
Scalable Bayesian Modelling of Paired Symbols

Ulrich Paquet
Microsoft Research

Cambridge, United Kingdom

Noam Koenigstein
Microsoft R&D
Herzliya, Israel

Ole Winther
Technical University of Denmark

Lyngby, Denmark

Abstract

We present a novel, scalable and Bayesian approach to modelling the occurrence
of pairs of symbols (i, j) drawn from a large vocabulary. Observed pairs are as-
sumed to be generated by a simple popularity based selection process followed by
censoring using a preference function. By basing inference on the well-founded
principle of variational bounding, and using new site-independent bounds, we
show how a scalable inference procedure can be obtained for large data sets. State
of the art results are presented on real-world movie viewing data.

1 Introduction

We wish to model the occurrence of pairs of discrete symbols (i, j) from a finite set, or predict the
occurrence of symbol j given that the other symbol is i. These pairs might be tuples of (user, item)
purchase events, or a stream of (user, game) gameplay events. From such a model, a recommender
system can be tailored around the conditional probability of item or game j, given user i. Alterna-
tively, these tuples might be (word1,word2) bigrams in a simple language model. If there are I and
J of each symbol, their discrete density can be fully modelled as a multinomial distribution with
I × J normalized counts, one for each pair. In practice, data is typically sparse compared to large
symbol vocabulary sizes, with I ≈ 107 and J ≈ 105 in tasks considered in this paper, and this pre-
vents the full multinomial from generalizing: from user i watching only one movie j, we would like
to infer the odds of her viewing other movies j′. This necessitates more compactly parameterized
models, which commonly associate real-valued vectors ui ∈ RK and vj ∈ RK (where K � I, J)
with user i and item j, and draws on an energy uTi vj to couple them.

This paper proposes a new approach to modelling the occurrence of pairs of symbols, and makes
two main contributions. First, pairwise data is modelled through a simple selection process followed
by a preference function that censors the data: in the generative process, pairs (i, j) are presented
to a censor at a basic rate, which then chooses to include them in the stream of data with odds that
depend only on the coupling energy uTi vj . Inference is based on the well-founded principle of
variational bounding. Second, we show how a scalable procedure can be obtained by using novel
looser site-independent bounds.

To see why scalability is a challenge, consider the bilinear softmax distribution

p(i, j) = eu
T
i vj

/∑
i′,j′

eu
T
i′vj′ , (1)

whose normalizing constant sums over all I×J discrete options. When i is given, p(j|i) defines soft-
max regression, the multi-class extension of logistic regression. The bilinear softmax function poses
a practical difficulty: the large sums from the normalizing constant appear in the likelihood gradient
through ∂ log p(i, j)/∂ui = vj −

∑J
j′=1 wij′vj′ , where wij

.
= eu

T
i vj/

∑
i′,j′ e

uT
i′vj′ requires a

sum over all IJ pairs in its normalizer. On observing a pair (i, j), the likelihood is increased by
pulling ui towards vj , while simultaneously pushing it further from all other vj′ . There were recent
approaches to using the softmax function at scale. Mnih and Teh [15] used noise contrastive esti-
mation [6] to estimate the expensive softmax gradients when training neural probabilistic language

1

ar
X

iv
:1

40
9.

28
24

v2
 [

st
at

.M
L

]
 1

0
Se

p
20

14

models, which improves on using importance sampling for gradient estimation [2]. In a different
approach, the normalization problem can be addressed by redefining p(j|i) as a tree-based hierarchy
of smaller softmax functions; this has a direct application to implicit-feedback collaborative filtering
[16]. Alternatively, modelling can be done by formulating a simpler objective function based on a
classification likelihood, and including stochastically “negative sampled” pairs during optimization.
This was done for skip-gram models that consider (word1,word2) pairs [13], and for (user, item)
pairs [18], where the latter work assumed that each pair can appear at most once. There additionally
exists a large body of tangential work, which models an i.i.d. observation given i and j, instead
of doing density estimation as described above. These include the stochastic block model and its
extensions for binary matrices or graphs [1] and the family of “probabilistic matrix factorization”
models for a variety of likelihood functions for the observation [5, 12, 14]. The restriction of each
pair to appearing at most once places us in the domain of one-class matrix completion [7, 17, 23],
where modelling is typically done by formulating different loss functions over the absent pairs (or
missing values in the matrix). In these set-ups, a cost value is typically associated with each possible
pair. These can be predefined [7, 17] or optimized for [23].

This paper has large-scale collaborative filtering and recommender systems in mind, and places two
requirements on the model and inference procedure that do not coexist in other work. 1. Crucially,
inference should scale withD, the size of the dataset, i.e. the number of observed pairs, and not with
IJ , the number of possible pairs. 2. We prefer a Bayesian approach that incorporates parameter un-
certainty in our inference. This is particularly useful when data is scarce; if game j was played by a
handful of users, its lack of usage should be reflected in the posterior estimate of parameters associ-
ated with j. To fulfil these requirements, we borrow an unorthodox idea from [18, 19], which views
the stream of data as a censored one. Their perspective is that of a one-class model, which contrasts
the observations against an unobserved “negative background”, although unlike [18], a pair (i, j)
can repeatedly be observed. In Section 4, this “negative background” will be employed in various
caches as part of the inference pipeline. Our approach practically improves on that of [18], where
the data set size was effectively doubled as the non-revealed stream was stochastically resampled
and averaged over. As the “non-revealed half” continually changed due to resampling, the inference
procedure also did not comfortably map to a distributed architecture. Because exact inference in
our model is not possible, we resort to approximating the parameter posterior via a variational lower
bound. In this Variational Bayes setting, with a fully factorized posterior approximation, the bound
is iteratively maximized through closed-form updates of each factor. The updates are in terms of
natural gradients, and are embarrassingly parallel. Empirically, our approach achieves state of the
art results on two large-scale recommendation problems (Section 5).

2 Generative model for pairs with censoring

A pair (i, j) will be represented as a pair (y, z) of binary indicator vectors, where only bits i and j
are “on” in y ∈ {0, 1}I and z ∈ {0, 1}J respectively. We shall model the data stream by appending
a binary variable o = T (true) to each pair: we did observe that symbols i and j co-occurred,
user i played game j today, and so on. We therefore observe a stream of D pairs, which takes
the form {od = T,yd, zd}Dd=1. The censored approach assumes that there were a number of pairs
that did not surface in the data stream, such that o = F (false). We do not know which pairs and
how many they were, but in practice we will allow the length of the censored stream be specified
as a hyperparameter D′, and assume that {od′ = F}D′d′=1 is additionally provided. Let data D

.
=

{{od = T,yd, zd}Dd=1, {od′ = F}D′d′=1} denote all observations. The ratio D/D′ can be seen as
a pre-specified positive to negative class ratio; various settings of r in D′ = rD are investigated
in Section 5. The censored stream constitutes the “negative background” against which the energy
uTi vj will be fit, and it plays a role similar to that of the softmax normalizer in the gradient of
log p(i, j) from (1): on observing a pair (i, j), ui is pulled towards vj and pushed further from all
other vj′ .

We additionally associate real-valued biases bi (and bj) with each user and item, modifying the
energy to uTi vj + bi + bj . They play a useful interpretive role in distinguishing between polarizing
and non-polarizing content in a recommender system: content that appeals to a wide range of tastes
is described by a vj with smaller norm, and their appeal is modelled by a positive taste-independent
bias. Polarizing content is described by a large-normed vj and a negative taste-independent bias; it
is only enjoyed by a narrow sliver of tastes.

2

We propose a model which combines popularity-based selection with a personalized preference
function to model (i, j). 1. In a selection step a user i is chosen with probability πi, and an item
j is chosen with probability ψj . 2. In a censoring step the pair (i, j) is observed with probability
σ(uTi vj +bi+bj) and censored with probability 1−σ(uTi vj +bi+bj), where σ(a) = 1/(1+e−a)
is the logistic function.

T F

zdyd yd′ zd′

π ψ

biui vj bj

D D′

I J

Figure 1: A generative model for observing D pairs of symbols, assuming that D′ unknown pairs were cen-
sored.

Let U .
= {ui}Ii=1 and V

.
= {vj}Jj=1 denote all bilinear parameters and b

.
= {{bi}Ii=1, {bj}Jj=1}

denote biases, with ζ .
= {U,V,b}. Lastly ϑ .

= {ζ,π,ψ} includes multinomial parameters π and
ψ. The generative process is illustrated in Figure 1, and is as follows: draw parameters ϑ from
their prior distributions (given explicitly below). Repeat drawing pairs (i, j) with indexes drawn
from Discrete(π) and Discrete(ψ) and observe the pairs with probability σ(uTi vj + bi + bj). D
such pairs are seen, while we assume that D′, the number of censored data points, is specified as a
hyperparameter. The density of an uncensored data point d is therefore

p(od = T,yd, zd|ϑ) = p(od = T|yd, zd, ζ) p(yd|π) p(zd|ψ) =
∏
i,j

[
πi ψj σ(uTi vj+bi+bj)

]ydizdj ,
while p(od′ = F|yd′ , zd′ , ζ) =

∏
i,j(1− σ(uTi vj + bi + bj))

yd′izd′j is the odds of censoring pair d′

if its indexes were known. The censored indexes yd′ and zd′ are unknown; by including their prior
and marginalizing over them, p(od′ = F|ϑ) is a mixture of IJ components.

The joint density of D and the unobserved variables θ
.
= {ϑ, {yd′ , zd′}D

′

d′=1} depends
on further priors on ϑ, for which we choose Dirichlet priors for p(π) = D(π;α0)
and p(ψ) = D(ψ;α0). The other priors are fully factorized Gaussians, with p(U) =∏
iN (ui;0, τ

−1
u I) and p(V) =

∏
j N (vj ;0, τ

−1
v I) and, with some overloaded notation, p(b) =∏

iN (bi; 0, τ−1
b)

∏
j N (bj ; 0, τ−1

b). The hierarchical model could be extended further with Gamma
hyperpriors on the various Gaussian precisions τ , or Normal-Wishart hyperpriors on both of the
Gaussian parameters [20, 22]. If the symbols i and j were accompanied by meta-data tags, these
could also be incorporated into the Bayesian model [9]. For the sake of clarity, we omit these
additions in this paper. The joint density decomposes as

p(D ,θ) = p(D |{yd′ , zd′},ϑ) p({yd′ , zd′}|π,ψ) p(ϑ)

=
∏
i,j

σ(uTi vj + bi + bj)
cij [1− σ(uTi vj + bi + bj)]

∑
d′ yd′izd′j

·
∏
i

π
ci+

∑
d′ yd′i

i ·
∏
j

ψ
cj+

∑
d′ zd′j

j · p(U) p(V) p(b) p(π) p(ψ) , (2)

where the uncensored data likelihood was regrouped using observation counts cij
.
=
∑
d ydizdj ∈

{0, 1, 2, . . . , D} for each pair (i, j), and marginal counts ci
.
=
∑
d ydi and cj

.
=
∑
d zdj . Note that

3

∑
i,j cij = D. Marginalizing p(D ,θ) over {yd′ , zd′} gives a mixture of

(
D′+IJ−1
IJ−1

)
components,

each representing a different way of assigning D′ indistinguishable F’s to IJ distinguishable bins,
or assigning nonnegative counts c′ij with

∑
i,j c
′
ij = D′ to a “negative class count matrix”.

At first glance of (2), it would seem as if inference would still scale with IJ , and that we have
done nothing more than match the bilinear softmax’s O(IJ) computational burden through the
introduction of D′. The following sections are devoted to developing a variational approximation,
and with it a practically scalable inference scheme that relies on various “negative background”
caches.

3 Variational Bayes

To find a scalable yet Bayesian inference procedure, we approximate p(θ|D) with a factorized sur-
rogate density q(θ), found by maximizing a variational lower bound to log p(D) [24]. First, we
lower-bound each logistic function in (2) by associating a parameter ξij with it [8]. Dropping sub-
scripts, each bound would be σ(±a) ≥ σ(ξ) exp(−λ(ξ)

(
a2 − ξ2

)
± a

2 −
ξ
2), where the lower

bound on 1 − σ(a) is that of σ(−a) above. The bound depends on the deterministic function
λ(ξ)

.
= 1

2ξ [σ(ξ) − 1
2]. Let ξ .

= {ξij} denote the set of logistic variational parameters, and sub-
stitute the bound into (2) to get p(D ,θ) ≥ pξ(D ,θ). Our variational objective Lξ[q], as a function
of ξ and functional of q, follows from

log p(D) ≥ log

∫
pξ(D ,θ) dθ ≥

∫
q(θ) log

pξ(D ,θ)

q(θ)
dθ

.
= Lξ[q] , (3)

which will be maximized with respect to q and ξ. The factorization of q employed in this paper is

q(θ)
.
=
∏
i

q(bi)
∏
k

q(uik) ·
∏
j

q(bj)
∏
k

q(vjk) ·
∏
d′

q(yd′) q(zd′) · q(π) q(ψ) . (4)

The factors approximating each symbol’s features in U, V, and b are chosen to be a Gaussian, for
example q(uik) = N (uik;µik, ω

−1
ik). The approximating factors q(π) and q(ψ) are both Dirichlet,

for example q(π) = D(π;α). The bound in (3) is stated fully in Appendix B.

For the purpose of obtaining a scalable algorithm, the most important parameterizations are for the
categorical (discrete) factors q(yd′) and q(zd′). We shall argue and show in Sections 4 and 5 that
choosing D′ ≈ D is desired, and as D′ is potentially large, the parameters of q(yd′) will be tied.
This tying of parameters is the key to achieving a scalable algorithm. We let all q(yd′) share the
same parameter vector s on the probability simplex, such that q(yd′) =

∏
i s
yd′i
i for all d′. Similarly,

all q(zd′) share probability vector t, such that q(zd′) =
∏
j t
zd′j
j for all d′.

Making and trading predictions Our original desideratum was to infer the probability of sym-
bol j, conditional on the other symbol being i, and the observed data. Bayesian marginalization
requires us to average the predictions over the model parameter posterior distribution. Here it is an
analytically intractable task, which we approximate by using q as a surrogate for the true posterior.
Firstly, p(o = T|y, z,D) ≈

∫
p(o = T|y, z,ϑ)q(ϑ) dϑ =

∫
σ(aij)N (aij ;µij , σ

2
ij) daij ≈ σ(xij)

if yi = zj = 1. The random variable aij was defined as aij
.
= uTi vj + bi + bj , with its density

approximated with its first two moments under q, i.e. µij
.
= Eq[aij] and σ2

ij
.
= Eq[(aij − µij)2].

With xij
.
= µij /(1 + πσ2

ij/8)1/2, the final approximation of a logistic Gaussian integral follows
from [10]. Again using q, the posterior density of symbol j, provided that the first symbol is i, is
approximately proportional to (writing “T” for “o = T” for brevity)

p(zj = 1|T, yi = 1,D) ∝∼ p(T|yi = zj = 1,D)

∫
p(zj = 1|ψ)q(ψ) dψ = σ(xij)Eq[ψj] . (5)

Hence p(zj = 1|o = T, yi = 1,D) ≈ σ(xij)Eq[ψj]
/∑

j′ Eq[ψj′]σ(xij′), normalizing to one.

4 Scalable inference

A scalable update procedure for the factors of q(θ) is presented in this section, culminating in Algo-
rithm 1. The algorithm optimizes over tmax loops, but can also be run until complete convergence as

4

Algorithm 1: Paired Symbol Modelling
input: D (or D′ and all non-zero cij), α0, β0, τu, τv , τb
initialize: ξ∗ ← 1, s← [1/I], t← [1/J]
for t = 1 : tmax do

update q(π) ; update q(ψ) ; cache item-background P	, m†	, m‡	, ν	, κ	 ; update s

pfor i = 1 : I do { update q(bi) ; update
∏K
k=1 q(uik) }

cache user-background P⊕, m†⊕, m‡⊕, ν⊕, κ⊕ ; update ξ∗ ; update t

pfor j = 1 : J do { update q(bj) ; update
∏K
k=1 q(vjk) }

the evidence lower boundL from (3) can be explicitly calculated. We use pfor to indicate embarrass-
ingly parallel loops, although the updates for s, t, and ξ∗ also make extensive use of parallelization.

Let graph G = {(i, j) : cij > 0} be the sparse set of all observed pair indexes. As there are IJ
logistic variational parameters ξij , we shall divide them into two sets, those with indexes in G, and
those without. Therefore ξij shall be optimized for when (i, j) ∈ G, while the ξij’s shall share
the same parameter value ξ∗ for (i, j) /∈ G. Even though the form of (2) suggests that we would
need two versions of ξij , one for the bounded σ-term, and one its opposite, this is not required,
as the optimization of the bound is symmetric. When ξij maximizes L on the bounded σ-term, it
simultaneously maximizes L on the bounded (1 − σ)-term. We’ll use the shorthand λij

.
= λ(ξij)

for (i, j) ∈ G; similarly, λ∗ denotes λ(ξ∗) when (i, j) /∈ G. The updates for symbols i and j’s
parameters mirror each other, and only the “user updates” are laid out in this section.

Gaussian updates for q(uik) We will present here a bulk update of
∏
k q(uik), which is faster than

sequentially maximizing Lξ[q] with respect to each of them in turn. We first solve for the maximum
of L with respect to a full Gaussian (not factorized) approximation q̃(ui) = N (ui;µi,P

−1
i). The

fully factorized q(uik) can then be recovered from the intermediate approximation q̃(ui) as those
that minimize the Kullback-Leibler divergence DKL(

∏
k q(uik)‖q̃(ui)): this is achieved when the

means of q(uik) match that of q̃(ui), while their precisions match the diagonal precision of q̃(ui).
The validity of the intermediate bound in proved in Appendix B.2. The updates rely on careful
caching, which we’ll first illustrate through q̃’s precision matrix. L is maximized when q̃(ui) has as
natural parameters a precision matrix

Pi =
∑
j∈G(i)

cij · 2λij · Eq
[
vjv

T
j

]
+

(a)︷ ︸︸ ︷∑
d′

∑
j

Eq[yd′i zd′j] · 2λij · Eq
[
vjv

T
j

]
+ τuI (6)

and a mean-times-precision vector mi, which we will state later. Looking at Pi in (6), an undesirable
sum over all d′ and j is required in (a). We endeavoured that the update would be sparse, and only
sum over observed indexes in G(i)

.
= {j : (i, j) ∈ G}. The benefit of the shared variational

parameters now becomes apparent. With Eq[yd′i zd′j] = sitj and λij = λ∗ when (i, j) /∈ G, the
sum in (a) decomposes as

(a) =
∑
j∈G(i)

sitjD
′ · 2(λij − λ∗)Eq

[
vjv

T
j

]
+ siD

′ · 2λ∗ ·

negative background P	︷ ︸︸ ︷∑
j

tjEq
[
vjv

T
j

]
.

Barring the “negative background” term, only a sparse sum that involves observed pairs is required.
This background term is rolled up into a global item-background cache, which is computed once
before updating all q(uik). Throughout the paper, the 	 symbol will denote an item-background
cache. The cache P	

.
=
∑
j tj Eq[vjvTj] is used in each precision matrix update, for example

Pi = siD
′ · 2λ∗ ·P	 +

∑
j∈G(i)

(
cij · 2λij + sitjD

′ · 2(λij − λ∗)
)
Eq
[
vjv

T
j

]
+ τuI .

We’ve deliberately laboured the above decomposition of an expensive update into a background
cache and a sparse sum over actual observations, as it serves as a template for other parameter

5

updates to come. Turning to the mean-times-precision vector mi
.
= Piµi of q̃(ui), we find that

mi = Eq

 ∑
j∈G(i)

cij
(

1
2 − 2λij(bi + bj)

)
vj +

∑
d′

∑
j

yd′i zd′j
(
− 1

2 − 2λij(bi + bj)
)
vj

 . (7)

There is a subtle link between (7) and the gradients of the bilinear soft-max likelihood, which we’ll
explore in the next paragraph. To find mi, two additional caches are added to the item-background
cache, and are computed once before any q(uik) updates. They are m†	

.
=
∑
j tjEq[bj]Eq[vj] and

m‡	
.
=
∑
j tjEq[vj]. The final mean-times-precision update is

mi = siD
′
[(
− 1

2 − 2λ∗Eq
[
bi
])

m‡	 − 2λ∗m†	

]
+
∑
j∈G(i)

(
cij
(

1
2 − 2λij Eq

[
bi + bj

])
− sitjD′ · 2(λij − λ∗)Eq

[
bi + bj

])
Eq
[
vj
]
, (8)

and again only sums over j ∈ G(i) and not all J . There are of course additional variational parame-
ters ξij , and they are computed and discarded when needed according to (11).

Bilinear softmax gradients The connection between this model and a bilinear softmax model can
be seen when the biases are ignored. Consider the gradient of L with respect to mean parameter µi,

∇L(µi) = −Piµi +
1

2

(∑
j∈G(i)

cijEq
[
vj
]
−D′

∑
j

sitjEq
[
vj
])

. (9)

The gradient ∇L(µi) is zero at (7), which was stated, together with (6), in terms of natural param-
eters. As L(µi) is quadratic, it can be exactly maximized; furthermore, the maximum with respect
to Pi is attained at the negative Hessian Pi = −∇2L(µi), given in (6). The curvature of the bound,
as a function of µi, directly translates into our posterior approximation’s uncertainty of ui. The
log likelihood of a softmax model would be L =

∑
d log p(id, jd), with the likelihood of each pair

defined by (1). The gradient of the log likelihood is therefore

∇L(ui) =
∑
j∈G(i)

cijvj −D
∑
j

wijvj , (10)

with weights wij
.
= eu

T
i vj/

∑
i′,j′ e

uT
i′vj′ that sum to one over all IJ options. The weights in

(9) were simply sitj , and also sum to one over all options. The difference between (9) and (10)
is that sitj is used as a factorized substitute for wij . This simplification allows the convenience
that none of the updates described in Section 4 need to be stochastic, and substitute functions, as
employed by noise contrastive divergence to maximize L, are not required. (The Hessian ∇2L(ui)
contains a double-sum over indexes j.) Considering the two equations above, one might expect to
set hyperparameter D′ to D′ = D, and in Section 5 we show that this is a reasonable choice.

Gaussian updates for q(bi) The maximum of L with respect to q(bi) re-uses cache m‡	, but
requires the additional cache ν	

.
=
∑
j tjEq

[
bj
]

to be precomputed. Gaussian q(bi) has a
mean-times-precision parameter νi = siD

′(− 1
2 − 2λ∗(ν	 + Eq[uTi]m‡)) +

∑
j∈G(i)

(
cij(

1
2 −

2λij Eq[uTi vj + bj]) − sitjD
′ · 2(λij − λ∗)Eq[uTi vj + bj]

)
, and its precision parameter ρi =

2λ∗siD
′ +
∑
j∈G(i)

(
cij2λij + sitjD

′2(λij − λ∗)
)

+ τb follows a similar form.

Logistic bound parameter updates As discussed above, the logistic bound parameters ξij as-
sociated with observations (i, j) ∈ G are treated individually whilst the remainder are shared and
denoted by ξ∗. The individually optimized bound

ξ2
ij = Eq[(uTi vj + bi + bj)

2] (11)
can be used anytime during the updates and then discarded (we always use the positive root for ξij).
The shared parameter can be written in terms of cached quantities and a sum that scales with D (the
user-background cache is denoted with a ⊕ symbol, and mirrors the item-background cache):

(ξ∗)2 =
1

Z

(
trP⊕P	 + 2m‡T⊕ m†	 + 2m†T⊕ m‡	 + 2ν⊕ν	 + κ⊕ + κ	 −

∑
(i,j)∈G

sitjξ
2
ij

)

6

10
0

10
1

10
2

10
3

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

number of items per user

av
er

ag
e

ra
nk

Xbox movies

10
0

10
1

10
2

10
3

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

number of items per user

av
er

ag
e

ra
nk

Netflix (4 and 5 stars)

popularity
RG−like
RG−pop*like
BPR−uniform
BPR−pop
this paper

Figure 2: The rankR(i, j?) in (12), averaged over users and grouped logarithmically by ci. The top evaluation
is on the Xbox movies sample, while the bottom one is on the “implicit feedback” Netflix (4 and 5 stars) set.

whereZ .
= 1−

∑
(i,j)∈G sitj . Cache κ	

.
=
∑
j tjEq[b2j] also plays a role in the categorical updates.

Dirichlet updates As the multinomial distribution is conjugate to a Dirichlet, its updates have a
particularly simple form. q(π) is Dirichlet D(π;α) with parameters αi = α0i + ci + siD

′. Each
pseudo-count adds ci, the number of views for user i, to the expected number of views that were
censored and not made.

Categorical updates There are D′ categorical (discrete) factors q(yd′), and the key to finding a
scalable inference procedure lies in tying all their parameters together in s, with

∑
i si = 1. Looking

at the second line of (2), the factors depend on the expected bounded logistic functions

Ωij
.
= log σ(ξij)− λ(ξij)

(
Eq[(uTi vj + bi + bj)

2]− ξ2
ij

)
− ξij

2
− 1

2
Eq[uTi vj + bi + bj] .

The categorical parameters are, if we solve for all the D′ tied distributions q(yd′) jointly,

si ∝ exp
(
Eq[log πi] +

∑
j tjΩij

)
.

In practice, each entry log si+ const can be computed in parallel; afterwards, they are renormalized
to give s. To find s, an efficient way is needed to determine

∑
j tjΩij , and this can again be done with

careful bookkeeping. The observed terms j ∈ G(i) are treated differently from the rest. For observed
terms we can use the optimal logistic parameters in (11) to simplify Ωij

.
= log σ(ξij) − ξij

2 −
1
2Eq[u

T
i vj + bi + bj]. By denoting Ωij(ξ

∗) evaluated with the shared parameter ξ∗ by Ω∗ij , we can
write

∑
j tjΩij =

∑
j∈G(i) tj(Ωij − Ω∗ij) +

∑
j tjΩ

∗
ij . The first term scales with D and the second

term can be written using cached quantities:
∑
j tjΩ

∗
ij = −λ∗(trEq[uiuTi]P	 + 2Eq[biuTi]m‡	 +

2Eq[uTi]m†	+Eq[b2i]+2Eq[bi]ν	+κ)+log σ(ξ∗)+ (ξ∗)2

2 λ∗− ξ∗

2 −
1
2 (Eq[uTi]m‡	+Eq[bi]+ν).

5 Evaluation

A key application for modelling paired (user, item) symbols is large-scale recommendation systems,
and we evaluate the predictions obtained by (5) on two large data sets.1 The Xbox movies data is a
sample of 5.6×107 views for 6.2×106 users on a sub-catalogue of around 1.2×104 movies [18]. To
evaluate on data known in the Machine Learning community, the four- and five-starred ratings from
the Netflix prize data set were used to simulate a stream of “implicit feedback” (user, item) pairs
in the Netflix (4 and 5 stars) data. We refer the reader to [18] for a complete data set description.
For each user, one item was randomly removed to create a test set. To mimic a real scenario in the
simplest possible way, each user’s non-viewed items were ranked, and the position of the test item

1Additional results follow in the Appendix D.

7

10
0

10
1

10
2

10
3

0.92

0.93

0.94

0.95

0.96

0.97

0.98

number of items per user

av
er

ag
e

ra
nk

Xbox movies

r = 0.25
r = 0.5
r = 1
r = 2
r = 4

10
0

10
1

10
2

10
3

0.92

0.93

0.94

0.95

0.96

0.97

0.98

number of items per user

av
er

ag
e

ra
nk

Netflix (4 and 5 stars)

Figure 3: The average rankR(i, j?) in (12), grouped logarithmically by ci, for varying values of r inD′ = rD.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

σ(x
j*
)

em
pi

ric
al

 d
en

si
ty

r = 0.5

c
i
 = 1 (blue)

c
i
 = 40 (red)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

σ(x
j*
)

em
pi

ric
al

 d
en

si
ty

r = 1

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

σ(x
j*
)

em
pi

ric
al

 d
en

si
ty

r = 2

Figure 4: The empirical densities of σ(xj?), as defined in (5), over all held-out items j? in the Netflix (4 and
5 stars) set. The densities are sliced according to ci = 1, . . . , 40 for different values of r in D′ = rD.

noted. We are interested in the rank of held out item j? for user i on a [0, 1] scale,

R(i, j?)
.
=

1

J − |G(i)|
∑
j /∈G(i)

I
[
fij? > fij

]
, (12)

where fij indicates the score given by (5) or any alternative algorithm.

In Figure 2, we facet the average rank by ci, the number of movie views per user. As the evaluation
is over 6 million users, this gives a more representative perspective than reporting a single average.
Apart from ranking by popularity cj , which would be akin to only factorizing with sitj , we compare
against two other baselines. BPR-uniform and BPR-pop represent different versions of the Bayesian
Personalized Ranking algorithm [21], which optimizes a rank metric directly against either the data
distribution of items (BPR-uniform, with missing items are sampled uniformly during stochastic op-
timization), or a tilted distribution aimed at personalizing recommendations regardless of an item’s
popularity (BPR-pop, with missing items sampled proportional to their popularity). Their hyperpa-
rameters were set using cross-validation. For the Random Graph model [18], rankings are shown
with pure personalization (RG-like) and with an item popularity rate factored in (RG-pop*like). The
comparison in Figure 2 is drawn using K = 20 dimensions, D′ = D and hyperparameters set
to one. For Xbox movies, the model outperforms all alternatives that we compared against. BPR-
uniform, optimizing (12) directly, performs slightly better on the less sparse Netflix set (the Xbox
usage sample is much sparser, as it is easier to rate many movies than to view as many). For Xbox
movies, updating all item-related parameters in Algorithm 1 took 69 seconds on a 24-core (Intel
Xeon 2.93Ghz) machine, and updating all user-related parameters took 83 seconds.

We surmised in Section 4 thatD′ = D is a reasonable hyperparameter setting, and Figure 3 validates
this claim. The figure shows the average held-out rank on the Netflix (4 and 5) set for various settings
ofD′ throughD′ = rD. The average rank improves beyond r = 1, but empirically slowly decreases
beyond r = 2. To provide insight into the “censoring” step, Figure 4 accompanies Figure 3, and
shows the empirical density of the Bernoulli variable σ(xj?) for held-out items j?. We break the
empirical density down over users that appear in ci = 1, 2, 3, . . . , 40 pairs. Given that the held-out

8

pairs were observed, the Bernoulli variable should be true, and the density of σ(xj?) shifts right as
ci becomes bigger. The effect of having to explain less (r = 1

2) or more (r = 2) censored pairs is
also visible in the figure. There is also a slight benefit in increasing K. The average rank R̂20 for
K = 20 is 0.9649, using r = 1. An increased latent dimensionality gives R̂30−R̂20 = 1.07×10−4,
R̂40 − R̂20 = 1.73× 10−4, and R̂50 − R̂20 = 0.87× 10−4.

6 Summary and outlook

In this paper we presented a novel model for pairs of symbols, and showed state of the art results on
a large-scale movies recommendation task. Scalability was achieved by factorizing the popularity
or selection step via πiψj , and employing “site-independent” variational bounds through careful pa-
rameter tying. This approach might be too simplistic; an extension would be to use a N -component
mixture model to select pairs with odds

∑N
n=1 πinψjn, and perform inference with Gibbs sampling.

It is worth noting that Böhning [3] and Bouchard [4] provide lower bounds to the logarithm of (1).
We originally embarked on a variational approximation to a posterior with (1) as likelihood using
Bouchard’s bound, for which bookkeeping like Section 4’s was done. However, with realistically
large I and J , solutions were trivial, as the means of the variational posterior approximations for ui
and vj were zero. We leave Böhning’s bound to future work.

A The Joint Model

The joint density in (2) follows from combining the data likelihood

p(D |θ) =
∏
d

p(od = T|yd, zd,ϑ) p(yd|π) p(zd|ψ) ·
∏
d′

p(od′ = F|yd′ , zd′ ,ϑ)

=
∏
d

∏
i,j

[
πi ψj σ(uTi vj + bi + bj)

]ydizdj ∏
d′

∏
i,j

(1− σ(uTi vj + bi + bj))
yd′izd′j

with a prior on the unobserved variables θ, and rewriting the expression using observation counts
cij

.
=
∑
d ydizdj for each pair (i, j), and marginal counts ci

.
=
∑
d ydi and cj

.
=
∑
d zdj . The joint

density is shown in Figure 1.

B The Variational Bound

For the sake of later derivations, it is worthwhile to explicitly write Lξ[q] as it appears in (3). It is

Lξ[q] =
∑
i,j

cij Eq

[
log σ(ξij)− λ(ξij)

(
(uTi vj + bi + bj)

2 − ξ2
ij

)
+

1

2
(uTi vj + bi + bj)−

ξij
2

]

+
∑
i,j

∑
d′

Eq[yd′izd′j]Eq

[
log σ(ξij)− λ(ξij)

(
(uTi vj + bi + bj)

2 − ξ2
ij

)

− 1

2
(uTi vj + bi + bj)−

ξij
2

]

+
∑
i

(
ci +

∑
d′

E[yd′i]

)
Eq[log πi] +

∑
j

(
cj +

∑
d′

E[zd′j]

)
Eq[logψj]

+
∑
i

∑
k

Eq[log p(uik)] +
∑
j

∑
k

Eq[log p(vjk)] +
∑
i

Eq[log p(bi)] +
∑
j

Eq[log p(bj)]

+ Eq[log p(π)] + Eq[log p(ψ)]

−
∑
i

∑
k

Eq[log p(uik)]−
∑
j

∑
k

Eq[log p(vjk)]−
∑
i

Eq[log p(bi)]−
∑
j

Eq[log p(bj)]

9

− Eq[log q(π)]− Eq[log q(ψ)]−
∑
d′

Eq[log p(yd′)]−
∑
d′

Eq[log p(zd′)] . (13)

All expectations are taken under q(θ) defined in (4).

B.1 Bookkeeping

The scalable parameter updates in Section 4 rely on a number of cached quantities, which we state
here together for completeness:

P	
.
=
∑
j

tj Eq[vjvTj] m†	
.
=
∑
j

tjEq[bj]Eq[vj] m‡	
.
=
∑
j

tjEq[vj]

ν	
.
=
∑
j

tjEq
[
bj
]

κ	
.
=
∑
j

tjEq[b2j]

 item-background

P⊕
.
=
∑
i

si Eq[uiuTi] m†⊕
.
=
∑
i

siEq[bi]Eq[ui] m‡⊕
.
=
∑
i

siEq[ui]

ν⊕
.
=
∑
i

siEq
[
bi
]

κ⊕
.
=
∑
i

siEq[b2i]

 user-background

B.2 Latent trait vector updates

We stated q(θ) in terms of the factorized Gaussian
∏
k q(uik), and will solve for

∏
k q(uik) by

first maximizing an intermediate lower bound with respect to the full-covariance Gaussian q̃(ui)
.
=

N (ui;µi,P
−1
i). Once q̃(ui) is found, a lower bound to it is maximized to find

∏
k q(uik).

B.2.1 Scalable updates

Let λij
.
= λ(ξij). The variational bound in (13), as a function of the full-covariance Gaussian q̃(ui),

is

L
[
q̃(ui)

]
= −1

2

∑
j

cij

(
2λij tr

(
Eq̃
[
uiu

T
i

]
Eq
[
vjv

T
j

])
− 2Eq̃[ui]T

(
1

2
− 2λijEq[bi + bj]

)
Eq[vj]

)

− 1

2

∑
j

∑
d′

Eq[yd′i]Eq[zd′j]

(
2λij tr

(
Eq̃
[
uiu

T
i

]
Eq
[
vjv

T
j

])
− 2Eq̃[ui]T

(
−1

2
− 2λijEq[bi + bj]

)
Eq[vj]

)
− 1

2
tr
(
Eq
[
uiu

T
i

]
τuI
)
− Eq̃[log q̃(ui)]

= −1

2
trEq̃

[
uiu

T
i

]τuI +
∑
j

2λij

(
cij +

∑
d′

Eq[yd′i]Eq[zd′j]

)
Eq
[
vjv

T
j

]
+ Eq̃[ui]T

∑
j

cij (1

2
− 2λijEq[bi + bj]

)

+
∑
d′

Eq[yd′i]Eq[zd′j]
(
−1

2
− 2λijEq[bi + bj]

))
Eq[vj]− Eq̃[log q̃(ui)] ,

(14)

where tr denotes the trace operator. L[q̃(ui)] is maximized when q̃(ui) is a Gaussian density
N (ui;µi,P

−1
i) whose natural parameters Pi and mi

.
= Piµi are given by (6) and (7); they ac-

company Eq
[
uiu

T
i

]
and Eq[ui] in the quadratic and linear terms above.

The above expression contains a sum over j = 1, . . . , J and a further inner sum over d′ = 1, . . . , D′.
The scalable evaluation for Pi and mi in Section 4 incorporates caches P	, m†⊕, and m‡⊕, and only
requires a sparse sum over j ∈ G(i). The simplification is obtained by using

10

1. ξij = ξ∗ (and hence λij = λ∗) for all j /∈ G(i);
2. cij = 0 for all j /∈ G(i);
3. Eq[yd′i] = si for all d′ = 1, . . . , D′;
4. Eq[zd′j] = tj for all d′ = 1, . . . , D′.

B.2.2 Intermediate bounds

The bound L[q̃(ui)] is maximized at q̃(ui) = N (ui;µi,P
−1
i). With q′(uik)

.
= N (uik;µik, P

−1
i,kk)

being the minimizer of the Kullback-Leibler divergence∏
k

q′(uik)
.
= argmin∏

k q(uik)

DKL

(∏
k

q(uik)
∥∥∥q̃(ui)) ,

we now show that L[q̃(ui)] serves as a temporary or intermediate lower bound to log p(D):

L̃
[
q̃(ui)

]
≥ L

[∏
k

q′(uik)

]
. (15)

The bound in (15) follows by substituting Eq̃[uiuTi] = µiµ
T
i + P−1

i in (14):

L̃
[
q̃(ui)

]
= −1

2
trEq̃

[
uiu

T
i

]
Pi + Eq̃[ui]TPiµi − Eq̃

[
log q̃(ui)

]
= −K

2
+

1

2
µTi Piµi −

(
−K

2
log(2πe) +

1

2
log |Pi|

)
.

Let diag(Pi) indicate the K-by-K matrix that contains only the diagonal of Pi. As Eq′ [uiuTi] =
µiµ

T
i + diag(Pi)

−1 and tr diag(Pi)
−1Pi = K, the second bound expands as

L

[∏
k

q′(uik)

]
= −1

2
trEq′

[
uiu

T
i

]
Pi + Eq′ [ui]TPiµi − Eq′

[∑
k

log q′(uik)

]

= −K
2

+
1

2
µTi Piµi −

(
−K

2
log(2πe) +

1

2
log
∣∣diag(Pi)

∣∣) .

Finally, (15) follows from the identity |Pi| ≤
∏
k Pi,kk =

∣∣diag(Pi)
∣∣ as Pi is positive definite.

B.2.3 The advantage of an intermediate bound

By first solving for q̃(ui), the updates in (6) and (7) require one sum over j ∈ G(i), and an O(K3)
matrix inverse to obtain µi

.
= P−1

i mi and
∏
k q(uik). On the other hand, one may solve for each

q(uik) for k = 1, . . . ,K in turn. Each of these K updates require a sum over j ∈ G(i), but does not
require the matrix inverse. There is therefore a computational trade-off between these two options.
The trade-off depends on |G(i)| and K, and wasn’t investigated further in the paper.

B.3 Logistic bound parameter updates

All the ξij parameters are tied to ξ∗ for (i, j) /∈ G, and we write (13) as a function of ξ∗ as

L(ξ∗) = log σ(ξ∗)
∑

(i,j)/∈G

D′sitj − λ(ξ∗)
∑

(i,j)/∈G

D′sitjEq
[
(uTi vj + bi + bj)

2
]

+

(
λ(ξ∗) ξ∗2 − ξij

2

) ∑
(i,j)/∈G

D′sitj .

(Notice that for (i, j) /∈ G we have cij = 0, and cij does not explicitly occur in the above expression.)
Recalling that λ(ξ)

.
= 1

2ξ [σ(ξ)− 1
2] and that σ(ξ)

.
= (1 + e−ξ)−1, the above derivative is

∂L(ξ∗)

∂ξ∗
= −λ′(ξ∗)

∑
(i,j)/∈G

D′sitjEq
[
(uTi vj + bi + bj)

2 − (ξ∗)2
]
.

11

As the bound is symmetric around ξ∗ = 0 and as λ′(ξ∗) is a monotonic function of ξ∗ for ξ∗ ≥ 0,
the derivative is zero when

(ξ∗)2 =
1∑

(i,j)/∈G sitj

∑
(i,j)/∈G

sitjEq
[
(uTi vj + bi + bj)

2
]
. (16)

Unfortunately (16) requires a sum over (i, j) /∈ G. However, (11) states that ξ2
ij = Eq[(uTi vj + bi +

bj)
2] can be computed and discarded for (i, j) ∈ G if required, and hence the required sum can be

written in terms of cached quantities through∑
(i,j)/∈G

sitjEq
[
(uTi vj + bi + bj)

2
]

=
∑
i,j

sitjEq
[
(uTi vj + bi + bj)

2
]
−
∑

(i,j)∈G

sitjξ
2
ij ,

and using∑
i,j

sitjEq
[
(uTi vj + bi + bj)

2
]

= trP⊕P	 + 2m‡T⊕ m†	 + 2m†T⊕ m‡	 + 2ν⊕ν	 + κ⊕ + κ	 .

B.4 Categorical updates

We want to find q(yd′) =
∏I
i=1 s

yd′i
i which is a categorical distribution parameterized by s. Using

the notation

Ωij
.
= log σ(ξij)− λ(ξij)

(
Eq[(uTi vj + bi + bj)

2]− ξ2
ij

)
− ξij

2
− 1

2
Eq[uTi vj + bi + bj]

from Section 4, substitute Eq[yd′i] = si into (13) to obtain Lξ[q] as a function of s:

Ll(s) = D′
∑
i

si
∑
j

tjΩij +D′
∑
i

siEq[log πi]−D′
∑
i

si log si + l

(∑
i

si − 1

)
.

The above function includes a Lagrange multiplier l as
∑
i si normalizes to one. The gradient of

Ll(s) with respect to si is zero when

log si = Eq[log πi] +
∑
j

tjΩij +
l

D′
− 1 ,

while the Lagrange multiplier gives the normalizer so that

si =
eEq [log πi]+

∑
j tjΩij∑I

i′=1 eEq [log πi′]+
∑

j tjΩi′j
. (17)

B.4.1 Using caches

Evaluating
∑
j tjΩij in (17) for every i = 1, . . . , I again leaves us with an undesirable O(IJ)

complexity. Here, too, we shall make heavy use of cached quantities to simplify this computation.
First note that∑
j /∈G(i)

tiΩij =
∑
j /∈G(i)

ti

(
log σ(ξ∗)− λ∗

(
Eq[(uTi vj + bi + bj)

2]− (ξ∗)2
)
− ξ∗

2
− 1

2
Eq[uTi vj + bi + bj]

)
where λ∗ .

= λ(ξ∗), and that
∑
j /∈G(i) tiΩij =

∑
j /∈G(i) tiΩ

∗
ij . We therefore compute the full sum∑

j tjΩ
∗
ij using caches, and then only loop over the sparse set j ∈ G(i) to incorporate the difference.

That is,∑
j

tjΩ
∗
ij = −λ∗

(
trEq[uiuTi]P	 + 2Eq[biuTi]m‡	 + 2Eq[uTi]m†	 + Eq[b2i] + 2Eq[bi]ν	 + κ	

)
+ log σ(ξ∗) +

(ξ∗)2

2
λ∗ − ξ∗

2
− 1

2

(
Eq[uTi]m‡	 + Eq[bi] + ν	

)
is computed using bookkeeping, and finally∑

j

tjΩij =
∑
j∈G(i)

tj(Ωij − Ω∗ij) +
∑
j

tjΩ
∗
ij

then relies on a sparse sum.

12

10
0

10
2

10
4

10
6

10
−10

10
−8

10
−6

10
−4

10
−2

observation count c
j

av
er

ag
e

E
[z

d’
j]

Categorical factor q(z
d’

)

Fully optimized
Optimized using
constant messages
E[u’v + b] = 0

10
0

10
2

10
4

10
6

10
−8

10
−6

10
−4

10
−2

observation count c
j

av
er

ag
e

E
[ψ

j]

Dirichlet factor q(ψ)

Fully optimized
Optimized using
constant messages
E[u’v + b] = 0

Figure 5: The factors q(zd′) and q(ψ) from a model with 2.5× 108 Windows 8 Phone App install signals as
feedback pairs. With “variational model pruning” of small components, a result that is more useful in a real
system can be created by using constant messages with E[uT

i vj + bi + bj] = 0 when optimizing for q(yd′)
and q(zd′).

C Practical considerations

“Variational model pruning” [11] can be observed on the fully optimized q(yd′) and q(zd′) factors.
In Figure 5, one sees the average E[zd′j] tailing roughly where cj < 50. The net effect of dispro-
portionately decreasing the expected appearance probability is that cij is explained by a much larger
bias bj .

In the context of the large-scale online system in which this model is deployed, we’ve found it
beneficial to substitute a constant E[uTi vj + bi + bj] = 0 when optimizing for q(yd′) and q(zd′).

D Further evaluations

As we do not directly maximize the softmax likelihood in (1), we are additionally interested in how
the model’s predictions differ from those obtained from a full softmax model. This is evaluated on
a much smaller scale here.

Co-authorship networks This paper’s starting point was the bilinear softmax likelihood function
in (1). We will now turn to examine how much the approximation to p(j|i,D) in (5) deviates from
that of a maximum a posteriori (MAP) solution to the softmax likelihood. As discussed earlier,
the softmax MAP estimate is expensive to find, we thus use the relatively smaller NIPS 1–12 co-
authorship dataset2 (even though it is not naturally bipartite data). We removed all single-authors
which left us with I = 1897 authors, and treat co-authorship as symmetric counts in D . Biases
were included in (1), and excluded from our model, so that with K = 5 both models have the
same number of parameters. We had to add the additional constraint ui = vi for all i to enforce
the softmax point estimate to be symmetric. This was not required for Algorithm 1, which found a
symmetric solution with and without such a constraint. Figure 6 shows the predicted co-authors for
A. Smola, with the top 25 predictions labelled for each model. This is a density estimation problem
with scarce data and an abundance of parameters, and with no shrinkage there are many singularities
in the likelihood function. With shrinkage (τu = 1) the smallest softmax odds are 10−8 in Figure 6,
and the small data set is memorized by the MAP solution, which might not generalize. This result
underscores the need for a Bayesian approach. Although the most probable predictions are still
anecdotally interpretable, we note that a truer comparison would be against posterior predictions
that are estimated using Markov chain Monte Carlo samples with (1) as likelihood, but leave this
research to future work.

2www.autonlab.org/autonweb/17433

13

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

Sejn
ow

sk
i, T

Koc
h,

 C

Sm
ola

, A

Sch
olk

op
f,

B

Den
ke

r,
J

Le
Cun

, Y

M
ull

er
, K

Vap
nik

, V

Guy
on

, I

Jo
rd

an
, M

Hint
on

, G

Sim
ar

d,
 P

Ben
gio

, Y

Hen
de

rs
on

, D

Bar
tle

tt,
 P

Ja
ck

el,
 L

Rat
sc

h,
 G

M
or

ga
n,

 N

Gile
s,

C

Gra
f,

H

M
oz

er
, M

Sing
h,

 S

Obe
rm

ay
er

, K

Am
ar

i, S

M
ika

, S

Sm
ola

, A

Sch
olk

op
f,

B

M
ull

er
, K

Rat
sc

h,
 G M

ika
, S

W
illi

am
so

n,
 R Vap

nik
, V

Sha
we−

Tay
lor

, J

Bar
tle

tt,
 P

W
es

to
n,

 J Ono
da

, T

Plat
t,

J Bur
ge

s,
C

Sim
ar

d,
 P Sch

olz
, M

Spe
nc

e,
 C

M
as

on
, L

Kau
fm

an
, L

Dm
ck

er
, H

Cris
tia

nin
i, N Bax

te
r,

J

Par
ra

, L Pea
rs

on
, J

Sajd
a,

 P Zieh
e,

 A

author

p(
co

−
au

th
or

 |
S

m
ol

a,
 A

)

this paper
softmax (MAP)

Figure 6: A log-log plot comparing predictive densities obtained by this paper’s model and a softmax equiva-
lent. Authors are ordered on the x-axis by the softmax MAP point estimate. The MAP estimate overfits with
sparse data, as is evident in the (truncated blue) tail that approaches 10−8, and does not assign high odds to
out-of-sample co-author K. Obermayer, for example.

References
[1] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing. Mixed membership stochastic blockmodels.

Journal of Machine Learning Research, 9:1981–2014, 2008.
[2] Y. Bengio and J.-S. Senécal. Quick training of probabilistic neural nets by importance sampling. In

Artificial Intelligence and Statistics, 2003.
[3] D. Böhning. Multinomial logistic regression algorithm. Annals of the Institute of Statistical Mathematics,

44:197–200, 1992.
[4] G. Bouchard. Efficient bounds for the softmax and applications to approximate inference in hybrid mod-

els. In NIPS 2007 Workshop on Approximate Inference in Hybrid Models, 2007.
[5] P. Gopalan, J. M. Hofman, and D. M. Blei. Scalable recommendation with poisson factorization. CoRR,

abs/1311.1704, 2013.
[6] M. U. Gutmann and A. Hyvärinen. Noise-contrastive estimation of unnormalized statistical models, with

applications to natural image statistics. Journal of Machine Learning Research, 13:307–361, 2012.
[7] Y. F. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In IEEE

International Conference on Data Mining, 2008.
[8] T. Jaakkola and M. Jordan. A variational approach to Bayesian logistic regression problems and their

extensions. In Artificial Intelligence and Statistics, 1996.
[9] N. Koenigstein and U. Paquet. Xbox movies recommendations: Variational Bayes matrix factorization

with embedded feature selection. In Proceedings of the 7th ACM Conference on Recommender Systems,
pages 129–136, 2013.

[10] D. J. C. MacKay. The evidence framework applied to classification networks. Neural Computation,
4(5):698–714, 1992.

[11] D. J. C. MacKay. Local minima, symmetry-breaking, and model pruning in variational free energy mini-
mization. Technical report, Inference Group, Cavendish Laboratory, Universtiy of Cambridge, 2001.

[12] B. M. Marlin and R. Zemel. Collaborative prediction and ranking with non-random missing data. In
Proceedings of the Third ACM Conference on Recommender Systems, pages 5–12. 2009.

[13] T. Mikolov, I. Sutskever, K. Cheni, G. S. Corrado, and J. Dean. Distributed representations of words
and phrases and their compositionality. In Advances in Neural Information Processing Systems 26, pages
3111–3119. 2013.

14

[14] A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization. In Advances in Neural Information
Processing Systems 20, pages 1257–1264. 2008.

[15] A. Mnih and Y. W. Teh. A fast and simple algorithm for training neural probabilistic language models. In
Proceedings of the 29th International Conference on Machine Learning, pages 1751–1758, 2012.

[16] A. Mnih and Y. W. Teh. Learning label trees for probabilistic modelling of implicit feedback. In Advances
in Neural Information Processing Systems 25, pages 2825–2833. 2012.

[17] R. Pan and M. Scholz. Mind the gaps: Weighting the unknown in large-scale one-class collaborative
filtering. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 667–675, 2009.

[18] U. Paquet and N. Koenigstein. One-class collaborative filtering with random graphs. In Proceedings of
the 22nd International Conference on World Wide Web, pages 999–1008, 2013.

[19] U. Paquet and N. Koenigstein. One-class collaborative filtering with random graphs: Annotated version.
CoRR, abs/1309.6786, 2013.

[20] U. Paquet, B. Thomson, and O. Winther. A hierarchical model for ordinal matrix factorization. Statistics
and Computing, 22(4):945–957, 2012.

[21] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: Bayesian personalized ranking
from implicit feedback. In Uncertainty in Artificial Intelligence, pages 452–461, 2009.

[22] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using Markov chain Monte
Carlo. In Proceedings of the 25th International Conference on Machine Learning, pages 880–887, 2008.

[23] V. Sindhwani, S. S. Bucak, J. Hu, and A. Mojsilovic. One-class matrix completion with low-density
factorizations. In IEEE 10th International Conference on Data Mining, pages 1055–1060, 2010.

[24] S. R. Waterhouse, D.J.C. MacKay, and A. J. Robinson. Bayesian methods for mixtures of experts. In
Advances in Neural Information Processing Systems 8, pages 351–357. 1996.

15

