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Introduction

Expectation Propagation (EP) is a popular deterministic algorithm for

approximating Bayesian averages.

•The accuracy of these approximations can be systematically improved

through perturbation corrections.

We present an EP treatment for the gaussian mixture model. For pre-

dictive density and marginal likelihood, we illustrate how EP gives bet-

ter accuracy than Variational Bayes (VB), and how higher order correc-

tions present further improvements. A state of the art MCMC method—

parallel tempering and thermodynamic integration—provide the base line

for comparison.

Expectation Propagation in a Nutshell. In this illustration we ob-

serve i.i.d. data D = {xn}N
n=1 generated by p(xn|θ), with an exponential

family prior p(θ) ∝ exp(ΛT
0 φ(θ))h(θ) defined by the statistics φ(θ).

•Approximate p(θ|D) = 1
Z

∏

n p(xn|θ)p(θ) by a tractable density

q(θ) =
1

Z(Λ, 0)
exp(ΛTφ(θ)) p(θ) (1)

which shares the same moments (i.e. an expectation-consistent approx-

imation) with all the densities qn(θ),

〈φ(θ)〉q = 〈φ(θ)〉qn

, n = 1, . . . , N , (2)

qn(θ) =
1

Z(Λ\n, 1n)
p(xn|θ) exp(ΛT

\nφ(θ)) p(θ) , (3)

where Λ =
∑

n Λn and Λ\n = Λ − Λn. If 1n is a unit-vector in the nth

direction, then

Z(Λ, a) =

∫

dθ
∏

n

[p(xn|θ)]
an exp(ΛTφ(θ)) p(θ) . (4)

•Λn’s are optimised to achieve consistency for moments in (2).

•The approximation to the marginal likelihood is given by

ZEP = Z(Λ, 0)
∏

n

Z(Λ − Λn, 1n)

Z(Λ, 0)
. (5)

Corrections to EP

The exact posterior and the marginal likelihood are expressed in terms

of qn’s, q and the normalising partition functions: solving (3) for p(xn|θ)
and using the definitions of the densities, we get

p(θ)
∏

n

p(xn|θ) = ZEP q(θ)
∏

n

(

qn(θ)

q(θ)

)

. (6)

•The exact posterior and the marginal likelihood can be written as

p(θ|D) =
1

R
q(θ)

∏

n

(1 + εn(θ)) and Z = ZEP R , (7)

where R =

∫

dθq(θ)
∏

n

(1 + εn(θ)) and εn(θ) =
qn(θ) − q(θ)

q(θ)
. (8)

The densities q(θ) and qn(θ) share a set of generalised moments; we hope

that they are close enough such that εn(θ) can be treated (in an average

sense) as small.

•An expansion of the posterior and Z in terms of εn(θ) truncated at low

orders might give the dominant corrections to EP:

R = 1+
∑

n1<n2

〈εn1
(θ)εn2

(θ)〉q +
∑

n1<n2<n3

〈εn1
(θ)εn2

(θ)εn3
(θ)〉q + . . . , (9)

where the first order term
∑

n 〈εn(θ)〉q = 0 vanishes by the normaliza-

tion of qn and q.

Similarly, the predictive distribution p(x|D) =
∫

dθ p(x|θ) is

p(x|D) =

∫

dθ q(θ) p(x|θ)
(

1 +
∑

n εn(θ) +
∑

n1<n2
εn1

(θ)εn2
(θ) + . . .

)

1 +
∑

n1<n2
〈εn1

(θ)εn2
(θ)〉q + . . .

.

(10)

Results and illustrations
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Figure 1. A comparison between the VB (top row) and EC/P (middle)

q(θ), and a first-order EC correction p(θ|D) ≈
∑

n qn(θ) − (N − 1)q(θ)

(bottom). Data is assumed to come from a two-component mixture

p(xn|θ) = 0.4N (xn|µ1, 1) + 0.6N (xn|µ2, 1), with only the means θ =

{µ1, µ2} unknown. We show the posterior p(θ|D) in thin black lines, with

the VB, EC, and first-order corrected approximations overlaid in thicker

lines. The first-order correction integrates to one but is not guaranteed

to be nonnegative (bottom row); dashed red lines are used to demarcate

the regions of parameter space where the correction dips below zero.

• In the figures presented below we assume that the likelihood for

data point xn is a mixture of K d-dimensional gaussians, p(xn|θ) =
∑K

k=1 p(k)p(xn|k) =
∑K

k=1 πkN (xn|µk,Γ
−1
k ), with Dirichlet and Normal-

Wishart priors on π and {µk,Γk}K
k=1.

•The approximating density q(θ) = q(π)
∏

k q(µk,Γk) is a factorized

product of a Dirichlet and Normal-Wishart distributions.
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Figure 2. Predictive densities

p(x|D) given by VB, EC/P, and a

perturbation correction (EC+R),

with accompanying log marginal

likelihood estimates and MCMC

‘truth’ baselines. The ratio be-

tween the approximate predictive

densities and the ‘truth’ is shown.

•Under posteriors with many symmetries general arguments suggest that

we can correct the marginal likelihood estimate by a factor of K! for

large N ; it is unclear what this behaviour will be for smaller N .
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Figure 3. Left: The ratio between the predictive densities given by VB,

EC/P, and EC+R, and the ‘truth’ p(x|D) for the galaxy data set, with

K = 3. Right: log Z estimates for choices of K, given for VB (squares),

EC/P (circles), and EC+R (diamonds), with an MCMC baseline.


