
An Efficient Implementation of Riemannian Manifold Hamiltonian Monte Carlo for
Gaussian Process Models

Ulrich Paquet∗, Marco Fraccaroa

aTechnical University of Denmark, Lyngby, Denmark

Abstract

This note presents pseudo-code for a Riemannian manifold Hamiltonian Monte Carlo (RMHMC) method to efficiently simulate
samples from N -dimensional posterior distributions p(x|y), where x ∈ RN is drawn from a Gaussian Process (GP) prior, and
observations yn are independent given xn. Sufficient technical and algorithmic details are provided for the implementation of
RMHMC for distributions arising from GP priors.

1. Introduction

When data is modelled with Gaussian process (GP) pri-
ors, the resulting posterior distributions are usually highly
correlated. There are various avenues to simulating samples
from such posterior distributions with Markov chain Monte
Carlo (MCMC) methods, ranging from simple Metropolis-
Hastings (MH) methods with symmetric proposal distributions
to component-wise Gibbs samplers, to more advanced Hamil-
tonian Monte Carlo (HMC) methods that use the gradient of
the log-posterior to guide the sampler towards high-density re-
gions. The strong posterior correlations can adversely affect the
mixing rates of these methods.

The mixing rates of an MCMC method can be increased sig-
nificantly when, instead of using only first-order gradient in-
formation, one additionally relies on local second-order statis-
tics of the log-posterior to guide the sampler. In this note,
we present pseudo-code for a Riemannian manifold Hamil-
tonian Monte Carlo (RMHMC) method [1] to efficiently
simulate samples from N -dimensional posterior distributions
p(x|y), where x ∈ RN is drawn from a zero-mean GP prior

prior(x) = N (x; 0,K) (1)

with kernel matrix K. The aim of this note is to provide suf-
ficient technical and algorithmic details for anyone to imple-
ment RMHMC for GPs. We assume that the likelihood for each
observation yn depends only on the latent function value xn
through

`n(xn)
.
= log p(yn|xn) (2)

and is not Gaussian. The resulting posterior or target distribu-
tion is

p(x|y) =

∏
n p(yn|xn) · prior(x)

p(y)
. (3)

∗Corresponding author
Email addresses: ulrich@cantab.net (Ulrich Paquet),

marfra@dtu.dk (Marco Fraccaro)

The variables in (3) often form a very correlated high dimen-
sional density, which is ideally suited to RMHMC. One could
also sample and infer the GP kernel hyperparameters that gov-
ern K. Additionally sampling kernel hyperparameters is out-
side the scope of this note, but a sketch for how they are sam-
pled for a fully Gaussian model is given in [2].

1.1. A formulation for obtaining normalising constants

Aside from sampling from p(x|y), we are also interested in
using samples to estimate logZ

.
= log p(y). We will write (3)

in a slightly more general form, so that the normalising constant
Z

.
= p(y) could also be recovered from a method like Annealed

Importance Sampling (AIS) or Parallel Tempering (PT).
In a general form, some other distribution q(x) =

N (x;µ,Σ) might also be available to us, where the choice of
µ = 0 and Σ = K would simply recover the prior. For in-
stance, if q(x) approximates p(x|y) via some deterministic ap-
proximate inference method like Expectation Propagation (EP),
then this could be used as the starting distribution at β = 0 in
AIS or PT. We will touch on AIS and PT in Section ??. For
now, let the unnormalised log density of x be1

Lβ(x) = β

[
N∑
n=1

`n(xn)− 1

2
xTK−1x

]

− (1− β)
1

2
(x− µ)TΣ−1(x− µ) (4)

for any β ∈ [0, 1]. The generalised target distribution is

pβ(x)
.
=

1

Z(β)
eLβ(x) (5)

for any choice of β. In this setup β = 1 recovers p(x|y), and
β = 0 recovers q(x), or the prior if q(x) = prior(x). Methods

1We include the normalising constants for prior(x) and q(x) when Lβ(x)
and its derivative are computed in Lines 13 and 17 in Algorithm 4, but as they’re
independent of x, we omit them here to make the explanation simpler.

like AIS or PT estimate logZ by sampling from a sequence of
distributions that range from p0 to p1.

In the rest of this note, after briefly introducing Hamiltonian
Monte Carlo (HMC) in Section 2, we will introduce RMHMC
as an extension of HMC that exploits local second-order statis-
tics (Section 3). We will then discuss and evaluate a RMHMC
method to simulate samples from (5). Where the β subscript is
clear from the context, it will be dropped for brevity.

2. Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) [3] can be used to define
efficient proposal distributions for a Metropolis-Hastings sam-
pler, that allow large moves in the parameter space while keep-
ing a high acceptance rate. It is particularly useful for eliminat-
ing the random walk behaviour that is typical of symmetric pro-
posal distributions, and improves poor mixing in case of highly
correlated variables. The main idea behind this algorithm is to
define an Hamiltonian function in terms of the target probabil-
ity distribution, and move a sample from this distribution as if
it was a particle in space following the corresponding Hamilto-
nian dynamics.

To sample a random variable x ∈ RN from the probability
distribution p(x), we introduce an independent auxiliary vari-
able p ∈ RN with a Gaussian prior p(p) = N (p; 0,M). Due
to independence, the joint density can be written as

p(x,p) = p(x) p(p) ∝ e−H(x,p) . (6)

The negative joint log-probability is then

H(x,p) = −L(x) +
1

2
pTM−1p

and can be interpreted as a Hamiltonian H(x,p) with potential
energy U(x) and kinetic energy K(p),

U(x) = −L(x)

K(p) =
1

2
pTM−1p .

The Hamiltonian represents the total energy of a closed system,
in which x is the position of the particle in space. Thanks to
the quadratic kinetic term, the auxiliary variable p can be seen
as a momentum variable, and the covariance matrix M as a
mass matrix. As we will see in Section 3, RMHMC improves
the sampling efficiency of HMC by making use of a position-
dependent mass matrix, at the expense of complicating the over-
all algorithm.

To obtain samples from p(x), HMC simulates
{(x(t),p(t))}tmax

t=1 samples from p(x,p) and discards the
p(t) samples. The remaining {x(t)}tmax

t=1 will then represent
samples from the required marginal distribution. HMC samples
from the joint distribution p(x,p) using a Gibbs sampling
scheme with auxiliary variables p.

1. Given the position and momentum (x(t),p(t)) at time t,
the momentum is updated by drawing a sample from the
conditional distribution p(p(t+1)|x(t)) = p(p(t+1)) =
N (p(t+1); 0,M).

2. Given p(t+1), the variable x(t+1) is sampled from the con-
ditional distribution p(x(t+1)|p(t+1)) with the Metropolis-
Hastings algorithm, using a deterministic proposal distri-
bution defined by simulating the behaviour of the physi-
cal system evolving under Hamiltonian dynamics and with
initial position (x(t),p(t+1)). Given the Hamiltonian, we
numerically integrate Hamilton’s equations

dx

dτ
=
∂H

∂p
=
∂K

∂p
= M−1p

dp

dτ
= −∂H

∂x
= −∂U

∂x
= ∇xL(x) . (7)

and follow a trajectory to obtain a new pair (x∗,p∗), that is
accepted with probability

α = min

(
1,

e−H(x∗,p∗)

e−H(x(t),p(t+1))

)
. (8)

The accept-step appears in Lines 30 to 35 in Algorithm 1.

The validity of this sampler relies on the reversibility and
volume preservation properties of Hamiltonian mechanics [3].
When an analytic solution to the system of nonlinear differen-
tial equations is available, the proposed trajectory moves along
the isocontours of the Hamiltonian in the phase space (and the
acceptance rate in therefore one), whereas the random draws of
the momentum p from the exact conditional distribution will
change the energy levels. For practical applications of interest,
Hamilton’s equations do not have an analytic solution, and it
is therefore necessary to discretise time and resort to numer-
ical approximations. It is common to use the Stormer-Verlet
leapfrog integrator, that retains the reversibility and volume
preservation properties required to obtain an exact sampler, and
computes the updates (in vector form) as

p(τ + ε
2) = p(τ)− ε

2∇xU(x(τ))

x(τ + ε) = x(τ) + ε∇pK(p(τ + ε
2))

p(τ + ε) = p(τ + ε
2)− ε

2∇xU(x(τ + ε)) . (9)

After half a step for the momentum variables, a full step for
the position variables is done using the new momentum vari-
ables, which is finally followed by the missing half step for
the momentum variables using the updated position variables.
This procedure is repeated lmax times for each sample to avoid
random walk behaviour. Due to the integration errors caused
by the discretisation, the Hamiltonian is not exactly conserved
with the leapfrog method, but it remains close to the true value
to give a high acceptance probability. This error can be also
controlled by careful tuning (manual or automatic) of the step
size ε and the maximum number of integration steps lmax.

2.1. Tuning HMC
The performance of Hamiltonian Monte Carlo is highly de-

pendent on the correct tuning of the step size ε, the number of
leapfrog steps lmax done at each iteration and the mass matrix
M of the momentum variable. A too low step size ε makes it
difficult to completely explore the whole space unless a high

2

lmax is used, but this causes an increase in computational time.
On the other hand, a too big ε can lead to an unstable algo-
rithm that suffers from a low acceptance rate. Furthermore,
if lmax is too small there will be slow mixing due to random-
walk behaviour, whereas a too high value for lmax may cause
double-back behaviour, where the integrator returns to its start-
ing point. Picking the right mass matrix M is essential for op-
timised performance, as its diagonal terms have to reflect the
scale of the sampled momentum variables and the off-diagonal
terms their correlation: a simple default choice using a (pos-
sibly scaled) identity matrix will give poor results for highly
correlated variables.

It is finally worth noting that an acceptance rate of 1 is not
the optimal choice, as this would mean for example that ε could
be increased to move even further in the phase space. [3] shows
that the optimal acceptance rate should be around 0.65. One can
also consider a number of burn-in samples to avoid highly cor-
related proposed samples, not too high though for an efficient
implementation.

3. Riemannian Manifold Hamiltonian Monte Carlo

As argued in the previous section, one of the main issues that
arise when Hamiltonian Monte Carlo is used, is the difficult
tuning of the mass matrix M, which is essential for good con-
vergence of the sampler. Girolami et al. show that when, for
instance, the position dependent expected Fisher information
matrix G(x) is used instead of a fixed mass matrix M, many
of the shortcomings of HMC can be addressed [2]. The in-
troduced algorithm – Riemannian manifold Hamiltonian Monte
Carlo (RMHMC) – can be seen as an extension of Hamiltonian
Monte Carlo where the local geometry of the distribution we
want to sample from is taken into account through the metric
tensor G(x).

In RMHMC, the covariance structure of the auxiliary Gaus-
sian momentum variable is set as G(x), so that its distribution
is shaped by the position of x, i.e. p(p|x) = N (p; 0,G(x)).
While HMC factorises in (6) and uses p(p) = N (p; 0,M) for
some fixed mass matrix M, for RMHMC the joint density

p(x,p) = p(x) p(p|x) ∝ e−H(x,p) (10)

is no longer factorisable. As a result, the Hamiltonian

H(x,p) = −L(x) +
1

2
log
(
(2π)N det(G(x))

)
+

1

2
pTG(x)−1p (11)

is not separable. Unlike HMC, the term coming from the Gaus-
sian normalising constant depends on x, and it needs to be in-
cluded in the potential energy term.

RMHMC uses the same Gibbs sampler as HMC. First, the
momentum is sampled from the conditional distribution p|x
and then a new proposal for a Metropolis-Hastings sampler is
found following a trajectory that is obtained by solving Hamil-

ton’s equations, that are in this case

dxn
dτ

=
∂H

∂pn
= {G(x)−1p}n

dpn
dτ

= − ∂H
∂xn

=
∂L(x)

∂xn
− 1

2
tr

{
G(x)−1 ∂G(x)

∂xn

}
+

1

2
pTG(x)−1 ∂G(x)

∂xn
G(x)−1p . (12)

Due to this dependence of the kinetic energy on the position
(throughG(x)), the proposals generated from the leapfrog inte-
grator will not satisfy detailed balance in a Hamiltonian Monte
Carlo scheme. To overcome this problem, [2] uses a more gen-
eral leapfrog integrator, which is semi-explicit (i.e. the update
equations are defined implicitly and need to be solved with
some fixed point iterations) but that satisfies reversibility and
volume preservation, therefore giving a correct sampler. This
generalised leapfrog integrator leads to the following updates
of the position and momentum variables:

p(τ + ε
2) = p(τ)− ε

2∇xH
(
x(τ),p(τ + ε

2)
)

(13)

x(τ + ε) = x(τ) + ε
2

[
∇pH

(
x(τ),p(τ + ε

2)
)

(14)

+∇pH
(
x(τ + ε),p(τ + ε

2)
)]

p(τ + ε) = p(τ + ε
2)− ε

2∇xH
(
x(τ + ε),p(τ + ε

2)
)
.

(15)

It is simple to show that for separable Hamiltonians the gen-
eralised leapfrog integrator coincides with the one defined
for HMC in Equations (9). When the Hamiltonian is non-
separable, (13) and (14) are implicitly defined. In Algorithm
1, we solve them through fixed point iterations: Lines 13-17 for
Equation (13), and Lines 20-25 for Equation(14).

Figure 1 shows an example of a trajectory followed by HMC
and RMHMC to obtain one sample from a mixture of three
Gaussians, starting from the same initial position. We can see
that RMHMC is better than HMC at taking into account the lo-
cal geometry of the correlated Gaussian distributions, and can
therefore do bigger moves in parameters space accepted with
high probability.

4. RMHMC for Gaussian Process Classification

In this section, we take GP classification (GPC) as a working
example of a GP model with non-Gaussian likelihood terms.
For a GPC problem, every latent function value xn supports
a binary observation yn ∈ {−1,+1}. The probit function
Φ(x) =

∫ x
−∞N (z; 0, 1) dz is often used to model the likeli-

hood,
`n(xn)

.
= log p(yn|xn) = log Φ(ynxn) .

The resulting function Lβ(x) in (4) is concave, and p(x|y) is
usually very correlated.

3

Hamiltonian Monte Carlo

-2 0 2 4 6
-3

-2

-1

0

1

2

3

4

5

6
Riemannian Manifold Hamiltonian Monte Carlo

-2 0 2 4 6
-3

-2

-1

0

1

2

3

4

5

6

Figure 1: Comparison between trajectories followed by HMC and RMHMC starting from the same initial position (the black cross).

The Markov chain Monte Carlo (MCMC) algorithm that
draws samples from (5) via the joint density in (10) is given in
pseudocode in Algorithm 1. We’ll first discuss the its inputs in
Section 4.1, and then turn to its choice of metric tensor in Sec-
tion 4.2. The resulting Hamiltonian and its gradients are given
in Section 4.3. Section 4.4 gives the first, second, and third
derivatives for a probit log likelihood, which are all required in
∂H/∂x.

4.1. Inputs
Algorithm 1 requires the parameters of Lβ(x) in (4), with

minimal other external settings:

• The input observations y from (2) and kernel matrix K
from the GP prior in (1) are required. It is also useful to
precompute the Cholesky decomposition K = LK(LK)T

and log determinant log |K| of the kernel matrix.

• If q(x) = N (x;µ,Σ) is an approximation obtained by
EP, then the precision matrix of q decomposes as K−1 plus
a diagonal matrix Σ̃ containing the contributions from N
approximate factors corresponding to the likelihood terms,

Σ−1 = K−1 + Σ̃−1 .

We choose the above notation to match that of the GP
classification approximation in Rasmussen and Williams’s
Gaussian Processes for Machine Learning book [4]. Of
course Σ needn’t have this form, but as we consider an EP
approximation in Section 5, use this form for numerical
stability. In addition to taking µ and Σ̃ as inputs, we also
precompute the Cholesky decomposition Σ = LΣ(LΣ)T

and its log determinant log |Σ|.

• Inverse temperature β, a starting point x0, the number of
leapfrog steps lmax per sample, a step-size ε, and a max-
imum number of samples tmax are also required. We im-
plicitly assume that a burn-in sample would be discarded
from {xt}tmax

t=1 , and that the number of fixed point itera-
tions is pre-set to, say, fmax = 5.

4.2. Metric tensor

There are many choices of a metric for a specific manifold,
and a more detailed discussion beyond the scope of this note
is presented by Girolami and Calderhead [1]. We choose the
negative second derivative of L(x) in (4), evaluated at x, as
metric tensor:

G(x)
.
= −∇2

x L(x) .

Therefore G(x) is simply a Hessian matrix,

−∇2
x L(x) = −β diag

[
∇2
xn`n(xn)

]
︸ ︷︷ ︸

Λ(x)

+βK−1 + (1− β)Σ−1.

Notation diag indicates a diagonal matrix formed by its argu-
ments. We deliberately set aside a definition of Λ(x) as the
only component of G(x) that depends on x. This simplifies
later derivations, for which another derivative (the third) is re-
quired in ∂G(x)/∂xn in (12) when simulating the Hamiltonian
dynamics. Hence

G(x) = Λ(x) + βK−1 + (1− β)Σ−1. (16)

4.3. The Hamiltonian and its gradients

First consider −∂H/∂x in Equation (12). A fast way to
compute it is given in function hamiltonian-and-gradient in
Algorithm 2. It relies on the metric tensor, computed by the
riemann-metric function in Algorithm 3, and the derivatives
∇xL(x), computed in the derivatives function in Algorithm 4.
Considering the latter, the derivative of L with respect to x is

∇xL(x) = β vec
[
∇xn`n(xn)

]
− βK−1x

− (1− β)Σ−1(x− µ)

where vec gives a column vector of its arguments. Func-
tion derivatives uses pre-computed Cholesky decompositions
of K = LK(LK)T and Σ = LΣ(LΣ)T to stably determine
K−1x and Σ−1(x − µ) through back-solving. The Cholesky

4

Algorithm 1 Riemannian Manifold Hamiltonian Monte Carlo

1: input: y, K, LK, log |K|, µ, Σ̃, LΣ, log |Σ|, β, x0, lmax, ε, tmax

2: x := x0

3: {L, ∂L∂x ,G
−1, log |G|,dg} := riemann-metric(x,y,K,LK, log |K|,µ, Σ̃,LΣ, log |Σ|, β)

4: for t = 1 to tmax do
5: LGinv = chol(G−1)
6: p ∼ N (p; 0, I)
7: p := (LGinv)T \p // initial momentum is p ∼ N (p; 0,G(x)−1)
8: {H, ∂H∂x } := hamiltonian-and-gradient(L, ∂L∂x ,G

−1, log |G|,dg,p)

9: Hold := H; xold := x; ∂L
∂x

old
:= ∂L

∂x ; Lold := L; (G−1)old := G−1; (log |G|)old := log |G|; (dg)old := dg
10: // take lmax leapfrog steps:
11: for l = 1 to lmax do
12: // the fixed point loops f = 1, . . . , fmax below are a time-reversible volume preserving numerical integrator for solving

the non-separable Hamiltonian to ensure a correct MCMC algorithm
13: for f = 1 to fmax do
14: p′ := p− 1

2ε
∂H
∂x // equation (13)

15: {H, ∂H∂x } := hamiltonian-and-gradient(L, ∂L∂x ,G
−1, log |G|,dg,p′)

16: end for
17: p := p′

18: ∂H
∂p := G−1p

19: ∂H
∂p

′
:= ∂H

∂p
20: for f = 1 to fmax do
21: x′ := x + 1

2ε(
∂H
∂p + ∂H

∂p

′
) // equation (14)

22: {L, ∂L∂x ,G
−1, log |G|,dg} := riemann-metric(x′,y,K,LK, log |K|,µ, Σ̃,LΣ, log |Σ|, β)

23: ∂H
∂p

′
:= G−1p

24: end for
25: x := x′

26: {H, ∂H∂x } := hamiltonian-and-gradient(L, ∂L∂x ,G
−1, log |G|,dg,p)

27: p := p− 1
2ε
∂H
∂x // equation (15)

28: {H, ∂H∂x } := hamiltonian-and-gradient(L, ∂L∂x ,G
−1, log |G|,dg,p)

29: end for
30: if rand < exp{Hold −H} then
31: // accept; do nothing
32: else
33: // reject
34: x := xold; ∂L

∂x := ∂L
∂x

old
; L := Lold; G−1 := (G−1)old; log |G| := (log |G|)old; dg := (dg)old

35: end if
36: samples(t) = x
37: energies(t) = −L
38: end for
39: return samples, energies

factors are lower-diagonal, and ◦ indicates the element-wise or
Hadamard product between a pair of vectors or matrices.

Turning to the riemann-metric function, quantities like

tr

{
G(x)−1 ∂G(x)

∂xn

}
are required in Equation (12), whilst the evaluation of H also
needs log |G(x)|. Notice that the derivative{

∂G

∂xn

}
n,n

=
∂Λnn
∂xn

(17)

is non-zero in position (n, n), and zero elsewhere, and G has no
other dependence on x than through the log likelihood deriva-
tives. We therefore only keep the non-zero entries, given by
(17), in a vector dg in Algorithm 3.

To evaluate the log determinant log |G(x)| and the inverse
G(x)−1, we’ll consider the cases where q(x) = p(x) and
where q(x) 6= p(x) separately. Looking at riemann-metric,
their evaluations are under the two branches, starting from
Lines 13 and 19, of its only if-then-else fork. To speed up com-
putation, we introduce an additional operator: Let ? indicate a
row-wise product between a matrix and a vector, e.g. K?s mul-

5

Algorithm 2 Riemann Hamiltonian and Gradient
function hamiltonian-and-gradient
input: L, ∂L

∂x , G−1, log |G|, dg, p dg
.
= vec[∂G(x)nn

∂xn
]

H = 1
2pTG−1p + 1

2 log |G| − L // equation (12), but ignoring N
2 log(2π) as a cancelling constant in (8)

w = G−1p
∂H
∂x = 1

2 (dg ◦ diag(G−1))− 1
2 (w ◦w ◦ dg)− ∂L

∂x

return {H, ∂H∂x }

tiplies s1 with the first row of K, s2 with the second row, etc. If
S

.
= diag(s), the result is equal to (but faster to compute than)

the matrix product SK.

4.3.1. The inverse G(x)−1 and determinant log |G(x)| when
q(x) = p(x)

If q is equal to the prior, then

G(x)−1 = (Λ(x) + K−1)−1 ,

for which we’ll use the Sherman-Morrison-Woodbury formula.
We’ll expand the steps in more detail in Section 4.3.2 below.
Briefly, the steps are to let s := diag(Λ

1
2), to determine a stable

Cholesky decomposition in Ls = chol(I+K◦(ssT)) (note that
K ◦ (ssT) = SKS, but that the former is faster to compute),
and to use Ls to back-solve V = Ls\(K ? s). Then2

G(x)−1 := K−VTV ,

and using the precomputed Cholesky decomposition LK =
chol(K) of the kernel matrix,

log |G(x)| := −2

N∑
n=1

logLK
nn + 2

N∑
n=1

logLs
nn .

4.3.2. The inverse G(x)−1 and determinant log |G(x)| when
q(x) 6= p(x)

To determine the determinant when q is not equal to the prior,
we define

A−1 .
= βK−1 + (1− β)Σ−1

so that G(x)−1 = (Λ(x) + A−1)−1. If q is given by an EP ap-
proximation, then the precision matrix of q decomposes as K−1

plus a diagonal matrix Σ̃ containing the contributions from N
approximate factors corresponding to the likelihood terms,

Σ−1 = K−1 + Σ̃−1 .

We choose the above notation to match that of the GPC approx-
imation in Rasmussen and Williams’s Gaussian Processes for
Machine Learning book. Of course Σ needn’t have this form,
but as we use an EP approximation, we utilize it in aid of nu-
merical stability. Then

A−1 .
= K−1 + (1− β)Σ̃−1 = K−1 + B

2As in the riemann-metric function in Algorithm 3, we use V as a “local
variable” in this section, with a similar “local” use in Section 4.3.2.

for diagonal positive definite matrix B = (1− β)Σ̃−1. In Line
21 in Algorithm 3 we use

T
.
= B

1
2 ,

and will do so below. To determine the inverse of A, the Wood-
bury identity states

A = (K−1 + TT)−1

= K−KT(I + TKT︸ ︷︷ ︸
Lt(Lt)T

)−1TK ,

with a Cholesky decomposition Lt .
= chol(I + TKT). The

steps are to set t :=
√

1− β diag(Σ̃−
1
2) as the vector, and then

to determine Lt := chol(I+K◦ (ttT)), V := Lt\(K? t), and
A = K −VTV. The log determinant of A’s inverse follows
from a similar identity,

log |A−1| = log |K−1 + TT|
= log |I|+ log |K−1|+ log |I + TKT| ,

which will re-use the Cholesky decomposition of I + TKT to
give

log |A−1| = −2 ∗
N∑
n=1

logLK
nn + 2

N∑
n=1

logLt
nn .

The same set of steps can be repeated to find G(x)−1 and its
determinant. As G(x) = Λ(x) + A−1, let La := chol(I + A ◦
(ssT)), with s defined as before. With V := La\(A ? s), we
obtain G(x)−1 := A−VTV and

log |G(x)| := log |A−1|+ 2

N∑
n=1

logLa
nn .

4.4. Derivatives of a probit log likelihood

The first, second, and third derivatives of the log likelihood
are required in RMHMC. All derivatives appears in the gradient
of H(x,p) with respect to x in Equation (12): the first derivate
in the gradient of L(x), the second derivative in the metric ten-
sor G(x)

.
= −∇2

xL(x), and the third derivative in the gradient
of the metric tensor ∂G(x)/∂xn.

The log likelihood for xn, on observing yn ∈ {−1,+1}, is
the log probit function

`(x) = log p(y|x) = log Φ(yx) ,

6

Algorithm 3 Metric Tensor
1: function riemann-metric
2: input: x, y, K, LK, log |K|, µ, Σ̃, LΣ, log |Σ|, β
3: {L, ∂L∂x } := derivatives(x,y,LK, log |K|,µ,LΣ, log |Σ|, β)

4: // compute the non-zero (diagonal) entries of ∂G(x)
∂xn

as a vector dg:
5: z := y ◦ x
6: r := − 1

2z2 − 1
2 log(2π)− log Φ(z) // r is the log ratio of N (yx)/Φ(yx), and z2 .

= z ◦ z, i.e. element-wise square
7: λ := z ◦ exp{r}+ exp{2r} // exp{r} .

= vec[exp{rn}], i.e. applied element-wise
8: λ := βλ
9: dg := y ◦ (1− x2) ◦ exp{r} − 3x ◦ exp{2r} − 2y ◦ exp{3r}

10: dg := β(dg)
11: // compute the inverse G(x)−1 and its determinant:
12: s :=

√
λ // element-wise root

13: if Σ = K (i.e. Σ̃ = 0) and µ = 0 then
14: L := chol(I + K ◦ (ssT)) // slower is S := diag(s) and then L := chol(I + SKS)
15: V = L\(K ? s) // slower is V = L\(SK)
16: // ? indicates the row-wise product between K and s, multiplying s1 with the first row of K, s2 with K’s second row, etc.
17: G−1 := K−VTV;
18: log |G| := −2

∑N
n=1 logLK

nn + 2
∑N
n=1 logLnn

19: else
20: t :=

√
1− β diag(Σ̃−

1
2)

21: L := chol(I + K ◦ (ttT)) // slower is T := diag(t) and then L := chol(I + TKT)
22: V := L\(K ? t) // slower is V = L\(TK)

23: A = K−VTV // using A−1 = K−1 + (1− β)Σ̃−1

24: log |A−1| = −2 ∗
∑N
n=1 logLK

nn + 2
∑N
n=1 logLnn

25: L := chol(I + A ◦ (ssT)) // slower is S := diag(s) and then L := chol(I + SAS)
26: V := L\(A ? s) // slower is V = L\(SA)
27: G−1 := A−VTV // using G = Λ + A−1

28: log |G| := log |A−1|+ 2
∑N
n=1 logLnn

29: end if
30: return {L, ∂L∂x ,G

−1, log |G|,dg}

where subscripts n are dropped for brevity. Let N (yx)
.
=

N (yx; 0, 1) denote a centred unit-variance Gaussian. Then the
first derivative

∇x`(x) =
N (yx)

Φ(yx)

is given in Line 9 in the derivatives function in Algorithm 4.
Taking the derivative again (and multiplying by −1), the di-

agonal values of Λ(x) are

Λnn = β

[
yx
N (yx)

Φ(yx)
+

(
N (yx)

Φ(yx)

)2
]
,

and are computed as a vector λ in Line 8 in the riemann-metric
function in Algorithm 3.

In the derivative of the metric tensor ∂G(x)/∂xn, the log
likelihood contributes

∂Λnn
∂xn

= β

[
y(1− x2)

N (yx)

Φ(yx)
− 3x

(
N (yx)

Φ(yx)

)2

−2y

(
N (yx)

Φ(yx)

)3
]
,

and is computed as a vector dg in Line 10 in the riemann-
metric function.

5. Results

The results presented here are form a baseline for the Adap-
tive Resample-Move algorithm in [5]. The evaluation is on
the USPS 3-vs.-5 data set [6], using a covariance function
Kmn = k(ξm, ξn) = σ2 exp(− 1

2‖ξm − ξn‖2/`2) that cor-
relates inputs ξm and ξn through a length scale ` = exp(4.85)
and amplitude parameter σ = exp(5.1).3

We ran Annealed Importance Sampling (AIS) [7] using dif-
ferent versions of Hamiltonian Monte Carlo (HMC) meth-
ods for the transition kernel. Such a highly correlated high-
dimensional prior highlights some deficiencies in a basic HMC
method, where mixing can be slow due to a sample’s leapfrog
trajectory oscillating up and down the sides of a valley of
log{p(y|x)βprior(x)}, without actually progressing through it.
To further aid AIS with different HMC methods, we addition-
ally let AIS anneal from a Gaussian approximation q(x) to the
GPC posterior, instead of the prior. The approximation q(x)
was obtained with Expectation Propagation (EP).

Figure 2 compares the estimates of logZ obtained with AIS
to the required computation time. The details of the methods
are:

3On [6]’s entire (log `, log σ)-grid, this setting proved to be the hardest.

7

Algorithm 4 Derivatives of Lβ(x) in Equation (4)
1: function derivatives
2: input: x, y, LK, log |K|, µ, LΣ, log |Σ|, β
3: // compute the value of the log likelihood for the probit classification model and its derivative with respect to x
4: z := y ◦ x
5: L :=

∑N
n=1 log Φ(zn)

6: I := indexes(zn > −15) // normal regime; ¬I indexes asymptotic regime for numeric stability
7: ∂L

∂x (I) := (2π)−1/2 exp{− 1
2z2
I}/Φ(zI) // normal regime; element-wise division

8: ∂L
∂x (¬I) := −z¬I − 1/z¬I + 2/z3

¬I // asymptotic regime; element-wise division
9: ∂L

∂x := y ◦ ∂L∂x
10: // add the derivatives with respect to the log prior
11: f = LK\x
12: if LΣ = LK and µ = 0 then
13: L := βL− N

2 log(2π)− 1
2 log |K| − 1

2 fT f // equation (4)
14: ∂L

∂x := β ∂L∂x − ((LK)T \f)
15: else
16: f ′ := LΣ\(x− µ)

17: L := βL− N
2 log(2π)− β(1

2 log |K|+ 1
2 fT f)− (1− β)(1

2 log |Σ|+ 1
2 f ′

T
f ′) // equation (4)

18: ∂L
∂x := β ∂L∂x + β((LK)T \f)− (1− β)((LΣ)T \f ′)

19: end if
20: return {L, ∂L∂x }

10
2

10
3

10
4

compute time (seconds)

-110

-109

-108

-107

-106

-105

-104

-103

-102

-101

lo
g

 Z

d

f

b
c e

a g

EP + 2
nd

 order correction
EP
d) AIS-RMHMC, B = 1200
f) AIS-RMHMC, B = 2000
a) AISq-RMHMC, B = 12
b) AISq-RMHMC, B = 120
c) AISq-RMHMC, B = 240
e) AISq-RMHMC, B = 540
g) AISq-HMC, B = 400

Figure 2: An extensive time-based comparison for GPC on the USPS 3-vs.-5 data set, using a highly correlated prior. From left to right, the evaluations are for (a)
AISq-RMHMC using B = 12; (b) AISq-RMHMC using B = 120; (c) AISq-RMHMC using B = 240; (d) AIS-RMHMC using B = 1200; (e) AISq-RMHMC
using B = 540; (f) AIS-RMHMC using B = 2000; (g) AISq-HMC using B = 400. The dotted line indicates EP’s approximation, and the solid line a second
order correction to the EP solution. A label that is starred indicates that an AIS method was aided by annealing from EP’s q(x) to p(x|y), and not from the prior,
as is more commonly done.

AISq+HMC in (g) runs AIS from the EP’s q(x) at β = 0 to
p(x|y) at β = 1 using intermediate distributions

pβ(x) =
1

Z(β)

(∏
n

Φ(ynxn) · N (x; 0,K)

) β

q(x)1−β .

(18)
Note that a starred label indicates that the estimates were

aided by q(x). A HMC transition kernel with lmax = 200
leapfrog steps is used at each β ∈ [0, 1] value. AIS’s β-
grid is a geometric progression over B = 400 β-values.
Plot (g) used a step size ε = 0.02 per proposal; both lmax

and ε were carefully tuned to the problem. The simplest
AIS-HMC version, which anneals from p(x) and not q(x),
didn’t obtain estimates inside the bounds of Figure 2, and

8

is excluded.

AIS+RMHMC in (j) and (l) anneals from p(x), and replaces
HMC with a more advanced RMHMC that uses ε = 0.1
and lmax = 10 leapfrog steps per proposal at each β value.

AISq+RMHMC in (c*), (f*), (g*) and (k*) anneals from q(x)
using a RMHMC kernel (ε = 0.1, lmax = 10).

It is known that the EP estimate of logZ is remarkably ac-
curate for this problem [6], hence EP’s logZ estimate and its a
second-order corrected estimate [9] are given for reference.

References

[1] M. Girolami, B. Calderhead, Riemann manifold Langevin and Hamilto-
nian Monte Carlo methods, Journal of the Royal Statistical Society, Series
B 73 (2) (2011) 123–214.

[2] M. Girolami, B. Calderhead, S. A. Chin, Riemannian manifold Hamilto-
nian Monte Carlo, arXiv:0907.1100 (2009).

[3] R. M. Neal, MCMC using Hamiltonian dynamics, Handbook of Markov
Chain Monte Carlo 54 (2010) 113–162.

[4] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine
Learning, MIT Press, 2006.

[5] M. Fraccaro, U. Paquet, O. Winther, An adaptive resample-move algo-
rithm for estimating normalizing constants (2016).

[6] M. Kuss, C. E. Rasmussen, Assessing approximate inference for binary
Gaussian process classification, Journal of Machine Learning Research 6
(2005) 1679–1704.

[7] R. M. Neal, Annealed importance sampling, Statistics and Computing
11 (2) (2001) 125–139.

[8] F. Hamze, N. de Freitas, Hot coupling: A particle approach to inference
and normalization on pairwise undirected graphs of arbitrary topology, in:
Advances in Neural Information Processing Systems 18, 2005.

[9] M. Opper, U. Paquet, O. Winther, Perturbative corrections for approxi-
mate inference in Gaussian latent variable models, Journal of Machine
Learning Research 14 (Sep) (2013) 2857–2898.

[10] M. D. Hoffman, A. Gelman, The No-U-Turn sampler: Adaptively setting
path lengths in Hamiltonian Monte Carlo, Journal of Machine Learning
Research 15 (Apr) (2014) 1593–1623.

9

