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Introduction

Expectation Propagation (EP) is a popular deterministic algorithm for
approximating Bayesian averages.

e The accuracy of these approrimations can be systematically improved
through perturbation corrections.

We present an EP treatment for the gaussian mixture model. For pre-
dictive density and marginal likelihood, we illustrate how EP gives bet-
ter accuracy than Variational Bayes (VB), and how higher order correc-
tions present further improvements. A state of the art MCMC method—
parallel tempering and thermodynamic integration—provide the base line
for comparison.

Expectation Propagation in a Nutshell. In this illustration we ob-
serve i.i.d. data D = {x,}'_, generated by p(x,|0), with an exponential

family prior p(6) oc exp(Al ¢(0))h(0) defined by the statistics ¢(6).

e Approximate p(6|D) = - [, p(z,|0)p(6) by a tractable density
1

0(0) = 537 (AT 6(0) p(0) (1)

which shares the same moments (i.e. an expectation-consistent approx-
imation) with all the densities ¢,(6),

<¢(6)>q — <¢(8)1>qn7 n=1...,N, (2)
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where A = > A, and A\, = A — A,,. If 1, is a unit-vector in the nth
direction, then

Z(A,a) = / 40 T [p(216)]" exp(AT6(8)) p(6) (4

e A,)’s are optimised to achieve consistency for moments in (2).
e The approximation to the marginal likelihood is given by

Z(A— A, 1)
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Corrections to EP

The exact posterior and the marginal likelihood are expressed in terms
of ¢,,’s, ¢ and the normalising partition functions: solving (3) for p(x,|0)
and using the definitions of the densities, we get

p(0) | [ p(2nl0) = Zer q(0) | | <q”(9)) - (6)

q(0)
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e The exact posterior and the marginal likelihood can be written as

p(0]D) = % (OT](A+e.0) and  Z=ZupR, (7)
i} e a(®)— a®)
where R — / 0@ [] (1 +2,(0) and e,(0) = 2L (3

The densities ¢(68) and ¢,(0) share a set of generalised moments; we hope

n

n

that they are close enough such that €,(0) can be treated (in an average
sense) as small.

e An expansion of the posterior and Z in terms of €,(0) truncated at low
orders might give the dominant corrections to EP:

R=1+ )  (en@en@),+ D> (em(@)en@)en(@),+--. s (9)
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where the first order term ) (g,(0))
tion of ¢, and q.

Similarly, the predictive distribution p(z|D) = [ df p(z|0) is

[ d0.q(0) p(x|6) (1+ 50, 20(0) + Xy 2mr ()20 (0) + )
1 + Zn1<n2 <5n1(0)5n2(9)>q + ... |

, = U vanishes by the normaliza-

p(z|D) =
(10)

Results and illustrations

e In the figures presented below we assume that the likelihood for
data point z, is a mixture of K d-dimensional gaussians, p(x,|0) =
Zlep(k)p(:pn\k) — Zle TN (2| i, T 1), with Dirichlet and Normal-
Wishart priors on 7 and {u, Iy} ;.

e The approximating density q(0) = q(m) ][], q(px, I'x) is a factorized
product of a Dirichlet and Normal-Wishart distributions.
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tween the approximate predictive

log Z estimates densities and the ‘truth’ 1s shown.

e Under posteriors with many symmetries general arguments suggest that
we can correct the marginal likelihood estimate by a factor of K! for
large N; it is unclear what this behaviour will be for smaller V.

Figure 1. A comparison between the VB (top row) and EC/P (middle)
q(0), and a first-order EC correction p(0|D) ~ > qn(0) — (N — 1)q(0)
(bottom). Data is assumed to come from a two-component mixture
p(x,|0) = 04N (x,|p1,1) + 0.6N (z,|pse, 1), with only the means 6 =
{1, po}t unknown. We show the posterior p(6|D) in thin black lines, with
the VB, EC, and first-order corrected approximations overlaid in thicker
lines. The first-order correction integrates to one but is not guaranteed
to be nonnegative (bottom row); dashed red lines are used to demarcate
the regions of parameter space where the correction dips below zero.
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Figure 3. Left: The ratio between the predictive densities given by VB,
EC/P, and EC+R, and the ‘truth’ p(z|D) for the galaxy data set, with
K = 3. Right: log Z estimates for choices of K, given for VB (squares),
EC/P (circles), and EC+R (diamonds), with an MCMC' baseline.




