more). The
“relationships” between items changes slowly with time and
it is reasonable to train a model once a day or even once a
week. The number of possible baskets, however, is vast and
depends on the number of items in the catalog. Therefore,
it is wasteful and sometimes impossible to pre-compute all
possible basket recommendations in advance. The preferred
choice in most cases would be to compute predictions online,
in real time.

High prediction times may overload online servers, leading
to high response times and even failure to provide recom-
mendations. The ability to compute recommendations effi-
ciently is key to any real-world recommender system. Hence,
in real-world scenarios prediction times are usually much
more important than training times.

Previous DPP studies [9, 24] focused on training times
and did not offer any improvement in prediction times. In
fact, as we show next, the average prediction time spikes for
the full-rank DPP when the size of the item catalog reaches
several thousand, and quickly becomes impractical in real-
world settings where the inventory of items is large and fast
online predictions are required. Our low-rank model facil-
itates far faster prediction times and scales well for large
item catalogs, which is key to any practical use of DPPs.
We believe this contribution opens the door to large-scale
use of DPP models in commercial settings.

In Figure 1(b) we compare the average prediction time for
a test-set basket for each of the 15 categories in the Baby
Registry dataset. This figure shows the average time to com-
pute predictive probabilities for all possible items that could
added to the basket for a given test basket instance, where
the set of possible items are those items found in the item
catalog but not in the test basket. Since the catalog is com-
posed of a maximum of only 100 items for each Baby Reg-
istry category, due to way that the dataset was constructed,
we see that these prediction times are quite small. Again
we notice a clear advantage for the low-rank model across
all categories: the average prediction time for the full-rank

model is 2.55 ms per basket, compared with 0.39 ms for the
low-rank model (6.8 times faster). Since number of items
in the catalog for each baby registry category is small (100
items), we also measured the prediction time for the MS
Store dataset, which contains 2,097 items. Due to the much
larger item catalog, the average time per a single basket
prediction increases significantly to 1.66 seconds, which is
probably too slow for many real-world recommender sys-
tems. On the other hand, the average prediction time of the
low-rank model depends mostly on the number of trait di-
mensions in the model and takes only 83.6 ms per basket on
average. These numbers indicate a speedup factor of 19.9.

Our low-rank DPP model also provides substantial savings
in memory consumption as compared to the full-rank DPP.
For example, the MS Store dataset, composed of a catalog of
2097 items, would require 2097×2097×8 bytes = 35.18 MB
to store the full-rank DPP kernel matrix (assuming 64-bit
floating point numbers), while only 2097 × 15 × 8 bytes =
251.6 KB would be required to store the low-rank V ma-
trix with K = 15 trait dimensions. Therefore, the low-
rank model requires approximately 140 times less memory
to store the model parameters in this example, and this sav-
ings increases with larger item catalogs.

3.2 Basket Completion and Recommendations
Previous papers have evaluated DPP recommendations by

comparing test log-likelihood values. In this section we also
consider more“traditional”evaluation metrics commonly used
in the recommender systems community.

We formulate the basket-completion task as follows. Let
Yn be a subset of n ≥ 2 co-purchased items (i.e, a basket)
from the test-set. In order to evaluate the basket comple-
tion task, we pick an item i ∈ Yn at random and remove
it from Yn. We denote the remaining set as Yn−1. For-
mally, Yn−1 = Yn� {i}. Given a ground set of possible items
Y = 1, 2, ...,M , we define the candidates set C as the set of
all items except those already in Yn−1; i.e., C = Y�Yn−1.
Our goal is to identify the missing item i from all other items
in C.

We compare the low-rank DPP model with the full-rank
DPP model. We also consider several other competing mod-
els for the basket completion task:

1. Poisson Factorization (PF) - Poisson factorization
(PF) [10] is a recent variant of probabilistic matrix fac-
torization that has been shown to work well with implicit
recommendation data, such as clicks or purchases. PF
models user-item interactions, such as clicks or purchases,
with factorized Poisson distributions, and learns sparse,
non-negative trait vectors for latent user preferences and
item attributes in a low-dimensional space. Gamma pri-
ors are placed on the trait vectors; we set the gamma
shape and rate hyperparameters to 0.3, following [6, 10].
The PF model is not sensitive to these settings, as indi-
cated in [6, 10]. We use a publicly available implementa-
tion of PF [5]. (Note that [5] is actually an implementa-
tion of PF with a social component; we disable the social
component for our tests, resulting in a model equivalent
to PF, since our data does not involve a social graph).

2. Reco Matrix Factorization (RecoMF) - RecoMF is
a matrix factorization model [27] that is used as the rec-
ommendation system for Xbox Live. Sigmoid functions
are used to model the odds of a user liking or disliking an
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Figure 3: Precision@k

item, and RecoMF learns latent trait vectors for users and
items, along with user and item biases. Unlike PF, Re-
coMF requires the generation of synthetic negative train-
ing instances, and uses a scheme for sampling negatives
based on popularity. RecoMF places Gaussian priors on
the trait vectors, and gamma hyperpriors on each. We
use the hyperparameter settings described in [27], which
have been found to provide good performance for implicit
recommendation data.

3. Associative Classifier (AC) - We use an associative
classifier as a competing method, since association rules

are often used for market basket analysis [2, 13]. Our
associative classifier is the publicly available implementa-
tion [7] of the Classification Based on Associations (CBA)
algorithm [22]. We use minimum support and minimum
confidence thresholds of 1.0% and 20.0%, respectively.
Since associative classifiers don’t provide probability es-
timates for all possible sets, the model therefore cannot
compute rankings for all of the candidate items in C, and
we therefore cannot reasonably compute MPR.

The matrix-factorization models are parameterized in terms
of users and items. Since we have no explicit users in our
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Figure 4: Popularity-weighted precision@k. These results show a limitation of the DPP models. Since this
metric biases precision@k towards less popular items, we see that the RecoMF model often provides better
predictive performance for less popular items.

data, we construct “virtual” users from the contents of each
basket for the purposes of our evaluation, where a new user
um is constructed for each basket bm. Therefore, the set
of items that um has purchased is simply the contents of
bm. Additionally, we use K = 40 trait dimensions for the
matrix-factorization models.

In the following evaluation we consider three measures:

1. Mean Percentile Rank (MPR) - Computing the Per-
centile Rank of an item requires the ability to rank the
item j against all other items in C. Therefore, the MPR
evaluation results don’t include the AC model, which
ranks only those items for which an association rule was
found. For DPPs and other competing methods we ranked
the items according to their probabilities to complete
the missing set Yn−1. Namely, given an item i from
the candidates set C, we denote by pi the probability
P (Yn∪{i}|Yn−1). The Percentile Rank (PR) of the miss-
ing item j is defined by

PRj =

∑
j′∈C I(pj ≥ pj′)

|C| × 100%

where I(·) is an indicator function and |C| is the number
of items in the candidates set. The Mean Percentile Rank

(MPR) is the average PR of all the instances in the test-
set:

MPR =

∑
t∈T PRt

|T |
where T is the set of test instances. MPR is a recall-
oriented metric commonly used in studies that involve
implicit recommendation data [11, 20]. MPR = 100 al-
ways places the held-out item for the test instance at the
head of the ranked list of predictions, while MPR = 50 is
equivalent to random selection.

2. Precision@k - We define precision@k as

precision@k =

∑
t∈T I[rankt ≤ k]

|T |
where rankt is the predicted rank of the held-out item for
test instance t. In other words, precision@k is the fraction
of instances in the test set for which the predicted rank
of the held-out item falls within the top k predictions.

3. Popularity-weighted precision@k - Datasets used
to evaluate recommendation systems typically contain a
popularity bias [30], where users are more likely to pro-
vide feedback on popular items. Due to this popularity



bias, conventional metrics such as MPR and precision@k
are typically biased toward popular items. Using ideas
from [30], we propose popularity-weighted precision@k:

popularity-weighted precision@k =∑
t∈T wtI[rankt ≤ k]∑

t∈T wt

where wt is the weight assigned to the held-out item for
test instance t, defined as

wi ∝
1

C(t)β

where C(t) is the number of occurrences of the held-out
item for test instance t in the training data, and β ∈ [0, 1].
The weights are normalized, so that

∑
j∈Y wj = 1. This

popularity-weighted precision@k measure assumes that
item popularity follows a power-law. By assigning more
weight to less popular items, for β > 0, this measure
serves to bias precision@k towards less popular items. For
β = 0, we obtain the conventional precision@k measure.
We set β = 0.5 in our evaluation.

Figures 2, 3, and 4 show the performance of each method
and dataset for our evaluation measures. Note that we could
not feasibly train the full-rank DPP or AC models on the
Belgian dataset, since these models do not scale to datasets
with large item catalogs. The performance of low-rank and
full-rank DPP models are generally comparable on all mod-
els and metrics, with the low-rank DPP providing better
performance in some cases. We attribute this advantage
to the use of regularization (an informative prior, from a
Bayesian perspective) in our low-rank model. We see that
the RecoMF model outperforms all other models on all met-
rics for the Amazon Diaper dataset. For all other datasets,
the low-rank DPP model outperforms on MPR by a size-
able margin, and is the only model to consistently provide
high MPR across all datasets. For the precision@k metrics,
the low-rank DPP often leads, or provides good performance
that is close to the leader.

We see interesting results for the Amazon apparel + di-
aper + feeding dataset. Surprisingly, the PF and RecoMF
models provide a MPR of approximately 50%, which is equiv-
alent to basket completion by random selection. Recall that
each category in the Amazon baby registry dataset is dis-
joint. Due to the formulation of the likelihood function for
models based on matrix factorization, these models learn
an embedding of item trait vectors that is mixed together
across each disjoint category. This behavior results in the
model mixing the predictions across each category, e.g. rec-
ommending an item from category A for a basket in cate-
gory B, which is never observed in the data, thus leading
to degenerate results. We empirically observe that the DPP
models do not have this issue, and are able to effectively
learn an embedding of items in this scenario: notice that
the DPP models provide an MPR of approximately 70% for
both the Amazon three-category and single-category (dia-
per) datasets.

3.2.1 Limitations
We include the popularity-weighted precision@k results

in Figure 4 to highlight a limitation of the DPP models.
For this metric RecoMF generally provides the best perfor-
mance, with the DPP models in second place. As discussed

in [27], this behavior may result from the scheme for sam-
pling negatives by popularity in RecoMF, which tends to
improve recommendations for less popular items. We con-
jecture that a different regularization scheme for our low-
rank DPP model, or a Bayesian version of this model that
provides more robust regularization, may improve our per-
formance on this metric. It is also important to note the lim-
itations of this metric, including the assumption that item
popularity follows a power-law, and the power-law exponent
β setting of 0.5 used when computing the metric for each
dataset. Due to these limitations, the popularity-weighted
precision@k results we present here may not fully reflect the
empirical popularity bias actually present in the data.

4. RELATED WORK
Several learning algorithms for estimating the full-rank

DPP kernel matrix from observed data have been proposed.
Ref. [9] presented one of the first methods for learning a non-
parametric form of the DPP kernel matrix, which involves
an expectation-maximization (EM) algorithm. This work
also considers using projected gradient ascent on the DPP
log-likelihood function, but finds that this is not a viable
approach since it usually results in degenerate estimates due
to the projection step.

In [24], a fixed-point optimization algorithm for DPP learn-
ing is described, called Picard iteration. Picard iteration has
the advantage of being simple to implement and performing
much faster than EM during training. We show in this pa-
per that our low-rank learning approach is far faster than
Picard iteration and therefore EM during training, and that
our low-rank representation of the DPP kernel allows us to
compute predictions much faster than any method that uses
the full-rank kernel.

Ref. [1] presented Bayesian methods for learning a DPP
kernel, with particular parametric forms for the similarity
and quality components of the kernel. Markov chain Monte
Carlo (MCMC) methods are used for sampling from the pos-
terior distribution over kernel parameters. In contrast to
this work, and similar to [9, 24], our approach uses a non-
parametric form of the kernel and therefore does not assume
any particular parametrization.

A method for partially learning the DPP kernel is studied
in [16]. The similarity component of the DPP kernel is fixed,
and a parametric from of the function for the quality compo-
nent of the kernel is learned. This is a convex optimization
problem, unlike the task of learning the full kernel, which is
a more challenging non-convex optimization problem.

We focus on the prediction task of “basket completion” in
this work, as it is at the heart of the online retail experience.
For the purposes of evaluating our model, we compute pre-
dictions for the next item that should be added to a shopping
basket, given a set of items already present in the basket. A
number of approaches to this problem have been proposed.
Ref. [25] describes a user-neighborhood-based collaborative
filtering method, which uses rating data in the form of bi-
nary purchases to compute the similarity between users, and
then generates a purchase prediction for a user and item by
computing a weighted average of the binary ratings for that
item. A technique that uses logistic regression to predict
if a user will purchase an item based on binary purchase
scores obtained from market basket data is described in [19].
Additionally, other collaborative filtering approaches could



be applied to the basket completion problem, such as [27],
which is a one-class matrix factorization model.

5. CONCLUSIONS
In this paper we have presented a new method for learn-

ing the DPP kernel from observed data, which exploits the
unique properties of a low-rank factorization of this ker-
nel. Previous approaches have focused on learning a full-
rank kernel, which does not scale for large item catalogs
due to high memory consumption and expensive operations
required during training and when computing predictions.
We have shown that our low-rank DPP model is substan-
tially faster and more memory efficient than previous ap-
proaches for both training and prediction. Furthermore,
through an experimental evaluation using several real-world
datasets in the domain of recommendations for shopping
baskets, we have shown that our method provides equivalent
or sometimes better predictive performance than prior full-
rank DPP approaches, while in many cases also providing
better predictive performance than competing methods.
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