
Training Support Vector Machines

with Particle Swarms

deur

Ulrich Paquet

Vo orgel^e as 'n deel van die vereistes vir die graad

Magister Scientiae

in die Fakulteit Ingenieurswese, Bouomgewing, en Inligtingstegnologie

Universiteit van Pretoria

Novemb er 2003

Die �nansi•ele ondersteuning van die National Research Foundation (NRF) tot hierdie na-

vorsing word hierdeur erken. Opinies en gevolgtrekkings in hierdie verhandeling is di�e van

die outeur, en kan nie no o dwendig aan die NRF to egeskryf word nie.

Training Supp ort Vector Machines

with Particle Swarms

by

Ulrich Paquet

Submitted in partial ful�lment of the requirements for the degree

Magister Scientiae

in the Faculty of Engineering, Built Environment and Information Technology

University of Pretoria

Novemb er 2003

The �nancial assistance of the National Research Foundation (NRF) towards this research is

hereby acknowledged. Opinions expressed in this thesis and conclusions arrived at, are those

of the author and not necessarily to b e attributed to the National Research Foundation.

Training Support Vetor Mahines with Partile Swarms

deur

Ulrich Paquet

Opsomming

Deelswerms kan met gemak gebruik word om 'n funksie, wat b ep erk word deur 'n stel line^ere

b ep erkings, te optimeer. 'n \Line^ere Deelswermoptimeerder" en 'n \Konvergente Line^ere

Deelswermoptimeerder" word ontwikkel om sulke b ep erkte funksies te optimeer. As die

hele swerm aanvanklik slegs uit geldige oplossings b estaan, dan kan die swerm die b ep erkte

funksie optimeer sonder om o oit weer die stel b ep erkings te o orweeg. Om 'n Ondersteu-

ningsvektormasjien te leer mo et 'n b ep erkte kwadratiese programmeringsprobleem opgelos

word, en die Konvergente Line^ere Deelswermoptimeerder voldo en aan die b eho eftes van 'n

optimeringsmeto de vir Ondersteuningsvektormasjiene. Deelswerms is intu•�tief en maklik om

te implementeer, en word aangebied as 'n alternatief tot huidige meto des om Ondersteu-

ningsvektormasjiene te leer.

Studieleier: Prof. A.P. Engelbrecht

Departement Rekenaarwetenskap

Degree: Magister Scientiae

Training Support Vetor Mahines with Partile Swarms

by

Ulrich Paquet

Abstrat

Particle swarms can easily b e used to optimise a function with a set of linear equality

constraints, and a \Linear Particle Swarm Optimiser" and \Converging Linear Particle

Swarm Optimiser" is develop ed to optimise such constrained functions. It is shown that if

the entire swarm of particles is initialised to consist of only feasible solutions, then the swarm

can optimise the constrained ob jective function without ever again considering the set of

constraints. Training a Supp ort Vector Machine requires solving a constrained quadratic

programming problem, and the Converging Linear Particle Swarm Optimiser ideally �ts the

needs of an optimisation metho d for Supp ort Vector Machine training. Particle swarms

are intuitive and easy to implement, and is presented as an alternative to current numeric

Supp ort Vector Machine training metho ds.

Sup ervisor: Prof. A.P. Engelbrecht

Department of Computer Science

Degree: Magister Scientiae

Prefae

The question that originally spurred the research in this thesis was - \can a Particle Swarm

Optimiser b e used to train a Supp ort Vector Machine, and to what extent will it b e suc-

cessful?"

Training a Supp ort Vector Machine (SVM) involves solving a quadratic programming

problem, with a single linear constraint, and a set of non-negativity constraints. At �rst

this problem seemed trivial - the ob jective function that needs to b e minimised is convex,

and the Particle Swarm Optimiser (PSO) will not b e trapp ed in any lo cal minima.

The di�culty in the problem arose with developing a metho d to handle the linear con-

straint. This has led to the development of the Linear (and Converging Linear) PSO algo-

rithms (LPSO and CLPSO), which b oth have unique prop erties needed not only for handling

the single linear constraint, but any set of (feasible) linear constraints. The non-negativity

constraints have led to the extension of b oth new Particle Swarm algorithms to include

cases when constraints app ear as b oxed constraints. With the addition of slack variables to

an optimisation problem with linear constraints, it b ecomes p ossible to solve any of these

problems.

The main contributions made by this thesis are therefore:

1. An algorithm for SVM training, which is based on analysis of a metho d for decomp os-

ing the SVM quadratic programming problem.

2. The development of LPSO for general optimisation problems, and a pro of of a condition

on the initial swarm guaranteeing that any p oint in the search space can b e reached.

3. A pro of that LPSO is ideally suited for linearly constrained optimisation, with a pre-

condition needed for LPSO to always satisfy linear equality constraints.

4. The extension of LPSO to CLPSO to preclude premature convergence, and a pro of

that CLPSO will at least converge to a lo cal minimum.

5. The addition of a metho d to LPSO and CLPSO needed for inequality constraint han-

dling, and the implementation of CLPSO with inequality constraints as an optimiser

in SVM training.

v

vi

In a sense this thesis has delivered more than its original aim. The new PSO algorithms

will probably b e of greater imp ortance to further milestones in the Swarm Intelligence com-

munity, than its application in SVM training.

Chapter 1 puts SVMs under the magnifying glass, and sets the main optimisation prob-

lem (a quadratic programming problem) that forms the backb one of this thesis. SVM train-

ing has unique problems of its own, primarily b ecause the training problem shows quadratic

growth as the training set size increases. Metho ds for SVM training are discussed in Chapter

2 , and a training algorithm, based on standard metho ds of decomp osing the main optimisa-

tion problem into subproblems, are used to construct a correct training algorithm. Chapter

3 intro duces PSO as an optimisation algorithm, and discusses some of the recent advance-

ments to the PSO metho d itself. The PSO is extended to handle constrained problems in

Chapter 4 , and LPSO and CLPSO are develop ed. This extension includes a rigorous analy-

sis of the newly develop ed algorithms. The successes and failures of LPSO and CLPSO are

empirically shown in Chapter 5 . It is also shown how the CLPSO can b e used to train SVMs

from a very large character recognition dataset. Finally, Chapter 6 provides an overview,

and gives some thoughts for further research.

Many p eople have contributed to the successful completion of this thesis. Foremost, I

am greatly indebted to professor Andries Engelbrecht for intro ducing me to the world of

arti�cial intelligence, and for his patient guidance throughout my research.

Ulrich Paquet

Pretoria, South Africa

June 2003

Commit thy works unto the LORD, and thy thoughts shal l be established. Proverbs 16:3

Contents

Prefae v

1 Support Vetor Mahines 1

1.1 Intro duction to Supp ort Vector Machines . 1

1.2 Pattern recognition . 3

1.3 Linear Supp ort Vector Machines . 3

1.4 Soft margin hyp erplanes . 7

1.5 Non-linear Supp ort Vector Machines . 8

1.6 Concluding . 13

2 Support Vetor Mahine Training Methods 15

2.1 Intro duction to Supp ort Vector Machine training metho ds 15

2.1.1 Chunking . 16

2.1.2 Decomp osition . 17

2.1.3 Sequential Minimal Optimisation . 18

2.2 Conditions for optimality . 18

2.3 A decomp osition metho d . 21

2.3.1 Optimality of the working set . 22

2.3.2 Selecting the working set . 23

2.3.3 Shortcuts and optimisations to the decomp osition algorithm 27

2.4 The training algorithm . 29

3 Partile Swarm Optimisation 31

3.1 Intro duction to unconstrained optimisation 31

3.2 Intro duction to Particle Swarm Optimisation 32

3.2.1 Global b est (gbest) . 34

3.2.2 Lo cal b est (lbest) . 34

3.2.3 The PSO algorithm . 35

3.2.4 Improvements . 36

vii

CONTENTS viii

3.3 Concluding . 38

4 Constrained Partile Swarm Optimisation 39

4.1 Intro duction to constrained optimisation . 39

4.1.1 Terminology . 39

4.1.2 Expressing problems in the standard form 41

4.1.3 Slack variables . 42

4.1.4 Convex optimisation . 42

4.1.5 Duality . 43

4.1.6 Equality-constrained optimisation . 44

4.2 Linear Particle Swarm Optimisation . 44

4.2.1 Criteria on the initial swarm . 46

4.3 Equality-constrained optimisation . 48

4.3.1 Current metho ds . 48

4.3.2 PSO for equality-constrained optimisation 50

4.3.3 Overcoming premature convergence 54

4.3.4 Pro of of convergence for CLPSO . 56

4.4 Inequality-constrained optimisation . 59

4.5 Concluding . 62

5 Experimental results 63

5.1 Linear Particle Swarm Optimiser . 63

5.1.1 Exp erimental results . 63

5.1.2 LPSO and CLPSO Convergence characteristics 79

5.2 Supp ort Vector Machine Training . 79

5.2.1 Implementing the SVM training algorithm 79

5.2.2 Practical concerns and improvements 80

5.2.3 Exp erimental results . 82

5.3 Concluding . 86

6 Conlusion and Future Work 87

Publiations derived from this thesis 89

Bibliography 90

List of Figures

1.1 An example of a classi�cation problem in two dimensions, with the supp ort

vectors encircled. 4

1.2 Constructing an optimal hyp erplane . 5

1.3 An example of a linear separating hyp erplane for the non-separable case. . . . 7

1.4 An example of two-dimensional classi�cation. The three-dimensional feature

space is de�ned by monomials x

2

1

,

p

2 x

1

x

2

, and x

2

2

, where a linear decision sur-

face is constructed. This construction corresp onds to a non-linear ellipsoidal

decision b oundary in R

2

. 9

1.5 Architecture of a Supp ort Vector Machine: The input vector x and the sup-

p ort vectors x

i

(in this example optical digits) are non-linearly mapp ed (by

�) into a feature space F , where dot pro ducts b etween their mapp ed rep-

resentations are computed. By the use of the kernel k , these two steps are

in practice combined. The results are linearly combined by weights �

i

found

by solving a quadratic program. The linear combination is then fed into a

decision function f , which determines the classi�cation of x. 12

1.6 Classifying with di�erent kernel functions. The supp ort vectors, with nonzero

�

i

, are shown with a double outline, and de�ne the decision b oundaries b e-

tween the two classes. 13

2.1 Selecting a working set of size four. 25

4.1 Comparing the p ossible search spaces resulting from di�erent initial swarms

in LPSO, with v

(0)

i

= 0. 46

4.2 Progressive reduction of the feasible domain. 49

4.3 Minimising f under a linear equality constraint. 51

4.4 Particles b ecoming a linear combination of each other. 62

5.1 Results of 100 Genocop II simulations on the constrained parab ola f

1

de�ned

in equation (5.2). 65

ix

LIST OF FIGURES x

5.2 Results of 100 simulations of LPSO on the constrained parab ola f

1

de�ned

in equation (5.2). 66

5.3 Results of 100 simulations of CLPSO on the constrained parab ola f

1

de�ned

in equation (5.2). 68

5.4 Results of 100 Genocop II simulations on the constrained quadratic function

f

2

de�ned in equation (5.3). 70

5.5 Results of 100 simulations of LPSO on the constrained quadratic function f

2

de�ned in equation (5.3). 72

5.6 Results of 100 simulations of CLPSO on the constrained quadratic function

f

2

de�ned in equation (5.3). 73

5.7 Results of 100 Genocop II simulations on the constrained Rosenbro ck function

f

3

de�ned in equation (5.4). 75

5.8 Results of 100 simulations of LPSO on the constrained Rosenbro ck function

f

3

de�ned in equation (5.4). 76

5.9 Results of 100 simulations of CLPSO on the constrained Rosenbro ck function

f

3

de�ned in equation (5.4). 77

5.10 A few examples from the MNIST dataset. 83

List of Tables

5.1 Results of 100 Genocop II simulations on the constrained parab ola f

1

de�ned

in equation (5.2), after 250 generations. (`chromosomes' is abbreviated as

chrms.) . 65

5.2 Results of 100 LPSO and CLPSO simulations on the constrained parab ola f

1

de�ned in equation (5.2), after 250 iterations. 69

5.3 Results of 100 Genocop II simulations on the constrained quadratic func-

tion f

2

de�ned in equation (5.3), after 1000 generations. (`chromosomes' is

abbreviated as chrms.) . 71

5.4 Results of 100 LPSO and CLPSO simulations on the constrained quadratic

function f

2

de�ned in equation (5.3), after 1000 iterations. 74

5.5 Results of 100 Genocop II simulations on the constrained Rosenbro ck func-

tion f

3

de�ned in equation (5.4), after 2000 generations. (`chromosomes' is

abbreviated as chrms.) . 76

5.6 Results of 100 LPSO and CLPSO simulations on the constrained Rosenbro ck

function f

3

de�ned in equation (5.4), after 2000 timesteps. 78

5.7 Inuence of di�erent working set sizes on the �rst 20,000 elements of the

MNIST dataset . 84

5.8 Scalability: training on the MNIST dataset 85

xi

Chapter 1

Support Vetor Mahines

This chapter discusses the development and basic theoretic building blocks of Support Vector

Machines. An overview of both linear and non-linear Support Vector Machines is given

from the viewpoint of pattern recognition. Kernel methods are introduced, and the chapter

concludes with the Support Vector Machine training problem that wil l play a key role in the

chapters to fol low.

1.1 Intro duction to Supp ort Vector Machines

Supp ort Vector Machines (SVMs) are a young and imp ortant addition to the machine learn-

ing to olb ox. Having b een formally intro duced at the 1992 Workshop on Computational

Learning Theory [6], SVMs have proved their worth. In the following decade there has

b een a remarkable growth in b oth the theory and practice of these learning machines. The

original treatments of Supp ort Vector Machines (SVMs) are due to [6, 13, 21, 56, 58].

Traditionally, a SVM is a learning machine for two-class classi�cation problems, and

learns from a set of examples. The algorithm aims to do a separation b etween the two

classes by creating a linear decision surface b etween them. This surface is, however, not

created in input space, but rather in a very high-dimensional feature space. Because the

feature space is non-linearly related to the input space, the resulting mo del is non-linear.

Sp ecial prop erties of the decision surface ensures high generalisation abilities of SVMs.

Although the Supp ort Vector (SV) algorithm app ears to b e a linear algorithm in a high-

dimensional space, no computations are done in that high-dimensional space. All computa-

tions are p erformed directly in input space by making use of kernel functions. Due to the

use of Kernel Metho ds (KMs), a seemingly complex algorithm for non-linear pattern recog-

nition or regression can b e implemented and analysed as a simple linear algorithm. KMs are

very mo dular. Any kernel function can b e used with any kernel-based learning algorithm,

1

Chapter 1. Support Vector Machines 2

and any kernel-based learning algorithm can work with any kernel function. By combining

simple kernels to complex ones, the kernel functions themselves can also b e derived in a

mo dular way.

The SV algorithm makes use of \supp ort vectors" to de�ne the decision surface. Supp ort

vectors are a subset of the training patterns, or training vectors. These patterns can b e

called the most informative, and it is this subset of informative patterns that de�ne the

architecture of a SVM. If all non-supp ort vector training patterns (the \uninformative"

patterns) are removed, and the SVM retrained, the solution will b e exactly the same.

SVMs are p opular due to two main reasons. Firstly, an imp ortant characteristic of SVMs

is its mathematical tractability and geometric interpretation. The SV algorithm is based on

very theoretical and intuitive ideas. Secondly, SVMs have shown to b e accurate in practical

applications, with successes in �elds as diverse as text categorisation, bioinformatics and

machine vision.

The algorithm holds learning theory in one hand, and practice in the other. Statistical

learning theory can b e used to identify factors needed for certain algorithms to learn suc-

cessfully. Complex mo dels and algorithms { such as neural networks { are often needed for

practical real-world applications. These mo dels are, however, hard to analyse theoretically.

SVMs construct mo dels that are complex enough, with the advantage that the mo dels are

relatively simple to analyse mathematically. These mo dels include a large class of neural

networks, radial basis function (RBF) networks, and sp ecial cases of p olynomial classi�ers.

SVMs have b ecome an increasingly p opular alternative to neural networks. In compar-

ison to neural networks, SVMs have only a small numb er of tuneable parameters. The SV

algorithm also de�nes the architecture of the learning machine. The SVM training pro cess

is characterised by solving a convex quadratic programming problem. The solutions to the

training problem are global, and usually unique [9]. A great b ene�t of SVM training is the

absence of lo cal minima (or maxima), and the learning parameters converge monotonically

toward the solution.

Applications and theory of SVMs have b een extended far b eyond basic classi�cation

tasks to handle pattern recognition, regression, op erator inversion, density estimation, and

novelty detection. For pattern recognition, SVMs have b een successfully applied in the

areas of isolated handwritten digit recognition [8, 13, 44, 45], sp eaker identi�cation [42],

text categorisation [23], face detection in images [39] and ob ject recognition [4]. In the case

of regression estimation problems, SVMs have b een compared to b enchmark time series

prediction tests [34, 36]. SVMs have also b een used for density estimation [59] and ANOVA

decomp osition [51].

Although the SV algorithm is �rmly ro oted in statistical learning theory, learning theory

is not included in this work. An excellent explanation can b e found in [56, 57]. This chapter

Chapter 1. Support Vector Machines 3

fo cuses on the creation of SVMs: The basic idea b ehind pattern recognition is explained,

which is used in constructing an optimal hyp erplane and linear SVMs for linearly separable

data. The linear SVM is then adapted to handle nonseparable classi�cation problems.

Finally, SVMs are extended to non-linear classi�cation mo dels by the use of kernel functions.

1.2 Pattern recognition

By observing their environment, machines can learn to distinguish interesting patterns.

These patterns can b e any entity that can b e given a name, for example a handwritten

character or word, a �ngerprint, a face, or a sp eech signal. After learning, the machine

should b e able to make intelligent decisions ab out the categories of similar patterns { this

pro cess is called pattern recognition.

Pattern recognition algorithms can b e divided into two principal groups. Identifying a

pattern as a memb er of a prede�ned class is called supervised learning and classi�cation.

If the algorithm learns classes of patterns based on a measure of similarity, the pro cess is

called unsupervised learning, or clustering. Unsup ervised classi�cation assigns a pattern to

one of these determined classes. A SVM is an example of sup ervised classi�cation, learning

from example patterns with class lab els.

For a given pattern recognition problem, the ob jective is to estimate a function f :

R

N

! f� 1 g using a �nite set of training data. The training data set consists of a total of l

N -dimensional patterns x

i

and their resp ective class lab els y

i

, i.e.

f x

1

; y

1

g ; : : : ; f x

l

; y

l

g 2 R

N

� f� 1 g (1.1)

If a new pattern f x; y g is generated from the same underlying probability density function

P (x; y) as the training data, then f should correctly classify this example { that is, f (x) = y .

1.3 Linear Supp ort Vector Machines

When training data is linearly separable, a separating hyp erplane (a hyp erplane that sepa-

rates the p ositive from the negative examples) of the form

w � x + b = 0 (1.2)

can b e �tted to correctly classify training patterns. Here the vector w is normal to the

hyp erplane, and de�nes its orientation. This hyp erplane is shown in Figure 1.1. From

equation (1.2), a decision function

f (x) = sign(w � x + b) : (1.3)

Chapter 1. Support Vector Machines 4

{ | + = -1 }x w x b.

{ | + = 0 }x w x b.

{ | + = +1 }x w x b.

y = +1i

y = -1i

x1

x2

Figure 1.1: An example of a classi�cation problem in two dimensions, with the supp ort vectors

encircled.

can b e derived, with f classifying b oth p ositive (y

i

= +1) and negative (y

i

= � 1) patterns.

Let d

+

(d

�

) b e the shortest distance from the separating hyp erplane to the closest

p ositive (negative) example, then the margin of the hyp erplane is de�ned as the sum d

+

+ d

�

.

An optimal hyp erplane for a linearly sep erable set of training data is here de�ned as the

linear decision function with maximal margin b etween the vectors of the two classes, as is

shown in Figures 1.2(a) and 1.2(b). The supp ort vector algorithm will construct this optimal

separating hyp erplane.

It was shown in [55] that the optimal hyp erplane will have go o d generalisation abilities,

and only a relatively small amount of training data is needed to construct this plane. The set

of margin-determining training vectors are called the support vectors . It was also shown that

if the training vectors are separated without errors by an optimal hyp erplane, the exp ected

value of the probability of committing an error on a test example is b ounded by the ratio

b etween the exp ected numb er of supp ort vectors and the numb er of training vectors:

E [P (error)] �

E [numb er of supp ort vectors]

numb er of training vectors

(1.4)

The b ound given in equation (1.4) do es not explicitly contain the dimensionality of the space

of separation. If the optimal hyp erplane can thus b e constructed from a small numb er of

supp ort vectors relative to the training set size, the generalisation ability will b e high, even

in an in�nite-dimensional space.

Assume all training data satisfy

w � x

i

+ b � +1 for y

i

= +1

w � x

i

+ b � � 1 for y

i

= � 1 (1.5)

Chapter 1. Support Vector Machines 5

d+

d-

(a) Classi�ation with a

large margin

d-
d+

(b) Classi�ation

with a small margin

Figure 1.2: Constructing an optimal hyp erplane

as shown in Figure 1.1. This can b e combined into a single set of equalities:

y

i

(w � x

i

+ b) � 1 � 0 i = 1 ; : : : ; l (1.6)

where l is the training set size.

To �nd the optimal separating hyp erplane, it is necessary to maximise the margin d

+

+ d

�

.

Supp ose x

1

and x

2

with y

1

= +1 and y

2

= � 1 are p ositive and negative p oints closest to

the hyp erplane. For maximal separation, the hyp erplane should b e as far away as p ossible

from each of them. By letting jj � jj b e the l

2

norm of a vector, get

w � x

1

+ b = +1

w � x

2

+ b = � 1

) w � (x

1

� x

2

) = +2

)

w

jj w jj

� (x

1

� x

2

) =

2

jj w jj

Maximising the margin is equivalent to maximising

2

jj w jj

, which is in turn the same as solving

min

w ;b

1

2

jj w jj

2

(1.7)

sub ject to the constraints in (1.6). Constructing the optimal hyp erplane is therefore a convex

quadratic problem.

A standard optimisation technique, Lagrange multipliers [19], is used in constructing

this optimal hyp erplane. There are two main reasons for doing this. The �rst is that the

constraints in (1.6) will b e replaced by constraints on the Lagrange multipliers themselves,

which will b e much easier to handle. The second reason is that, in the Lagrangian refor-

mulation, the training data will only app ear as dot pro ducts b etween vectors. This is the

Chapter 1. Support Vector Machines 6

crucial prop erty that allows generalisation to the non-linear case. The Lagrange multipliers,

�

i

� 0, are intro duced for each of the constraints in (1.6) to get the following Lagrangian:

L(w; b;�) =

1

2

jj w jj

2

�

l

X

i =1

�

i

(y

i

(w � x

i

+ b) � 1) (1.8)

The ob jective is to minimise (1.8) with resp ect to w and b, under the requirement that

the derivatives of the Lagrangian with resp ect to all the �

i

vanish. This must b e sub ject to

the constraint that the Lagrange multipliers �

i

remain non-negative.

Since all the constraints are linear and thus convex, their intersection is also convex. Be-

cause the ob jective function is also convex, the problem is a convex quadratic programming

problem. Thus it is p ossible to equivalently solve the dual optimisation problem of maximis-

ing (1.8), such that the gradient of L with resp ect to w and b vanishes, and requiring that

�

i

� 0. That is,

�

�b

L(w; b;�) = 0 ;

�

�w

L(w; b;�) = 0 (1.9)

and thus

l

X

i =1

y

i

�

i

= 0 ; w =

l

X

i =1

�

i

y

i

x

i

(1.10)

By substituting (1.10) into (1.8), the dual form of the optimisation problem is derived.

Determine

max

�

W (�) =

l

X

i =1

�

i

�

1

2

l

X

i =1

l

X

j =1

�

i

�

j

y

i

y

j

x

i

� x

j

(1.11)

sub ject to

�

i

� 0 ; i = 1 ; : : : ; l and

l

X

i =1

�

i

y

i

= 0 (1.12)

Thus, by solving the dual optimisation problem, the co e�cients �

i

are obtained. These

co e�cients are then used to calculate w from equation (1.10). The vector w will b e a

solution to problem (1.7). The decision function from equation (1.3) can b e rewritten as

f (x) = sign

�

l

X

i =1

y

i

�

i

x � x

i

+ b

�

(1.13)

The decision surface of (1.13) is determined by the l Lagrange multipliers �

i

. These

multipliers are either zero or p ositive. The subset of zero multipliers will have no e�ect

on the decision function, and can b e omitted. It is the subset of p ositive multipliers that

Chapter 1. Support Vector Machines 7

-b
w

-î
w

w

Figure 1.3: An example of a linear separating hyp erplane for the non-separable case.

inuences the classi�cation, and their corresp onding training vectors are called the support

vectors .

The ideas presented in this section only handle separable data. Real data are usually

non-separable data, and some examples might violate (1.6). In the following section, SVMs

are extended to handle misclassi�cations.

1.4 Soft margin hyp erplanes

In many cases it is imp ossible to separate the training data without errors, as illustrated in

Figure 1.3. If separation by a hyp erplane is imp ossible, the margin b etween patterns of the

two classes b ecomes arbitrarily small, and the constrained dual Lagrangian (1.11) will grow

arbitrarily large.

In this case the separation of the training set can b e done with a minimal numb er of

errors (misclassi�cations), by relaxing the constraints given in (1.6). Here the notion of

\soft margin classi�ers" are intro duced. Add l nonnegative slack variables �

i

to relax the

hard-margin constraints:

y

i

(w � x

i

+ b) � 1 � �

i

; �

i

� 0 ; i = 1 ; : : : ; l (1.14)

Thus for an error to o ccur, the value of �

i

must exceed one. It is clear that

P

i

�

i

is an upp er

b ound on the numb er of training errors. The natural way to assign an extra cost for errors

is to change to ob jective function to b e minimised from (1.7), to solving

min

w ;b;�

1

2

jj w jj

2

+ C

l

X

i =1

�

i

(1.15)

Chapter 1. Support Vector Machines 8

Here C > 0 is an arbitrarily chosen { and problem dep endent { parameter. A larger

value of C assigns a greater p enalty to errors, since it constrains

P

i

�

i

to a smaller value.

A smaller C allows

P

i

�

i

to b e larger. The functional in (1.15) describ es (for su�ciently

large C) the problem of constructing a separating hyp erplane which minimises the sum of

deviations, � , of training errors and maximises the margin for the correctly classi�ed vectors

[13].

The problem in (1.15) is also a convex quadratic programming problem. Since the values

of �

i

do not app ear in the dual Lagrangian, (1.11) must again b e maximised sub ject to

0 � �

i

� C; i = 1 ; : : : ; l and

l

X

i =1

�

i

y

i

= 0 (1.16)

A crucial prop erty of the quadratic programming problem in (1.11, 1.12) and the decision

function f (x) = sign(

P

i

y

i

�

i

x � x

i

+ b) is that they dep end only on dot pro ducts b etween

patterns. It is this prop erty that allows generalisation to the non-linear case.

1.5 Non-linear Supp ort Vector Machines

A set of linear classi�ers, as presented in the metho d ab ove, is often not rich enough for

more diverse classi�cation problems. What is needed is a metho d that handles non-linear

classi�cation equally well. Linear SVMs can very easily b e generalised to include these

non-linear decision functions: Boser et al [6] showed that the so-called kernel trick [1] can

accomplish this generalisation. Notice that the training patterns only app ear in the form of

dot pro ducts x

i

� x

j

in equations (1.11, 1.13). A non-linear transformation can b e done on

the set of input vectors to a higher dimensional space (where the dot pro duct is de�ned),

and the linear separation can b e done in this higher dimensional space. The data are thus

mapp ed into some other dot pro duct space { a feature space { F via the non-linear map

� : R

N

! F (1.17)

The only requirement on F is that it is equipp ed with the dot pro duct op erator. No

assumptions are made on the dimensionality of F ; it can p ossibly b e an in�nite-dimensional

space. For a given training data set, the SVM is now constructed in F instead of R

N

, i.e.

using the set of examples

f �(x

1

) ; y

1

g ; : : : ; f �(x

l

) ; y

l

g 2 R

N

� f� 1 g (1.18)

From this mapp ed set of examples a decision function in F has to b e estimated. In-

tuitively, the di�culty of constructing a decision function in input space should grow with

the dimension of the patterns. Statisticians call this di�culty the curse of dimensionality

Chapter 1. Support Vector Machines 9

Ö:R R
2 3

x2
2

x1
2

x2

x1

x1x22

Figure 1.4: An example of two-dimensional classi�cation. The three-dimensional feature space is

de�ned by monomials x

2

1

,

p

2 x

1

x

2

, and x

2

2

, where a linear decision surface is constructed. This

construction corresp onds to a non-linear ellipsoidal decision b oundary in R

2

.

{ a function of dimension N needs exp onentially many patterns to sample the space prop-

erly. Considering the curse of dimensionality, mapping to a higher dimensional feature space

seems like a dubious idea.

The contrary can, however, b e true. Statistical learning theory shows that learning in

F can b e simpler if functions of a lower complexity are used. It is the complexity of the

function class, not the dimensionality, that matters. The richness of a p owerful function

class is then intro duced by the mapping �.

This idea can b e understo o d by considering a simple class of decision rules, namely linear

classi�ers. Consider the toy example in Figure 1.4, where the training vectors are two-

dimensional. A complicated non-linear decision surface is needed to separate the training

examples in input space. By de�ning the mapping

� : R

2

! R

3

(x

1

; x

2

)

T

7! (x

2

1

;

p

2 x

1

x

2

; x

2

2

)

T

(1.19)

a linear hyp erplane separates the mapp ed training vectors in a three-dimensional feature

space. The feature space is de�ned by the second order monomials x

2

1

,

p

2 x

1

x

2

, and x

2

2

.

This construction corresp onds to a non-linear ellipsoidal decision b oundary [35].

In the ab ove example, b oth the statistical complexity and the algorithmic complexity

of the learning machine were controlled. The statistical complexity was controlled by us-

ing a simple linear hyp erplane classi�er. Using a three-dimensional feature space kept the

algorithmic complexity low.

A technical problem arises in real-world problems, since the algorithmic complexity can-

not b e kept low. Patterns may b e images of 16 � 16 pixels, a 256-dimensional input space.

When fourth order monomials are used as mapping �, the feature space would contain all

the fourth order pro ducts of 256 pixels, and its dimension will b e

�

4+256� 1

4

�

� 200 million.

In 1992 it was shown that the problem of treating such high-dimensional spaces could b e

Chapter 1. Support Vector Machines 10

overcome [6]. Instead of making a non-linear transformation of the input vectors followed

by dot pro ducts with supp ort vectors in the feature space F , the order of op erations is

interchanged. A comparison is �rst done b etween two vectors in input space (for example

by taking their dot pro duct or some distance measure), and then a non-linear transformation

of the value of the result is made. The comparison and transformation is done by a kernel

function .

In the toy example of Figure 1.4, the computation of a dot pro duct b etween two feature

space vectors can b e reformulated in terms of a kernel function k :

�(x

i

) � �(x

j

) =

0

B

B

�

x

2

i 1

p

2 x

i 1

x

i 2

x

2

i 2

1

C

C

A

�

0

B

B

�

x

2

j 1

p

2 x

j 1

x

j 2

x

2

j 2

1

C

C

A

= x

2

i 1

x

2

j 1

+ 2 x

i 1

x

i 2

x

j 1

x

j 2

+ x

2

i 2

x

2

j 2

=

0

�

0

�

x

i 1

x

i 2

1

A

�

0

�

x

j 1

x

j 2

1

A

1

A

2

= (x

i

� x

j

)

2

= k (x

i

;x

j

) (1.20)

Training a non-linear SVM thus requires the computation of dot pro ducts �(x

i

) � �(x

j

) in

the feature space F , and can b e reduced by de�ning a suitable kernel function, k , such that

k (x

i

;x

j

) = �(x

i

) � �(x

j

) (1.21)

The question, which function k corresp onds to a dot pro duct in some feature space F ,

arises. In other words, how can a map � b e constructed such that k computes the dot

pro duct in the space � maps to? This has b een dealt with by [6, 56], and the answer is seen

from Mercer's theorem of functional analysis [14]:

To guarantee that there exits a mapping � and an expansion

k (u;v) = �(u) � �(v) =

X

i

�(u)

i

�(v)

i

(1.22)

it is necessary and su�cient that the condition

ZZ

k (u;v) g (u) g (v) du dv � 0 (1.23)

be valid for al l g for which

Z

g

2

(u) du < 1 (1.24)

Chapter 1. Support Vector Machines 11

As an example, consider the toy example of Figure 1.4, with the kernel de�ned in equation

(1.20), and x a two-dimensional vector. To show that Mercer's condition is satis�ed for

k (x

i

;x

j

) = (x

i

� x

j

)

2

, it must b e shown that

ZZ

(x

i

� x

j

)

2

g (x

i

) g (x

j

) dx

i

dx

j

� 0 (1.25)

hold for all g with �nite L

2

norm, i.e. g must satisfy equation (1.24). Expanding and

factorising the left-hand side of the ab ove inequality gives the needed result.

ZZ

(x

2

i 1

x

2

j 1

+ 2 x

i 1

x

i 2

x

j 1

x

j 2

+ x

2

i 2

x

2

j 2

) g (x

i

) g (x

j

) dx

i

dx

j

=

Z

x

2

i 1

g (x

i

) dx

i

Z

x

2

j 1

g (x

j

) dx

j

+ 2

Z

x

i 1

x

i 2

g (x

i

) dx

i

� � �

� � �

Z

x

j 1

x

j 2

g (x

j

) dx

j

+

Z

x

2

i 2

g (x

i

) dx

i

Z

x

2

j 2

g (x

j

) dx

j

=

�

Z

x

2

i 1

g (x

i

) dx

i

�

2

+ 2

�

Z

x

i 1

x

i 2

g (x

i

) dx

i

�

2

+

�

Z

x

2

i 2

g (x

i

) dx

i

�

2

� 0 (1.26)

In many sp eci�c cases it is not as easy to check Mercer's condition, since equation (1.23)

must hold for every g with �nite L

2

norm. Mercer's condition do es give information on

whether some kernel computes a dot pro duct in some feature space, but it do es not tell

what the mapping � or the space F is.

When a kernel function do es not comply with Mercer's condition, training data may exist

that give rise to an inde�nite Hessian matrix in the dual Lagrangian (1.11). The ob jective

function can b ecome arbitrarily large, and the quadratic programming problem will have no

solution. Many training sets can still result in a p ositive semi-de�nite Hessian, and a SVM's

constrained ob jective function can b e maximised. The results, however, will not have the

usual geometric interpretation of supp ort vectors.

By de�nition of the kernel function k (x

i

;x

j

) = �(x

i

) � �(x

j

), the SVM decision function

b ecomes

f (x) = sign

�

l

X

i =1

y

i

�

i

�(x) � �(x

i

) + b

�

= sign

�

l

X

i =1

y

i

�

i

k (x;x

i

) + b

�

(1.27)

The architecture of the ab ove decision function de�nes the architecture of the SVM, as shown

in Figure 1.5. Examples of kernel functions most commonly used in pattern recognition

problems are:

k (x

i

;x

j

) = (x

i

� x

j

+ 1)

p

(1.28)

k (x

i

;x

j

) = e

�jj x

i

� x

j

jj

2

= 2�

2

(1.29)

k (x

i

;x

j

) = tanh(�x

i

� x

j

� Æ) (1.30)

Chapter 1. Support Vector Machines 12

k(,)x x 1 k(,)x x2 k(,)x x 3 k(,)x x4

Sy ka (,)x xi i ii
f() = sign(x +)b

y a1 1 y a2 2 y a3 3 y a4 4

Classification

Weights

Comparison

Support vectors ...x x

Input vector x

1 4

Figure 1.5: Architecture of a Supp ort Vector Machine: The input vector x and the supp ort vectors

x

i

(in this example optical digits) are non-linearly mapp ed (by �) into a feature space F , where dot

pro ducts b etween their mapp ed representations are computed. By the use of the kernel k , these two

steps are in practice combined. The results are linearly combined by weights �

i

found by solving a

quadratic program. The linear combination is then fed into a decision function f , which determines

the classi�cation of x .

Chapter 1. Support Vector Machines 13

(a) A Gaussian kernel

e

�jjx

i

�x

j

jj

2

.

(b) A polynomial kernel (x

i

�

x

j

+ 1)

5

.

Figure 1.6: Classifying with di�erent kernel functions. The supp ort vectors, with nonzero �

i

, are

shown with a double outline, and de�ne the decision b oundaries b etween the two classes.

Equation (1.28) results in a classi�er that is a p olynomial of degree p. Equation (1.29)

results in a Gaussian radial basis function classi�er, while (1.30) gives a particular kind of

two-layer sigmoidal neural network. Figures 1.6(a) and 1.6(b) show the decision b oundaries

arising from b oth Gaussian radial basis function and p olynomial kernels. More sophisticated

kernels, like kernels generating splines or Fourier expansions, can b e found in [43, 50, 57].

1.6 Concluding

This chapter presented the SVM optimisation problem: In training a non-linear SVM, the

following quadratic problem needs to b e maximised:

W (�) =

l

X

i =1

�

i

�

1

2

l

X

i =1

l

X

j =1

�

i

�

j

y

i

y

j

k (x

i

;x

j

) (1.31)

sub ject to

0 � �

i

� 0 ; i = 1 ; : : : ; l; and

l

X

i =1

�

i

y

i

= 0 (1.32)

By constructing a matrix Q such that (Q)

ij

= y

i

y

j

k (x

i

;x

j

) the problem at hand is to �nd

max

�

W (�) = �

T

1 �

1

2

�

T

Q�

sub ject to �

T

y = 0 (1.33)

� � 0

C1 � � � 0

Chapter 1. Support Vector Machines 14

The following chapter is devoted to solving the ab ove linearly constrained quadratic pro-

gramming problem (1.33). The problem often involves a matrix with an extremely large

numb er of entries, which make o�-the-shelf optimisation packages unsuitable. Several SVM

training metho ds are presented, and a detailed decomp osition metho d of solving (1.33) is

discussed.

Chapter 2

Support Vetor Mahine

Training Methods

An overview of current methods of Support Vector Machine training is given in this chapter.

The method of decomposing the training problem into subproblems is discussed in detail,

and includes conditions for optimality of the training problem, methods for selecting good

subproblems, and di�erent optimisations to the decomposition algorithm itself. The chapter

concludes with a complete Support Vector Machine training algorithm.

2.1 Intro duction to Supp ort Vector Machine training

metho ds

Training a Supp ort Vector Machine (SVM) involves solving a linearly constrained quadratic

optimisation problem. The SVM �ts a decision function to a lab elled set of l training

patterns, which corresp ond to the total of l free parameters in the optimisation problem.

The quadratic programming (QP) problem, from chapter one, is to �nd

max

�

W (�) = �

T

1 �

1

2

�

T

Q�

sub ject to �

T

y = 0 (2.1)

� � 0

C1 � � � 0

In the QP problem, the ob jective function { the function to b e maximised { dep ends on

the �

i

quadratically, while the parameters �

i

only app ear linearly in the constraints. Q is

an l by l matrix that dep ends on b oth a kernel function of the training inputs, and their

resp ective lab els: (Q)

ij

= y

i

y

j

k (x

i

;x

j

).

15

Chapter 2. Support Vector Machine Training Methods 16

The QP problem is equivalent to �nding the maximum of a b owl-shap ed ob jective func-

tion. The search for the maximum o ccurs in l dimensions, and is constrained to lie inside a

hyp ercub e and on a hyp erplane. Due to the de�nition of the kernel function, the matrix Q

always gives a convex QP problem. The convexity of the optimisation problem implies that

every lo cal maximum is also a global maximum [19]. A global maximum means that there is

no other p oint inside the feasible region at which the ob jective function takes a higher value.

When Q is p ositive de�nite, the ob jective function will b e b owl-shap ed; when Q is p ositive

semi-de�nite, the ob jective function will have at-b ottomed troughs. The ob jective func-

tion will never b e saddle-shap ed. Thus there exists a unique maximum or a connected set

of maximums. Certain optimality conditions { the Karush-Kuhn-Tucker (KKT) conditions

[19] { give conditions determining whether the constrained maximum has b een found.

The SVM QP problem is simple and well understo o d; yet solving the QP problem for real-

world cases can prove to b e very di�cult. Analytic solutions are p ossible when the numb er

of training patterns is very small, or when the data is separable and it is known b eforehand

which vectors will b e supp ort vectors. In most real-world cases, numeric solutions are called

for. Small problems can b e solved with general-purp ose optimisation packages that solve

linearly constrained convex QPs. Larger problems, however, bring ab out di�culties in b oth

the size and density of Q.

The matrix Q has a dimension equal to the numb er of training examples. A training

set of 60,000 vectors gives rise to a matrix Q with 3.6 billion elements, which do es not �t

into the memory of a standard computer. For large learning tasks, o�-the-shelf optimisation

packages and techniques for general quadratic programming quickly b ecome intractable in

their memory and time requirements.

In general (Q)

ij

is nonzero, which makes Q completely dense. Most mathematical ap-

proaches either assume that Q is sparse (i.e. most (Q)

ij

are zero), or are only suitable for

small problems.

Since standard QP techniques cannot easily b e used to train SVMs with several thousands

of examples, a numb er of other approaches have b een invented. These algorithms allow for

fast convergence and small memory requirements, even on large problems.

2.1.1 Chunking

The chunking algorithm is based on the fact that the non-supp ort vectors play no role in the

SVM decision b oundary. If they are removed from the training set of examples, the SVM

solution will b e exactly the same.

Chunking was �rst suggested by V. Vapnik in [55]. The large QP problem is broken

down into a numb er of smaller problems:

A QP routine is used to optimise the Lagrangian on an arbitrary subset of data. After

Chapter 2. Support Vector Machine Training Methods 17

this optimisation, the set of nonzero �

i

(the current supp ort vectors) are retained, and all

other data p oints (�

i

= 0) are discarded. At every subsequent step, chunking solves the

QP problem that consists of all nonzero �

i

, plus some of the �

i

that violates the KKT

conditions. These are in general the worst M violations, for some value of M . After

optimising the subproblem, data p oints with �

i

= 0 are again discarded. This pro cedure

is iterated until the KKT conditions are met, and the margin is maximised. Solving each

subproblem still requires a numeric quadratic optimiser.

The size of the subproblem varies, but tends to grow with time. At the last step, chunking

has identi�ed and optimised all the nonzero �

i

, which corresp ond to the set of all the supp ort

vectors. Thus the overall QP problem is solved.

Although this technique of reducing the Q matrix's dimension from the numb er of train-

ing examples to approximately the numb er of supp ort vectors makes it suitable to large

problems, a limitation still exists. The numb er of supp ort vectors may exceed the maximal

numb er of parameters �

i

that the quadratic optimiser can handle, and even the reduced

matrix may not �t into memory.

2.1.2 Deomposition

Decomp osition metho ds solve a sequence of smaller QP problems, and are similar in spirit to

chunking. The di�erence from chunking is in the size of the subproblems: the size remains

�xed.

Decomp osition metho ds were intro duced in 1997 by E. Osuna et al . [40]. The large QP

problem is broken down into a series of smaller subproblems, and a numeric QP optimiser

solves each of these problems. It was suggested that one vector b e added and one removed

from the subproblem at each iteration, and that the size of the subproblems should b e kept

�xed. The motivation b ehind this metho d is based on the observation that as long as at least

one �

i

violating the KKT conditions is added to the previous subproblem, each step reduces

the ob jective function and maintains all of the constraints. In this fashion the sequence of

QP subproblems will asymptotically converge. For faster practical convergence, researchers

use di�erent unpublished heuristics to add and delete multiple examples.

While the strategy used in chunking takes advantage of the fact that the exp ected numb er

of supp ort vectors is small (< 3000), decomp osition allows for training arbitrarily large data

sets.

Another decomp osition metho d was intro duced by T. Joachims in [24]. Joachim's metho d

is based on the gradient of the ob jective function. The idea is to pick �

i

for the QP

subproblem such that the �

i

form the steep est p ossible direction of ascent on the ob jective

function, where the numb er of nonzero elements in the direction is equal to the size of the

QP subproblem. As in Osuna's metho d, the size of the subproblem remains �xed.

Chapter 2. Support Vector Machine Training Methods 18

2.1.3 Sequential Minimal Optimisation

The most extreme case of decomp osition is Sequential Minimal Optimisation (SMO) { where

the smallest p ossible optimisation problem is solved at each step [41]. Due to the fact that

the �

i

must ob ey the linear equality constraint, the smallest set of �

i

that can b e optimised

at each step is two. At every step, SMO cho oses two �

i

to jointly optimise, �nds the optimal

values for these �

i

, and up dates the SVM to reect these changes.

SMO avoids numerical QP optimisation and large matrix storage entirely: if the two

chosen �

i

are optimised and the rest of the parameters �

i

kept �xed, it derives an analytic

solution which is executed in a few numerical op erations. The metho d therefore consists of a

heuristic step for �nding the b est pair of parameters to optimise, and the use of an analytic

expression to ensure the ob jective function increases monotonically. Because the smallest

p ossible subproblem is optimised at each iteration of the algorithm, SMO solves more sub-

problems than other metho ds of decomp osition. Optimising each subproblem, however, is

so fast that the overall QP problem can b e solved quickly. Due to the decomp osition of the

QP problem and its sp eed, SMO is probably the metho d of choice for training SVMs [10].

In this chapter a decomp osition algorithm based on the ideas of [24] is discussed. This

algorithm makes no assumption on the exp ected numb er of supp ort vectors, and allows

training arbitrary large data sets. In constructing the algorithm, conditions for optimal-

ity, decomp osition and optimality conditions on the working set are discussed. Finally, a

complete training algorithm is presented.

2.2 Conditions for optimality

In this section, conditions for optimality of a solution � to problem (2.1) are intro duced.

Since Q is a p ositive semi-de�nite matrix (the kernel function used is p ositive de�nite), and

the constraints are linear, the Karush-Kuhn-Tucker (KKT) conditions [19] are necessary and

su�cient for optimality.

The KKT multipliers are intro duced by letting � b e the asso ciated multiplier of �

T

y = 0,

�

T

= (�

1

; : : : ; �

l

) b e the asso ciated multiplier of � � � 0, and �

T

= (�

1

; � � � ; �

l

) b e the

asso ciated multiplier of � � C1 � 0. The following KKT conditions must then hold for

optimality:

r W (�) � r �

T

(� � C1) � r �

T

(� �) � r �(�

T

y) = 0

) r W (�) � � + � � �y = 0 (2.2)

�

T

(� � C1) = 0 (2.3)

�

T

� = 0 (2.4)

� � 0 (2.5)

Chapter 2. Support Vector Machine Training Methods 19

� � 0 (2.6)

The Lagrange multipliers �

i

can have three p ossible values: The value of �

i

can b e at zero,

at the upp er b ound C , or somewhere in the interval (0 ; C). By de�ning the classi�er function

f

?

(x) =

l

X

i =1

y

i

�

i

k (x;x

i

) + b (2.7)

similar to (1.27), each of these cases are now considered and expanded separately.

Case 1: 0 < �

i

< C

Consider a single value of �

i

, i.e. the Lagrange multiplier asso ciated with some input vector

i. Then, from equation (2.2),

1 � (Q�)

i

� �

i

+ �

i

� �y

i

= 0

Since this case examines �

i

from the interval (0 ; C), the term (� � C1)

i

from (2.3) must

b e non-zero and negative. For equations (2.3) and (2.5) to hold, �

i

must b e equal to zero.

By using a similar argument, conditions (2.4) and (2.6) imply that �

i

can only b e zero.

This gives

1 � (Q�)

i

� �y

i

= 0 (2.8)

Because the equation

y

i

f

?

(x

i

) = y

i

�

l

X

j =1

y

j

�

j

k (x

i

;x

j

) + b

�

= 1 (2.9)

holds when 0 < �

i

< C , and given that

(Q�)

i

=

l

X

j =1

y

i

y

j

�

j

k (x

i

;x

j

)

= y

i

l

X

j =1

y

j

�

j

k (x

i

;x

j

)

= y

i

�

f

?

(x

i

) � b

�

equation (2.8) can b e rewritten, and simpi�es as

1 � (Q�)

i

� �y

i

= 1 � y

i

�

f

?

(x

i

) � b

�

� �y

i

= 1 � 1 + y

i

b � �y

i

= 0

From this the value of b is equal to the KKT multiplier �, i.e.

� = b (2.10)

Chapter 2. Support Vector Machine Training Methods 20

Case 2: �

i

= C

As in the previous case, consider equation (2.2) for a single Lagrange multiplier �

i

at the

upp er b ound C :

1 � (Q�)

i

� �

i

+ �

i

� �y

i

= 0

Because �

i

= C , conditions (2.4) and (2.6) imply that �

i

must b e equal to zero. Then,

1 � (Q�)

i

� �

i

� �y

i

= 0 (2.11)

Equation (2.5) sp eci�es that �

i

� 0, and thus

1 � (Q�)

i

� �y

i

� 0

1 � y

i

�

f

?

(x

i

) � b

�

� by

i

= 1 � y

i

f

?

(x

i

) � 0

Thus for a value of �

i

= C to meet the KKT conditions, it must b e true that

y

i

f

?

(x

i

) � 1 (2.12)

Case 3: �

i

= 0

In the case of �

i

= 0, equation (2.2) b ecomes

1 � (Q�)

i

� �

i

+ �

i

� �y

i

= 0

Conditions (2.3) and (2.5), with �

i

= 0, imply that �

i

= 0. Therefore,

1 � (Q�)

i

+ � � �y

i

= 0 (2.13)

Using similar reasoning as the ab ove case of �

i

= C , it can b e shown that a value of �

i

= 0

meets the KKT conditions if

y

i

f

?

(x

i

) � 1 (2.14)

Conluding on the KKT onditions

From the three cases presented ab ove, a solution � of problem (2.1) is an optimal solution

if the following relations hold for each �

i

:

�

i

= 0) y

i

f

?

(x

i

) � 1

0 < �

i

< C) y

i

f

?

(x

i

) = 1

�

i

= C) y

i

f

?

(x

i

) � 1 (2.15)

If, for some given stage in the pro cess of training a SVM, all Lagrange multipliers meet the

KKT conditions, an optimal solution to (2.1) is found and SVM training can stop.

Chapter 2. Support Vector Machine Training Methods 21

Computing the value of the threshold b

A value for the threshold b is needed for (2.7), and can b e computed for each of the supp ort

vectors. From (2.9),

b

i

= y

i

�

l

X

j =1

y

j

�

j

k (x

i

;x

j

) (2.16)

The average of these values is taken as the value for b.

2.3 A decomp osition metho d

Decomp osition metho ds break the large QP problem down to a series of smaller subproblems,

and these subproblems are optimised to improve the ob jective function.

In the pro cess of decomp osition, a subset of variables is chosen for optimisation. The

original set of Lagrange multiplier variables is divided into two sets, called B and N . Set

B is called the \working set," and is created by picking q sub-optimal variables from all

l �

i

. The working set of variables is optimised while keeping the remaining variables (set

N) constant. After subset B is optimised, it is \put back" into the original set and a new

working set is selected for optimisation.

Since it is known when a solution � is an optimal solution (the solution satis�es all KKT

conditions), the problem can b e decomp osed and optimised until these conditions are met

with an adequate tolerance. The general decomp osition algorithm is summarized as follows:

Algorithm 2.1 - General deomposition algorithm

1. While the optimality conditions (2.15) are violated

(a) Select q variables for the working set B . The remaining l � q variables are �xed

at their current values.

(b) Decomp ose the problem and solve the quadratic program subproblem, i.e. opti-

mise W (�) on B .

2. Terminate and return �.

Concerns of the ab ove algorithm are the creation of KKT criteria for knowing when the

working set B is optimised, and metho ds of picking the optimal working set.

Firstly, however, it is necessary to rewrite equation (2.1) as a function that is only

dep endent on the working set. Let � b e split into two sets �

B

and �

N

. If �, y and Q are

appropriately rearranged, one has

Chapter 2. Support Vector Machine Training Methods 22

� =

2

4

�

B

�

N

3

5

; y =

2

4

y

B

y

N

3

5

; Q =

2

4

Q

B B

Q

B N

Q

N B

Q

N N

3

5

Since only �

B

is b eing optimised for the subproblem, W is rewritten from equation (2.1)

in terms of �

B

to give

W (�

B

) =

�

�

T

B

1 + �

T

N

1

�

�

1

2

�

�

T

B

Q

B B

�

B

+ �

T

B

Q

B N

�

N

+ �

T

N

Q

N B

�

B

+ �

T

N

Q

N N

�

N

�

(2.17)

If terms that do not contain �

B

are dropp ed, the optimisation problem remains essentially

the same. Also, since Q is a symmetric matrix, with Q

B N

= Q

T

N B

, the problem reduces to

�nding

max

�

B

W (�

B

) = �

T

B

1 �

1

2

�

T

B

Q

B B

�

B

� �

T

B

Q

B N

�

N

sub ject to �

T

B

y

B

+ �

T

N

y

N

= 0 (2.18)

�

B

� 0

C1 � �

B

� 0

With j B j � j N j , the term �

T

B

Q

B N

�

N

consumes the ma jority of computing time when

determining W (�

B

). As a p erformance optimisation, de�ne a vector q

B N

= Q

B N

�

N

in the

following way:

(q

B N

)

i

= y

i

X

j 2 N

�

j

y

j

k (x

i

;x

j

) (2.19)

The vector q

B N

is computed once at the start of every subset optimisation. The complex-

ity of the optimisation problem then b ecomes prop ortional to the size of the working set,

indep endent of l . Given that l can b e very large and that q = j B j will b e relatively small, it

is a vast improvement. The optimisation problem b ecomes equivalent to �nding

max

�

B

W (�

B

) = �

T

B

1 �

1

2

�

T

B

Q

B B

�

B

� �

T

B

q

B N

sub ject to �

T

B

y

B

+ �

T

N

y

N

= 0 (2.20)

�

B

� 0

C1 � �

B

� 0

2.3.1 Optimality of the working set

The optimisation problem in (2.20) has one particularly useful prop erty: one can computa-

tionally determine if a solution is an optimal solution. This gives a stopping criterion for

optimising the working set B .

Chapter 2. Support Vector Machine Training Methods 23

The decomp osed problem (2.20) consists of a convex ob jective function (since matrix

Q

B B

is p ositive semi-de�ne), and linear constraints. The KKT conditions are thus necessary

and su�cient for optimality.

The KKT conditions must hold for each element in �

B

, and by again considering the

p ossible values of (�

B

)

i

, as in Section 2.2, the conditions are:

(�

B

)

i

= 0) (Q

B B

�

B

)

i

+ (q

B N

)

i

+ �(y

B

)

i

� 1

0 < (�

B

)

i

< C) (Q

B B

�

B

)

i

+ (q

B N

)

i

+ �(y

B

)

i

= 1

(�

B

)

i

= C) (Q

B B

�

B

)

i

+ (q

B N

)

i

+ �(y

B

)

i

� 1 (2.21)

When the Lagrange multiplier �

i

lies b etween zero and C , the value of � can b e computed

with

� = (y

B

)

i

�

1 � (Q

B B

�

B

)

i

� (q

B N

)

i

�

The value of �, as it app ears in the ab ove KKT conditions (2.21), can b e taken as the

average of � computed for each i where 0 < (�

B

)

i

< C .

Apart from the optimality conditions describ ed here, a metho d for selecting go o d or

optimal working sets { a decomp osition algorithm { is needed. Such a metho d will cho ose

the working set B , while the KKT conditions presented here determines the termination

criteria on optimising B .

2.3.2 Seleting the working set

One of the most imp ortant issues in a decomp osition algorithm is the selection of the working

set. The working set selected plays a ma jor role in the sp eed of the SVM training algorithm.

Selecting working sets at random causes the training algorithm (Algorithm 2.1) to converge

very slowly, while continually selecting optimal variables causes the training algorithm to

cycle. A metho d for selecting approximately optimal working sets is presented b elow.

The decomp osition metho d presented in this section is due to [24, 38]. It works on the

classical metho d of feasible directions, prop osed in the optimisation theory by [61]. If
 is

a feasible region of a general constrained problem, then a vector d is a feasible direction at

the p oint � in
, if there exists a

~

� such that � + �d lies in
 for all 0 � � �

~

�.

The main idea of the metho d of feasible directions is to start with an initial feasible

solution, and to �nd the optimal solution by making steps along feasible directions. At

each iteration of a feasible directions algorithm, the optimal feasible direction (the direction

giving the largest rate of increase of the ob jective function) is found. The algorithm then

aims to maximise the ob jective function along this direction, by making a line search to

determine a step length along the feasible direction. The solution is moved by \stepping"

Chapter 2. Support Vector Machine Training Methods 24

along the feasible direction to the b etter solution found. The algorithm terminates when no

feasible directions can b e found which improve the ob jective function.

The optimal feasible direction of a general constrained optimisation problem of the form

Maximise f (�) sub ject to A� � b

is found by solving the direction �nding linear program

Maximise r f

T

d sub ject to Ad � 0; jj djj

2

� 1

SVM training solves a constrained quadratic optimisation problem, therefore the metho d

of feasible directions is directly applicable to training a SVM. Finding the optimal feasible

direction when solving the SVM problem (2.1) can b e stated as

Maximise r W (�)

T

d

sub ject to y

T

d = 0

d

i

� 0 if �

i

= 0

d

i

� 0 if �

i

= C

jj djj

2

� 1 (2.22)

Optimisation problem (2.22) is a full-scale linear program of dimension l , which is computa-

tionally exp ensive to solve at every iteration of the decomp osition metho d of SVM training.

An approximate solution to this problem, which can b e obtained in linear time, was prop osed

by T. Joachims [24].

A requirement is added to (2.22), sp ecifying that only q comp onents of d b e non-zero.

The variables corresp onding to these q non-zero comp onents are included in the working

set. Since this only gives an approximation to (2.22), d is only used to identify B , and not

as a search direction. Instead of doing a line search on d, the optimum solution is found in

the entire subspace spanned by the non-zero comp onents of d.

By sp ecifying that only q comp onents of d b e non-zero, the problem b ecomes intractable.

This problem of intractability is overcome by letting d

i

b e equal to either � 1, 0 or +1,

such that the Lagrange multipliers �

i

corresp onding to d

i

= � 1 are included in B . An

approximation of (2.22) is thus found by

Maximise r W (�)

T

d

sub ject to y

T

d = 0

d

i

� 0 if �

i

= 0

d

i

� 0 if �

i

= C

d

i

2 f� 1 ; 0 ; 1 g

jf d

i

: d

i

6= 0 gj = q (2.23)

Chapter 2. Support Vector Machine Training Methods 25

-1 -2 +3 +4 +5 +1-4 0 -2 +5

+1 +1 -1 -1 +1 -1 +1 +1 -1 +1

0 0 0 +1 -1 +1 0 0 0 +1

0 0 0 -1 -1 -1 0 0 0 +1y d

d

y

g =

=

=

=

T

T

T

ii i

(a) Seleting the four largest val-

ues of jg

i

j, and setting eah orre-

sponding d

i

to the sign of g

i

, max-

imises g

T

d, but the equality on-

straint y

T

d = 0 is not met.

-1 -2 +3 +4 +5 +1-4 0 -2 +5

+1 +1 -1 -1 +1 -1 +1 +1 -1 +1

0 0 0 +1 0 +1 0 0 -1 +1

0 0 0 -1 0 -1 0 0 +1 +1y d

d

y

gT

T

T

ii i

=

=

=

=

=

-1 -2 -3 -4 -5 +1-4 0 +2 +5y g
ii i

(b) Seleting the two smallest and

largest y

i

g

i

, and respetively letting

d

i

be of opposite and similar sign to

y

i

, g

T

d is maximised suh that the

equality onstraint y

T

d = 0 is also

met.

Figure 2.1: Selecting a working set of size four.

From this approximation the question arises: how is the direction d determined? Firstly,

assume that the constraints y

T

d = 0, d

i

� 0 if �

i

= 0, and d

i

� 0 if �

i

= C , are all absent.

Also, to simplify the notation used, let the shorthand g = r W (�) denote the directional

derivative of W . With the equality and inequality constraints absent, the maximum of the

ob jective function is achieved by selecting q p oints with the highest values of j g

i

j . Then d

i

will take the value of sign(g

i

).

As an example, consider Figure 2.1(a), with q equal to four. The four largest values of

j g

i

j are chosen (j g

4

j = 4, j g

5

j = 4, j g

6

j = 5 and j g

10

j = 5), and each corresp onding d

i

is set

to the sign of g

i

. In this way g

T

d is maximised.

The �rst remark that can b e made ab out the example in Figure 2.1(a), is that the

equality constraint y

T

d = 0 is b eing violated. For y

T

d to b e equal to zero, the numb er of

elements with sign matches b etween d

i

and y

i

must b e equal to the numb er of elements with

sign mismatches b etween d

i

and y

i

. This means that if a working set of size q is selected,

with q b eing even, each numb er must b e equal to

q

2

. The working set can thus b e selected

by making two passes over the data. A \forward pass" will select

q

2

sign mismatches, while

a \backward pass" will select

q

2

sign matches. To implement selection of the working set, let

k

denote the largest contribution to the ob jective function g

T

d by some p oint k , sub ject to

the equality constraint y

T

d = 0. The two passes over the data, each selecting

q

2

variables,

are expanded in the following way:

\Forward pass"

The forward pass attempts to select

q

2

variables such that y

k

d

k

is negative. This implies

that the signs of y

k

and d

k

must b e di�erent in maximising g

T

d. To maximise g

T

d, the

Chapter 2. Support Vector Machine Training Methods 26

minimum g

i

is chosen when d

i

is negative, while the maximum g

i

is selected when d

i

is

p ositive, i.e.

y

k

= 1) d

k

= � 1)

k

= min

i :y

i

=1

(g

i

))

k

= min

i :y

i

=1

(y

i

g

i

)

y

k

= � 1) d

k

= 1)

k

= max

i :y

i

=� 1

(g

i

))

k

= min

i :y

i

=� 1

(y

i

g

i

)

If the subscripts are combined, the largest contribution to the ob jective function (with y

k

and d

k

having di�erent signs), sub ject to the equality constraint, is

k

= min

i

(y

i

g

i

) (2.24)

\Bakward pass"

The backward pass over the data selects a total of

q

2

variables, such that y

k

d

k

is p ositive.

Thus the signs of y

k

and d

k

must b e the same in maximising g

T

d, i.e.

y

k

= 1) d

k

= 1)

k

= max

i :y

i

=1

(g

i

))

k

= max

i :y

i

=1

(y

i

g

i

)

y

k

= � 1) d

k

= � 1)

k

= min

i :y

i

=� 1

(g

i

))

k

= max

i :y

i

=� 1

(y

i

g

i

)

If the subscripts are combined, the largest contribution to the ob jective function (with y

k

and d

k

having the same signs), sub ject to the equality constraint, is

k

= max

i

(y

i

g

i

) (2.25)

The working set is thus selected based on the equations (2.24, 2.25) de�ned ab ove. The

example of Figure 2.1(a) selected an optimal but useless working set, since it do es not include

the equality constraint.

In Figure 2.1(b) the two smallest and largest y

i

g

i

(y

4

g

4

= � 4, y

6

g

6

= � 5, y

9

g

9

= +2 and

y

10

g

10

= +5) are selected, such that the example correctly meets the equality constraint

y

T

d = 0.

It is clear that the quantity y

i

g

i

gives an indication of an element's contribution to

the ob jective function sub ject to the equality constraint. This quantity is used to select

the working set, by sorting the data elements according to y

i

g

i

and selecting the top and

b ottom

q

2

.

Accounting for the inequality constraints in (2.23) then b ecomes a trivial task { when

selecting the top and b ottom Lagrange multiplier variables �

i

from the sorted list, a variable

is skipp ed if the inequality constraints are violated. Thus variables are skipp ed if d

i

= � y

i

(or in the case of the backward pass, if d

i

= y

i

) violates d

i

� 0 if �

i

= 0, and d

i

� 0 if

�

i

= C . Consider the forward pass: if d

i

= � y

i

, then variables should b e chosen when

� y

i

� 0 if �

i

= 0, and � y

i

� 0 if �

i

= C . These conditions hold when y

i

= � 1 and �

i

= 0,

or when y

i

= 1 and �

i

= C . A similar argument on the backward pass states that variables

should b e chosen when y

i

= 1 and �

i

= 0, or when y

i

= � 1 and �

i

= C .

Chapter 2. Support Vector Machine Training Methods 27

The decomp osition algorithm, which selects variables with a forward and backward pass

over the data, is implemented b elow:

Algorithm 2.2 - Deomposition algorithm

1. Let L b e a list of all Lagrange multipliers.

2. While the optimality conditions (2.15) are violated

(a) sort L by y

i

g

i

in increasing order

(b) select

q

2

samples from the front of L such that

� 0 < �

i

< C or

�

�

y

i

= � 1 and �

i

= 0

�

or

�

y

i

= 1 and �

i

= C

�

(c) select

q

2

samples from the back of L such that

� 0 < �

i

< C or

�

�

y

i

= 1 and �

i

= 0

�

or

�

y

i

= � 1 and �

i

= C

�

(d) optimise the newly selected working set

3. Terminate and return �.

2.3.3 Shortuts and optimisations to the deomposition algorithm

The sp eed of the decomp osition algorithm is hamp ered by many redundant computations.

This section discusses some of these p erformance b ottlenecks, and ways minimise additional

computations.

Let t de�ne a certain iteration in Algorithm 2.2. At time t, a numb er of factors consume

the algorithm's execution time: Its e�ciency greatly dep ends on the amount of time taken to

compute the vector g = r W (�

(t)

) and matrices Q

B B

and Q

B N

. Its sp eed is also inuenced

by the time taken to compute the KKT conditions at each iteration, since it to o requires

the kernel matrix.

Due to the approach taken by the decomp osition metho d, the quantities g = r W (�

(t)

)

(needed for selecting the working set) and y

i

f

?

(x

i

) (needed for KKT conditions), can b e

de�ned using knowledge of only q rows of the Hessian Q. These q rows corresp ond to the q

elements in the current working set.

For this purp ose, de�ne a vector s

(t)

, that is computed directly after working set selection,

and is stored throughout the training iteration:

s

(t)

i

=

l

X

j =1

�

(t)

j

y

j

k (x

i

;x

j

) =

X

j 2 B

�

(t)

j

y

j

k (x

i

;x

j

) +

X

j 2 N

�

(t)

j

y

j

k (x

i

;x

j

) (2.26)

Chapter 2. Support Vector Machine Training Methods 28

As �

(t)

is re�ned, the ob jective function W (�

(t)

) is increased by each iteration of the

decomp osition metho d. The b est vector �

(t)

found in iteration t is therefore used as the

vector �

(t +1)

, which the decomp osition metho d uses to select a working set for iteration

t + 1. The vector �

(t +1)

is therefore the vector that maximises W (�

(t)

) over the working

set B from iteration t, i.e.

W (�

(t +1)

) = max

B

W (�

(t)

) (2.27)

and

W (�

(t)

) = (�

(t)

)

T

1 �

1

2

(�

(t)

)

T

Q�

(t)

=

l

X

i =1

�

(t)

i

�

1

2

l

X

i =1

l

X

j =1

�

(t)

i

�

(t)

j

y

i

y

j

k (x

i

;x

j

)

=

l

X

i =1

�

(t)

i

�

1

2

l

X

i =1

�

(t)

i

y

i

l

X

j =1

�

(t)

j

y

j

k (x

i

;x

j

)

=

l

X

i =1

�

(t)

i

�

1

2

l

X

i =1

�

i

y

i

s

(t)

i

(2.28)

When a vector �

(t)

has b een found that maximises W (�

(t)

) over the working set B , the

starting vector for the next iteration { which is also the b est solution � found thus far { is

up dated with �

(t +1)

 �

(t)

. Because � is up dated, the value of s must also b e up dated.

Since only the value of �

B

, or the working set of variables, has changed from time t to time

t + 1, s is up dated with

s

(t +1)

i

= s

(t)

i

+

X

j 2 B

�

�

(t +1)

j

� �

(t)

j

�

y

j

k (x

i

;x

j

) (2.29)

Many optimisations can b e implemented using de�nition (2.26) and simple up date (2.29)

of vector s. At the start of training of a new working set, the value of q

B N

from (2.19) is

computed with

(q

B N

)

(t)

i 2 B

= y

i

�

s

(t)

i

�

X

j 2 B

�

(t)

j

y

j

k (x

i

;x

j

)

�

(2.30)

The derivative of W at time t (needed for selecting an optimal working set) is easily deter-

mined from s, i.e.

r W (�

(t)

)

i

= 1 �

1

2

� 2 y

i

l

X

j =1

�

(t)

j

y

j

k (x

i

;x

j

)

= 1 � y

i

s

(t)

i

(2.31)

Chapter 2. Support Vector Machine Training Methods 29

By using s, the value of the threshold b (2.16) is rewritten for each supp ort vector as

b

(t)

i

= y

i

�

l

X

j =1

y

j

�

(t)

j

k (x

i

;x

j

)

= y

i

� s

(t)

i

(2.32)

The value of b

(t)

is taken as the average over all the b

(t)

i

of all supp ort vectors i.

Finally, the KKT optimality conditions sp eci�ed in (2.15) are also rewritten in terms of

s, and are computed in linear time. A solution �

(t)

of (2.1) is an optimal solution if the

following relations hold for each �

(t)

i

:

�

(t)

i

= 0) y

i

(s

(t)

i

+ b

(t)

) � 1

0 < �

(t)

i

< C) y

i

(s

(t)

i

+ b

(t)

) = 1

�

(t)

i

= C) y

i

(s

(t)

i

+ b

(t)

) � 1 (2.33)

2.4 The training algorithm

Almost all necessary to ols are now gathered to create a SVM training algorithm.

In this chapter the Karush-Kuhn-Tucker conditions have b een used to sp ecify whether

and optimal solution has b een found and the training algorithm can terminate. A metho d

was develop ed to decomp ose the SVM problem into more workable subproblems. Optimi-

sations to reduce the numb er of computations were also intro duced.

Finally, the detailed training algorithm is presented:

Algorithm 2.3 - SVM training algorithm

1. Pick an initial vector �

(0)

2. Compute the initial value of s

(0)

:

s

(0)

i

=

l

X

j =1

�

(0)

j

y

j

k (x

i

;x

j

) :

3. Compute the initial value of b with

b

(0)

=

1

SV s

X

i 2 S V s

(y

i

� s

(0)

i

) ;

where SV s is the total numb er of current supp ort vectors.

4. Let L b e a list of all l Lagrange multipliers �

i

.

5. While the Karush-Kuhn-Tucker conditions in (2.33) are not met

Chapter 2. Support Vector Machine Training Methods 30

(a) Let g 2 R

l

b e de�ned by

g

i

= r W (�

(t)

)

i

= 1 � y

i

s

(t)

i

:

(b) Sort L by y

i

g

i

in increasing order.

(c) Select

q

2

samples from the front of L such that

� 0 < �

(t)

i

< C or

�

�

y

i

= � 1 and �

(t)

i

= 0

�

or

�

y

i

= 1 and �

(t)

i

= C

�

(d) Select

q

2

samples from the back of L such that

� 0 < �

(t)

i

< C or

�

�

y

i

= 1 and �

(t)

i

= 0

�

or

�

y

i

= � 1 and �

(t)

i

= C

�

(e) After selection of the elements �

B

in the working set B , compute the Hessian

matrix Q

B B

.

(f) Determine the vector q

B N

with

(q

B N

)

(t)

i 2 B

= y

i

�

s

(t)

i

�

X

j 2 B

�

(t)

j

y

j

k (x

i

;x

j

)

�

:

(g) Re-optimise the working set, using

W (�

B

) = �

T

B

1 �

1

2

�

T

B

Q

B B

�

B

� �

T

B

q

B N

;

and constraints de�ned in (2.20). Replace the optimised �

B

into �

(t)

to get

�

(t +1)

.

(h) Up date the vector s

(t +1)

with

s

(t +1)

i

= s

(t)

i

+

X

j 2 B

�

�

(t +1)

j

� �

(t)

j

�

y

j

k (x

i

;x

j

) :

(i) Recompute the value of b with

b

(t +1)

=

1

SV s

X

i 2 S V s

(y

i

� s

(t +1)

i

) :

(j) Increase time t with t := t + 1.

6. Terminate and return �.

There is one to ol needed to complete the SVM training algorithm, and that is a routine

to optimise the working set, i.e. a routine that can solve (2.20). The following chapter

intro duces Particle Swarm Optimisation (PSO) as a general optimisation metho d. Since

(2.20) is a problem with linear and b oxed constraints, PSO is adapted to handle linear

equality and inequality constraints, and the working set can b e optimised using PSO, and

the SVM trained.

Chapter 3

Partile Swarm Optimisation

Particle Swarm Optimisation is discussed as an algorithm for optimising unconstrained prob-

lems. The chapter looks into standard topologies used in the algorithm, and touches on a

number of improvements to Particle Swarm Optimisation.

3.1 Intro duction to unconstrained optimisation

Numerical optimisation techniques have their application in many �elds, including natu-

ral science, engineering, �nance, medicine and telecommunications. The ob jective of such

techniques is to assign values from a given domain to a set of parameters such that a sp e-

ci�c function is optimised. The function that is minimised or maximised (optimised) is

called the ob jective function, and it dep ends on a set of solution-de�ning variables. Let

x = (x

1

; x

2

; : : : x

n

)

T

2 R

n

represent the domain of the ob jective function, or the optimi-

sation (solution-de�ning) variable. Let f , the function that needs to b e optimised, assign

values from R

n

to R such that f : R

n

! R .

For minimisation problems, the ideal is to �nd a global minimum x

?

such that

f (x

?

) � f (x) ; 8 x 2 R

n

(3.1)

For some applications, a lo cal minimum x

?

L

on a domain L � R

n

is an acceptable solution.

In such cases

f (x

?

L

) � f (x) ; 8 x 2 L (3.2)

In b oth cases, �nding a global minimum or a lo cal minimum, the search space can b e

unconstrained or constrained by a set of constraints. This chapter fo cuses on Particle Swarm

Optimisation (PSO) for unconstrained optimisation, the constrained case is examined in

detail in Chapter 4.

31

Chapter 3. Particle Swarm Optimisation 32

Traditionally, numerical optimisation techniques have mainly b een develop ed from the

op erations research community [18, 37]. The past decade has witnessed an increase in con-

tributions from the arti�cial intelligence community, most notably from the evolutionary

computing �eld [3]. Recently, PSO has b een intro duced as a successful technique for nu-

merical optimisation [16, 25, 27]. Other recent metho ds for optimisation include arti�cial

immune systems, di�erential evolution, memetic algorithms and scatter search [12].

3.2 Intro duction to Particle Swarm Optimisation

Many e�cient optimisation algorithms can b e constructed from the study of ants working as

a colony, birds migrating in a o ck toward some destination, or �sh swimming in a scho ol.

While the individual b ehaviour of an organism may seem ine�cient, the collective e�ort of

individuals inside a swarm can b ecome complex and intelligent [5].

One such a metho d is Particle Swarm Optimisation (PSO), originally intro duced by

Kennedy and Eb erhart [25]. PSO represents an optimisation metho d where individuals,

called particles, collab orate as a p opulation, or swarm, to reach a collective goal, for example

minimising an n-dimensional function f .

Each particle is n-dimensional, and is a p otential minimum of f . A particle has memory

of the b est solution that it has found, called its personal best . The particles y through the

search space with a velo city, which is dynamically adjusted according to its p ersonal b est

and the b est solution found by a neighb ourho o d of particles.

There is thus a sharing of information that takes place. Particles pro�t from the discov-

eries and previous exp erience of other particles during the exploration and search for lower

ob jective function values.

There exist a great numb er of schemes in which this information sharing can take place.

One of two so ciometric principles is usually implemented [27], with more recent tolop ogies

investigated in [26, 28]. The �rst, called gbest (global b est), conceptually connects all the

particles in the p opulation to one another. Thus each particle is inuenced by the very

b est p erformance of the entire p opulation. The second, called lbest (lo cal b est), creates a

neighb ourho o d for each individual comprising itself and its k nearest neighb ours in the p op-

ulation. Neighb ourho o ds are usually determined using particle indices, although top ological

neighb ourho o ds have also b een used [52].

PSO di�ers from traditional optimisation metho ds, in that a p opulation of p otential

solutions are used in the search. The direct �tness information instead of function derivatives

or other related knowledge is used to guide the search. This search is based on probabilistic,

rather than deterministic, transition rules.

Let i indicate a particle's index in the swarm. Then

Chapter 3. Particle Swarm Optimisation 33

S = f p

1

;p

2

; : : : ;p

s

g

is a swarm of s particles. In PSO each of the s particles has a current p osition

p

i

= (p

i 1

; p

i 2

; : : : ; p

in

)

T

and y through the n-dimensional search space R

n

with a current velo city

v

i

= (v

i 1

; v

i 2

; : : : ; v

in

)

T

;

which is dynamically adjusted according to its own previous b est solution

z

i

= (z

i 1

; z

i 2

; : : : ; z

in

)

T

and the current b est solution
b
z of the entire swarm (gbest), or the particle's neighb ourho o d

(lbest).

At iteration time t of the PSO algorithm, the velo city and particle up dates are sp eci�ed

sep erately for each dimension j of the velo city and particle vectors. A particle p

i

will interact

and move according to the following equations [25]:

v

(t +1)

ij

= v

(t)

ij

+

1

r

(t)

1

[z

(t)

ij

� p

(t)

ij

] +

2

r

(t)

2

[bz

(t)

j

� p

(t)

ij

] (3.3)

p

(t +1)

ij

= v

(t +1)

ij

+ p

(t)

ij

(3.4)

Equation (3.3) takes three terms into consideration to calculate the velo city of particle i:

the particle's previous velo city, the distance b etween the particle and its p ersonal b est, and

the distance b etween the particle and the b est solution found by its neighb ourho o d, which

may b e the entire swarm.

The sto chastic nature of the algorithm is determined by r

(t)

1

; r

(t)

2

� UNIF (0 ; 1), two

uniform random numb ers b etween zero and one. In the second and third terms these numb ers

are scaled by acceleration co e�cients

1

and

2

, where 0 �

1

;

2

� 2. Co e�cient

1

has b een

called the cognitive learning rate [2], since it scales the second term in (3.3), the term that

de�nes the particle's movement in the direction of its p ersonal b est. In the same way,

2

is

called the social learning rate , scaling the inuence of the neighb ourho o d's b est solution on

the particle.

After determining particle i's velo city, it moves toward its new p osition, as shown in

(3.4).

At iteration time t of the PSO algorithm, the p ersonal b est of each particle is compared

to its current p erformance. The p ersonal b est z

(t)

i

is set to the b etter p erformance, i.e.

z

(t)

i

=

8

<

:

z

(t � 1)

i

if f (p

(t)

i

) � f (z

(t � 1)

i

)

p

(t)

i

if f (p

(t)

i

) < f (z

(t � 1)

i

)

(3.5)

Chapter 3. Particle Swarm Optimisation 34

The de�nition of a particle's neighb ourho o d determines the vector
b
z , the b est solution

found by either the entire swarm or the particle's neighb ourho o d. Information sharing takes

place through the neighb ourho o d - the most common, gbest and lbest , are discussed b elow.

More recent tolop ogies are investigated in [26, 28].

3.2.1 Global best (gbest)

The global b est (gbest) PSO conceptually connects all the particles in the p opulation to

one another, so that each particle is inuenced by the very b est p erformance of the entire

p opulation. The global b est particle pulls all particles towards itself, and particles move in

its direction. If the global b est is not up dated regularly, the entire swarm may converge to

it, resulting in premature convergence.

The global b est
b
z

(t)

is set to the p osition of the particle with the b est p erformance within

the swarm, i.e.

b
z

(t)

2 f z

(t)

1

; z

(t)

2

; : : : ; z

(t)

s

g

�

�

f (
b
z

(t)

)

= min f f (z

(t)

1

) ; f (z

(t)

2

) ; : : : ; f (z

(t)

s

) g (3.6)

3.2.2 Loal best (lbest)

The lbest (lo cal b est) version of the PSO creates a neighb ourho o d for each individual com-

prising itself and its k nearest neighb ours in the p opulation. Neighb ourho o ds are usually

determined using particle indices, although top ological neighb ourho o ds have also b een used

[26]. Assuming that particle indices wrap around at s, let N

i

b e the neighb ourho o d of

particle i.

N

i

= f z

(t)

i � k

; z

(t)

i � k +1

; : : : ; z

(t)

i

; : : : ; z

(t)

i +k � 1

; z

(t)

i +k

g (3.7)

The neighb ourho o d b est
b
z

(t)

N

i

at time t is de�ned as the b est solution in particle i's neigh-

b ourho o d:

b
z

(t)

N

i

2 N

i

�

�

f (
b
z

(t)

N

i

) = max f f (z

(t)

j

) g 8 z

j

2 N

i

(3.8)

It is p ossible to let the neighb ourho o d size k b e equal to zero, in which case each particle

p

i

only compares its current p osition with its own b est p osition z

(t)

i

, and no information

sharing takes place. A neighb ourho o d size of k equal to the swarm size s is equivalent to

the gbest version of the PSO.

It was shown by [16, 48] that, although lbest is slower in convergence than gbest , lbest

results in b etter solutions and searches a larger part of the search space.

Chapter 3. Particle Swarm Optimisation 35

3.2.3 The PSO algorithm

All that is left to complete from the ab ove sections is the PSO algorithm itself. The def-

inition of a particle's p ersonal and global or lo cal b est p osition was de�ned. Using these

b est p ositions to determine each particle's velo city, the swarm of particles can successfully

traverse the search space, lo oking for an optimum solution to a problem. The standard PSO

algorithm, used to minimise a function

f : R

n

! R (3.9)

is presented b elow:

Algorithm 3.1 - Partile Swarm Optimisation

1. Set the iteration numb er t to zero, and initialise the swarm S of n-dimensional particles

p

(0)

i

: each comp onent p

(0)

ij

of p

(0)

i

is randomly initialised to a value in the initial

domain of the swarm, an interval [p

min

; p

max

]. Since the particles are already randomly

distributed, the velo cities of particles are initialised to the zero vector 0.

2. Evaluate the p erformance f (p

(t)

i

) of each particle.

3. Compare the p ersonal b est of each particle to its current p erformance, and set z

(t)

i

to

the b etter p erformance, as shown in (3.5).

4. Use (3.6) to set the global b est
b
z

(t)

to the p osition of the particle with the b est

p erformance within the entire swarm (gbest). When a lbest PSO is implemented,

equation (3.8) is used to set the neighb ourho o d b est
b
z

(t)

N

i

for each particle i.

5. Change the velo city vector for each particle according to equation (3.3).

6. Move each particle to its new p osition, according to equation (3.4).

7. Let t := t + 1.

8. Go to step 2, and rep eat until convergence or t = t

max

.

The algorithm has converged if the di�erence b etween the b est solution found over a

sp eci�ed numb er of iterations remains within a certain b ound. The algorithm iterates until

either one of two conditions is met: the algorithm has converged, or the maximum numb er

of iterations t

max

have b een reached.

Chapter 3. Particle Swarm Optimisation 36

3.2.4 Improvements

A numb er of metho ds have b een prop osed to improve the convergence and probability of

convergence of the standard PSO algorithm, and are discussed in this section. Apart from

changes to the PSO up date equation (3.3), most of these metho ds make no changes to the

PSO algorithm itself.

Maximum veloity

The probability of particles leaving the current search space can b e reduced by clamping

the velo city up dates { the velo city up date vectors in the �rst term of (3.3) can b e restricted

by sp ecifying upp er and lower b ounds v

max

and � v

max

on v

(t)

ij

. If v

(t)

ij

is greater than v

max

,

then v

(t)

ij

is set to v

max

. Similary, if v

(t)

ij

is smaller than � v

max

, then v

(t)

ij

is set to the value

of � v

max

. The value of v

max

is usually a function of the range of the problem. If the range

of each comp onent p

ij

of particle p

i

is b etween -10 and 10, v

max

will b e prop ortional to 10.

Inertia weight

The previous velo city in the �rst term of (3.3) can b e scaled with an intertia weight w , i.e.

v

(t +1)

ij

= wv

(t)

ij

+

1

r

(t)

1

[z

(t)

ij

� p

(t)

ij

] +

2

r

(t)

2

[bz

(t)

j

� p

(t)

ij

] (3.10)

The inertia weight was intro duced to improve the rate of convergence of the PSO algo-

rithm [47], and determines how much the velo city at time t should inuence the velo city at

time t + 1. A large inertia weight causes the PSO to explore larger parts of the search space,

while a smaller inertia weight results in exploitation of a smaller and more fo cussed region

of the search space. An inertia weight of one results in an up date equation equivalent to

(3.3).

It is p ossible, through careful selection of the inertia weight, to create a balance b etween

lo cal and global exploration abilities, and therefore create a faster rate of convergence. The

balance can b e achieved with a linearly decreasing inertia weight

w = w

max

�

t

t

max

(w

max

� w

min

) (3.11)

where w

max

is the initial (starting) inertia weight, and w

min

is the �nal weight. The values

t

max

and t resp ectively indicate the maximum and current iteration numb er. Setting w

max

to 0.9 and w

min

to 0.4 has b een shown to give go o d conversion, indep endent of the problems

tested [46, 47].

Chapter 3. Particle Swarm Optimisation 37

Constrition oeÆient

Maurice Clerc has intro duced a constriction factor to PSO, which improves PSO's ability

to control velo cities [11]. The constriction factor analytically cho oses values for w ,

1

and

2

such that control is allowed over the dynamical characteristics of the particle swarm, in-

cluding its exploration versus exploitation abilities. Clamping the velo cities is not necessary

when a constriction co e�cient � is used in (3.3), changing the velo city up date to

v

(t +1)

ij

= �

�

v

(t)

ij

+

1

r

(t)

1

[z

(t)

ij

� p

(t)

ij

] +

2

r

(t)

2

[bz

(t)

j

� p

(t)

ij

]

�

(3.12)

with

� =

2

�

�

2 � ' �

p

'

2

� 4 '

�

�

(3.13)

and ' =

1

+

2

, ' > 4.

As the value of ' tends to 4 (from ab ove), the value of � tends to 1 (from b elow), and the

particle's velo city is almost not damp ed at all; as ' grows larger, � tends to zero, and the

particle's velo city is more strongly damp ed. A correct choice of the constriction factor makes

velo city clamping unnecessary, although it was found that �, combined with constraints on

v

max

, signi�cantly improved PSO p erformance [17].

Guaranteed Convergene Partile Swarm Optimiser

The PSO describ ed in this chapter, including the versions with an inertia weight (3.10) and

constriction factor (3.12), all have a probability of converging prematurely. This can b e

clearly seen by considering the case when a particle's p osition and p ersonal b est coincide

with the global b est. The velo city of the particle will only dep end on v

(t)

ij

(or wv

(t)

ij

or �v

(t)

ij

),

and if it is close to zero, or the p osition of the global b est do es not change, the particle will

`catch up' with the global b est. This do es not mean that the swarm has converged to a

minimum, but merely that it has converged prematurely to the global b est.

Van den Berg has intro duced the Guaranteed Convergence PSO (GCPSO) [53, 54], which

de�nes a di�erent velo city up date for the global b est particle. If � is the index of the global

b est particle, such that z

�

=
b
z , then the new velo city up date ensures that a p oint is sampled

from the supp ort of a probability measure containing
b
z or close to

b
z :

v

(t +1)

� ;j

= � p

(t)

� ;j

+ bz

(t)

j

+ wv

(t)

� ;j

+ �

(t)

(1 � 2 r

(t)

2

) (3.14)

The value � is a scaling factor used to generate a random sample space with � as its side

lengths, with r

(t)

2

again b eing uniformly distributed b etween zero and one. In essence the

velo city up date resets the particle's p osition to that of the global b est, and adds the current

Chapter 3. Particle Swarm Optimisation 38

search direction. To this result a random vector from �

(t)

(1 � 2 r

(t)

2

) is added. By combining

equations (3.4) and (3.14), the p osition of the new particle will b e

p

(t +1)

� ;j

= bz

(t)

j

+ wv

(t)

� ;j

+ �

(t)

(1 � 2 r

(t)

2

) (3.15)

The size of the random search volume is changed by expanding � when b etter function

evaluations are successfully found. The sampling volume is decreased when no improvements

to the function evaluation is found over time; the smaller volume increases the probability

of cho osing a variable that gives a b etter ob jective function value. If a failure in decreasing

the ob jective function is equivalent to f (
b
z

(t)

) = f (
b
z

(t � 1)

), then the value of �

(t)

is adapted

after each iteration of the GCPSO algorithm with

�

(t +1)

=

8

>

>

<

>

>

:

2 �

(t)

if # s > s

c

1

2

�

(t)

if # f > f

c

�

(t)

otherwise

(3.16)

The terms # s and # f resp ectively denote the numb er of consecutive successes and

failures, with s

c

and f

c

b eing threshold parameters. To ensure the correctness of (3.16), # f

is set to zero if # s increases from iteration t to iteration t + 1 of the algorithm. In a similar

fashion, # s is set to zero when # f increases. A rigorous analysis of GCPSO can b e found

in [53].

3.3 Concluding

The basic PSO algorithm was discussed in this chapter, and a (by no means exhaustive)

numb er of improvements were shown. In particular, this chapter has fo cused on improve-

ments to the PSO that are relevant to the rest of this thesis. The GCPSO is of particular

interest, since it will b e the basis for development of the Converging Linear PSO in Chapter

4. The interested reader is referred to [7, 27, 53], the pro ceedings of the Particle Swarm Opti-

mization Workshop (2001) , and the pro ceedings of the IEEE Swarm Intel ligence Symposium

(2003) for a thorough treatment of research in Particle Swarm Optimisers.

An overview of unconstrained optimisation was given, but it will only serve as a platform

from which PSO will b e extended to optimise constrained problems. The following chapter

takes care of this extension, by examining and analysing a metho d of linear constraint

handling. Inequality constraints are also taken care of, and �nally we not only have a PSO

that can train Supp ort Vector Machines, but can also optimise general problems with b oth

linear equality and inequality constraints.

Chapter 4

Constrained Partile Swarm

Optimisation

The standard Particle Swarm Optimiser is unable to easily optimise functions bound by a

set of linear equality or inequality constraints. The objective of this chapter is to present two

new algorithms, the Linear Particle Swarm Optimiser (LPSO) and the Converging Linear

Particle Swarm Optimiser (CLPSO), designed speci�cal ly with constrained optimisation in

mind. The properties and convergence of these new algorithms are careful ly analysed; a proof

for a set of initial conditions on LPSO, a proof of both algorithms' ability to search within

the constrained space, and a convergence proof for CLPSO, is given.

4.1 Intro duction to constrained optimisation

Optimisation problems have the goal of �nding the b est value of some function. These

typ es of problems are generally comp osed of three parts: an objective function that needs

to b e optimised (minimised or maximised), a set of solution-de�ning variables on which the

ob jective function dep ends, and a set of constraints that restricts feasible values of these

variables. Constraints can b e of two typ es: equality constraints sp ecify that a function

of the variables must b e equal to a constant, while inequality constraints sp ecify that a

certain function of the variables must b e greater than or equal to (or less than or equal to)

a constant.

4.1.1 Terminology

Let x = (x

1

; x

2

; : : : ; x

n

)

T

2 R

n

represent the solution-de�ning variable. This vector x 2 R

n

is called the optimisation variable. The function that needs to b e optimised is de�ned as

39

Chapter 4. Constrained Particle Swarm Optimisation 40

f : R

n

! R , and is commonly called the ob jective function or cost function. Let the

set of functions g

i

: R

n

! R de�ne the inequality constraint functions, giving a set of

inequalities g

i

(x) � 0. De�ning h

i

(x) = 0 as equality constraints, the functions h

i

: R

n

! R

are the equality constraint functions. If there are no constraints, the problem is called an

unconstrained problem, as was examined in Chapter 3.

Using the ab ove notation, a general optimisation problem can b e stated as

Minimise f (x)

Sub ject to g

i

(x) � 0 ; i = 1 : : : k

h

i

(x) = 0 ; i = 1 : : :m (4.1)

to describ e the problem of �nding an optimisation variable x that minimises f (x) over all

values of x that satisfy the conditions g

i

(x) = 0, i = 1 : : : k , and h

i

(x) = 0, i = 1 : : :m.

The maximum of f (x) can b e found by minimising � f

?

(x). In a similar way, an inequal-

ity constraint function g

i

(x) � 0 can b e written in the standard form with � g

i

(x) � 0.

The domain
 of the constrained optimisation problem is the set of x-values for which

the ob jective and all constraint functions are de�ned. If dom(g

i

) denotes the set of x-values

for which g

i

(x) � 0, and dom(h

i

) denotes the set of x-values for which h

i

(x) = 0, then
 is

the intersecion of these domains.

 =

k

\

i =1

dom(g

i

) \

m

\

i =1

dom(h

i

) (4.2)

A p oint x 2
 is feasible if it satis�es the constraints g

i

(x) � 0 and h

i

(x) = 0.

If
 is non-empty, there exists at least one feasible p oint, and the problem is feasible.

If no feasible p oint exists, the problem is infeasible. The domain is the set of all feasible

p oints, called the feasible set. The problem of determining whether the problem is feasible

or not is called the feasibility problem. The feasibility problem determines if the inequalities

are consistent, and if so, �nds a p oint that satis�es them. It is written as

Find x

Sub ject to g

i

(x) � 0 ; i = 1 : : : k

h

i

(x) = 0 ; i = 1 : : :m (4.3)

If x is feasible and g

i

(x) = 0, the constraint g

i

(x) � 0 is active at x. If g

i

(x) < 0, the

constraint g

i

(x) � 0 is inactive . The equality constraint h

i

(x) = 0 is active at all feasible

p oints. Redundant constraints are constraints that are implied by other constraints, and

deleting them will not change the set of feasible solutions.

The optimal or minimal value f

?

of problem (4.1) is de�ned as

Chapter 4. Constrained Particle Swarm Optimisation 41

f

?

= inf f f (x)

�

�

g

i

(x) � 0 ; i = 1 : : : k; and h

i

(x) = 0 ; i = 1 : : :mg (4.4)

The values of f

?

are allowed to take on the extended values �1 . If the problem is

infeasible, and the standard convention that the in�mum of the empty set is + 1 is used,

the optimal value f

?

is equal to + 1 .

It is also p ossible that the problem is unb ounded from b elow, such that f

?

= �1 . A

problem unb ounded from b elow contains a sequence of feasible p oints f x

j

g

j � 1

with f (x

j

) !

�1 as j ! 1 .

For x 2 R

n

to b e an optimal p oint, it must b e feasible and have f (x) = f

?

. The problem

may contain more than one feasible x that minimises f (x), and the set of these optimal

p oints is denoted by

X = f x

�

�

g

i

(x) � 0 ; i = 1 : : : k; and

h

i

(x) = 0 ; i = 1 : : :m; and f (x) = f

?

g (4.5)

If X is not empty, the optimal value can b e found and the problem is solvable. If X is

empty, an optimal value can not b e found.

An approximate solution to the problem is very often su�cient if a numeric metho d is

used to �nd it. This approximate solution must lie within an error margin � > 0 from the

true solution. The solution x with f (x) � f

?

+ � is called �-sub optimal and the set of all

�-sub optimal p oints is called the �-sub optimal set for the problem.

A local solution to the optimisation problem is a feasible p oint x which will minimise f

on the set of nearby feasible solutions within a certain radius from x. A feasible p oint x is

thus lo cally optimal if there is an R > 0 such that

f (x) = inf f f (z)

�

�

g

i

(z) � 0 ; i = 1 : : : k; and

h

i

(z) = 0 ; i = 1 : : :m; and k z � xk � R g (4.6)

The term `globally optimal' is used for `optimal' to distinguish b etween `lo cally optimal' and

`optimal.'

4.1.2 Expressing problems in the standard form

Optimisation problem (4.1) is referred to as a standard form optimisation problem. The

convention is chosen that the right-hand side of the inequality and equality constraints

are zero. This can always b e arranged by subtracting any nonzero right-hand side: for

example, the equality constraint h

(1)

i

(x) = h

(2)

i

(x) is written as h

i

(x) = 0, where h

i

(x) =

h

(1)

i

(x) � h

(2)

i

(x). In a similar way inequalities of the form g

i

(x) � 0 are expressed as

� g

i

(x) � 0.

Chapter 4. Constrained Particle Swarm Optimisation 42

4.1.3 Slak variables

Problem (4.1),

Minimise f (x)

Sub ject to g

i

(x) � 0 ; i = 1 : : : k

h

i

(x) = 0 ; i = 1 : : :m

can b e rewritten so that all inequalities involve only a single variable, instead of an entire

function g

i

(x). These single variables are called slack variables and replaces each inequality

constraint with an equality constraint, and a non-negativity constraint. There is one slack

variable s

i

asso ciated with each original inequality constraint g

i

(x) � 0. Optimisation

problem (4.1) is rewritten as

Minimise f (x)

Sub ject to g

i

(x) + s

i

= 0 ; i = 1 : : : k

h

i

(x) = 0 ; i = 1 : : :m

s

i

� 0 ; i = 1 : : : k (4.7)

where the variables are x 2 R

n

and s 2 R

k

. This problem has n + k variables, k inequality

constraints (the non-negativity constraints on s

i

), and k + m equality constraints.

The problem is equivalent to the original standard form problem. If (x; s) is feasible

for the ab ove problem, then x is feasible for the original problem, since s

i

= � g

i

(x) � 0.

Conversely, if x is feasible for the original problem, then (x; s) is feasible for the ab ove

problem, where s

i

= � g

i

(x). Similarly, x is optimal for the original problem if and only if

(x; s) is optimal for the ab ove problem, where s

i

= � g

i

(x).

4.1.4 Convex optimisation

A convex optimisation problem is one of the form

Minimise f (x)

Sub ject to g

i

(x) � 0 ; i = 1 : : : k

Ax = b; A 2 R

m � n

and b 2 R

m

(4.8)

where b oth f and g

1

; : : : ; g

k

are convex functions. The convex problem has three additional

requirements compared to the general standard form problem (4.1): the ob jective is convex,

the inequality constraint functions are convex, and the equality constraint functions h

i

(x) =

a

T

i

x � b

i

are a�ne.

Chapter 4. Constrained Particle Swarm Optimisation 43

The additional requirements give rise to an imp ortant prop erty: the feasible set of a

convex optimisation problem is convex, since it is the domain of the problem

 =

k

\

i =1

dom(g

i

) \ f x j Ax = bg (4.9)

which is a convex set, with k (convex) sublevel sets f x j g

i

(x) � 0 g and m hyp erplanes

f x j a

T

i

x = b

i

g .

An imp ortant prop erty of convex optimisation problems is that any lo cally optimal p oint

is also globally optimal. To see this, supp ose that (feasible) x is lo cally optimal for a convex

optimisation problem, and

f (x) = inf f f (z)

�

�

g

i

(z) � 0 ; i = 1 : : : k; and

a

T

i

x = b

i

; i = 1 : : :m; and k z � xk � R g (4.10)

for some R > 0. Now supp ose that x is not globally optimal, such that there is a feasible

y with f (y) < f (x). As a result k y � xk > R , since otherwise f (x) � f (y). Consider the

p oint z given by

z = (1 � �) x + �y; � =

R

2 k y � xk

(4.11)

It follows that k z � xk =

R

2

< R , and by convexity of the feasible set, z is feasible. By

convexity of f it follows that

f (z) � (1 � �) f (x) + �f (y) < f (x) (4.12)

which contradicts (4.10). Hence there exists no feasible y with f (y) < f (x), and it follows

that x is globally optimal.

4.1.5 Duality

Consider the standard optimisation problem (4.1), with a non-empty domain
, also called

a `primal problem.' The constraints in (4.1) can b e intro duced to the ob jective function by

augmenting it with a weighted sum of the constraint functions. Let the vector � 2 R

k

b e

asso ciated with the set of k inequality constraints, and � 2 R

m

b e asso ciated with the set of

m equality constraints. These vectors are called the Lagrange multiplier vectors, and de�ne

the Lagrangian L : R

n

� R

k

� R

m

! R asso ciated with (4.1) as

L(x;�;�) = f (x) +

k

X

i =1

�

i

g

i

(x) +

m

X

i =1

�

i

h

i

(x) (4.13)

Chapter 4. Constrained Particle Swarm Optimisation 44

The dual problem asso ciated with the primal problem is written as

Maximise L(x;�;�) with resp ect to � and �

Sub ject to � � 0 (4.14)

If the problem (4.1) is convex, then the solution of the primal problem is the vector x

?

of

the saddle p oint (x

?

;�

?

;�

?

) of (4.13) such that

L(x

?

;�;�) � L(x

?

;�

?

;�

?

) � L(x;�

?

;�

?

) (4.15)

The vector x

?

that solves the primal problem, as well as the two Lagrange multiplier

vectors � and �, can b e found by solving the min-max problem

min

x

max

�; �

L(x;�;�) (4.16)

4.1.6 Equality-onstrained optimisation

The �nal optimisation problem intro duced, is the problem of minimising f under a set of

linear equality constraints. This problem is written as

Minimise f (x)

Sub ject to Ax = b; A 2 R

m � n

and b 2 R

m

(4.17)

and will from the basis of PSO developments to follow. In the following sections, a PSO

algorithm is develop ed to successfully handle the ab ove equality constrained optimisation

problem. The metho d is extended to handle inequality constraints as well.

4.2 Linear Particle Swarm Optimisation

The Particle Swarm Optimisation (PSO) algorithm discussed in Chapter 3 is an algorithm

suited for unconstrained optimisation. This section intro duces a new PSO algorithm, the

Linear Particle Swarm Optimiser, that is sp eci�cally develop ed with linear constraints in

mind. The up date equations for a particle's velo city and p osition, with inertia weight w , is

rep eated here:

v

(t +1)

ij

= wv

(t)

ij

+

1

r

(t)

1

[z

(t)

ij

� p

(t)

ij

] +

2

r

(t)

2

[bz

(t)

j

� p

(t)

ij

] (4.18)

p

(t +1)

ij

= v

(t +1)

ij

+ p

(t)

ij

(4.19)

Traditionally, the ab ove velo city and p osition up date steps are sp eci�ed separately for each

dimension of a particle, as is done in [25, 27, 48, 53]. If the random numb ers r

(t)

1

and r

(t)

2

Chapter 4. Constrained Particle Swarm Optimisation 45

are rather kept constant for all vector dimensions, the velo city up dates are calculated as a

linear combination of p osition and velo city vectors.

v

(t +1)

i

= wv

(t)

i

+

1

r

(t)

1

[z

(t)

i

� p

(t)

i

] +

2

r

(t)

2

[
b
z

(t)

� p

(t)

i

] (4.20)

p

(t +1)

i

= v

(t +1)

i

+ p

(t)

i

(4.21)

The ab ove approach has the advantage that the ight of particles is de�ned by standard

linear op erations on vectors. The guaranteed movement of particles through subspaces and

subsets b ecomes p ossible, as stated in Theorem 4.1 (to follow). The PSO algorithm using

up date equations (4.20, 4.21) is referred to as a \Linear Particle Swarm Optimiser" (LPSO),

due to the way the up date equations are formulated. The LPSO algorithm, used to minimise

a function

f : R

n

! R (4.22)

is presented b elow:

Algorithm 4.1 - Linear Partile Swarm Optimisation (LPSO)

1. Set the iteration numb er t to zero, and randomly initialise the swarm S of n-dimensional

particles p

(0)

i

to a value in the initial domain of the swarm. Initialise all velo city vectors

v

i

= 0.

2. Evaluate the p erformance f (p

(t)

i

) of each particle.

3. Compare the p ersonal b est of each particle to its current p erformance, and set z

(t)

i

to

the b etter p erformance:

z

(t)

i

=

8

<

:

z

(t � 1)

i

if f (p

(t)

i

) � f (z

(t � 1)

i

)

p

(t)

i

if f (p

(t)

i

) < f (z

(t � 1)

i

)

(4.23)

4. Set the global b est
b
z

(t)

to the p osition of the b est p erformance in the swarm:

b
z

(t)

2 f z

(t)

1

; z

(t)

2

; : : : ; z

(t)

s

g

�

�

f (
b
z

(t)

)

= min f f (z

(t)

1

) ; f (z

(t)

2

) ; : : : ; f (z

(t)

s

) g (4.24)

5. Change the velo city vector for each particle according to equation (4.20).

6. Move each particle to its new p osition, according to equation (4.21).

7. Let t := t + 1.

8. Go to step 2, and rep eat until convergence or t = t

max

.

Chapter 4. Constrained Particle Swarm Optimisation 46

(1,2)

(2,1)

x1

x2

(3,0)

x*

(a) S

?

spanning R

1

.

(1,2)

(2,1)

(4,3)

x1

x2

x*

(b) S

?

spanning R

2

.

Figure 4.1: Comparing the p ossible search spaces resulting from di�erent initial swarms in LPSO,

with v

(0)

i

= 0 .

The algorithm has converged if the di�erence b etween the b est solution found over a

sp eci�ed numb er of iterations remains within a certain b ound. The algorithm iterates until

either one of two conditions is met: the algorithm has converged, or the maximum numb er

of iterations t

max

have b een reached. In essence the convergence and stopping conditions

are therefore the same as for the standard PSO.

4.2.1 Criteria on the initial swarm

If a PSO is considered in the traditional sense, with random numb ers r

(t)

1

and r

(t)

2

generated

for each dimension in a particle's up date equations (4.18, 4.19), any p oint in the search

space can p ossibly b e reached with a swarm of arbitrary size. It is even p ossible to reach

any p oint in the search space with a swarm of size two [27].

This generalisation do es not work for the LPSO, where the up date equations (4.20) and

(4.21) are in fact linear combinations of p osition and velo city vectors. The initial swarm

will thus inuence which p ositions can and cannot b e found.

In fact, if all velo cities are initialised to zero (like in the LPSO algorithm ab ove), only

p ositions in the span of the set of vectors created by subtracting the initial global b est
b
z

(0)

from each initial p osition vector, will b e found. A similar idea is true if the initial velo cities

are non-zero, where the initial velo city vectors are added to the previous set of vectors

(created by subtracting the global b est
b
z

(0)

from each initial p osition vector) to span the

set of p ossible solutions found.

Consider the example illustrated in Figures 4.1(a) and 4.1(b), and say f (x) is minimized

at a p oint (or vector) x

?

. If the LPSO algorithm is able to �nd x

?

, vector x

?

should b e

decomp osable into a linear combination of the initial velo city vectors.

It is easy to see from Figure 4.1(a) that a swarm with initial p opulation f (1 ; 2) ; (2 ; 1) ; (3 ; 0) g

Chapter 4. Constrained Particle Swarm Optimisation 47

will never b e able to reach x

?

= (2 ; 2). This is due to the way the particles are moved with

velo cities which are initialised to the zero vector. v

(t)

1

and v

(t)

2

will cause the particles to y

on a straight line, since all p ossible velo cities will b e of the form �[(1 ; 2) � (2 ; 1)] = �(� 1 ; 1),

with � 2 R . All p ersonal and global b ests will also lie on this line, and thus searches will

b e in R

1

and not in R

2

. If
b
z

(0)

= (2 ; 1), then the set of vectors

f (1 ; 2) �
b
z

(0)

; (2 ; 1) �
b
z

(0)

; (3 ; 0) �
b
z

(0)

g = f (� 1 ; 1) ; (0 ; 0) ; (1 ; � 1) g

as shown in Figure 4.1(a), will only span R

1

. The optimal value x

?

at (2 ; 2) can not b e

reached. In comparison, Figure 4.1(b) shows that the set of vectors

f p �
b
z

(0)

j p 2 S

(0)

g = f (� 1 ; 1) ; (0 ; 0) ; (2 ; 2) g

from the initial swarm S

(0)

= f (1 ; 2) ; (2 ; 1) ; (4 ; 3) g will span R

2

, and x

?

at (2 ; 2) can

p ossibly b e reached.

This leads us to a �rst imp ortant theorem, which makes the following assumptions from

Algorithm 4.1 (LPSO):

1. v

(0)

i

= 0

2. z

(0)

i

= p

(0)

i

Theorem 4.1

If f needs to be optimized in R

n

, a swarm of s particles S

(0)

= f p

(0)

1

; p

(0)

2

; : : : ;p

(0)

s

g wil l

be able to �nd the optimal value x

?

if and only if there exists a subset S

?

� S

(0)

�
b
z

(0)

=

f p �
b
z

(0)

j p 2 S

(0)

g that forms a basis for R

n

.

Proof

Say the optimal value x

?

can b e found. Then x

?

can b e written as some p

(0)

k

2 S

(0)

plus a

linear combination of the set of initial velo city vectors

�

wv

(0)

i

+

1

r

(0)

1

[z

(0)

i

� p

(0)

i

] +

2

r

(0)

2

[
b
z

(0)

� p

(0)

i

]

�

�

i = 1 : : : s

	

Since v

(0)

i

= 0, z

(0)

i

= p

(0)

i

and �

2

r

(0)

2

is a non-zero scalar, x

?

� p

(0)

k

can b e written as a

linear combination of

S

(0)

�
b
z

(0)

=

�

p

(0)

1

�
b
z

(0)

; p

(0)

2

�
b
z

(0)

; : : : ;p

(0)

s

�
b
z

(0)

	

Because any vector x

?

� p

(0)

k

2 R

n

can b e written as a linear combination of S

(0)

�
b
z

(0)

,

it is true that S

(0)

�
b
z

(0)

spans R

n

. Thus there exits a subset S

?

� S

(0)

�
b
z

(0)

of linearly

indep endent vectors that also spans R

n

. This subset S

?

will form a basis for R

n

.

Chapter 4. Constrained Particle Swarm Optimisation 48

To prove the converse, assume S

?

� S

(0)

�
b
z

(0)

forms a basis for R

n

. Then any vector

in R

n

can b e written as a linear combination of S

(0)

�
b
z

(0)

. The optimal value can thus b e

written as p

(0)

k

2 S

(0)

plus some linear combination of S

(0)

�
b
z

(0)

, and can thus b e reached.

�

Since one of the particles will b e the global b est particle with p

(0)

i

�
b
z

(0)

= 0, the set of

vectors S

(0)

�
b
z

(0)

will contain the zero vector, and so S

(0)

needs to contain a minimum of

n + 1 vectors for S

(0)

�
b
z

(0)

to span R

n

, namely

inf j S

(0)

j = n + 1 (4.25)

To explore the case when initial velo cities are non-zero, consider the LPSO up date equa-

tions (4.20) and (4.21). Assuming that the initial p ersonal b est z

(0)

i

is set to p

(0)

i

, two vectors

play a role in particle i's up date equations: the initial velo city vector v

(0)

i

and the di�erence

b etween the initial global b est
b
z

(0)

and the initial p osition p

(0)

i

. It follows that the set of

vectors

�

v

(0)

1

;
b
z

(0)

� p

(0)

1

; v

(0)

2

;
b
z

(0)

� p

(0)

2

; : : : ;v

(0)

s

;
b
z

(0)

� p

(0)

s

	

must span R

n

, and the minimum swarm size for LPSO of S

(0)

will b e

�

n

2

�

+ 1.

4.3 Equality-constrained optimisation

The LPSO algorithm lends itself p erfectly to solving equality-constrained optimisation prob-

lems, as was discussed in Section 4.1.6. This section summarises current metho ds from the

Evolutionary Computing and PSO �elds, and discusses and proves the usefulness of LPSO

to equality-constrained optimisation.

4.3.1 Current methods

Many metho ds for constraint handling have b een prop osed in the Evolutionary Computation

�eld [32]. These can b e broadly classi�ed into penalty , repair and constraint-preserving

metho ds.

Penalty methods add a p enalty to the ob jective function to decrease the quality of infea-

sible solutions [20, 22, 32]. While p enalty metho ds are very p opular, they do not guarantee

a solution where no constraints are violated, since the search space still includes infeasible

solutions, and success dep ends on the p enalty metho d.

Repair methods apply op erators to move an infeasible solution closer to the feasible

space of solutions [30, 60]. Op erators designed to `correct' infeasible solutions are usually

Chapter 4. Constrained Particle Swarm Optimisation 49

å()t

å()t

å()t

-å()t -å()t -å()t å = 0()t

Figure 4.2: Progressive reduction of the feasible domain.

computationally intensive. Not all constraints can b e easily implemented to b e corrected by

these op erators, which must b e tailored to the particular problem [15].

Constraint-preserving methods (feasible solutions metho ds) reduce the search space by

ensuring that all candidate solutions at all times satisfy the constraints [32]. Solutions are

initialised within the feasible domain, and transformations of candidate solutions are such

that the resulting solutions still lie within the feasible domain.

Hamida and Scho enauer intro duced a hybrid approach for Evolutionary Algorithms to

handle equality constraints [22]. In this approach, equalities h

j

(x) = 0 are written as double

inequalities � "

(t)

� h

j

(x) � "

(t)

. The idea is to start, for each equality, with a large feasible

domain, and so tolerate high violation degrees. This domain is then gradually reduced

along evolution, in order to bring it as close as p ossible to a null measure feasible domain,

as illustrated in Figure 4.2. The value of " is progressively reduced with the aim of reaching

0 � h

j

(x) � 0.

Feasible solutions metho ds, on the other hand, are based on transforming feasible indi-

viduals into other feasible individuals. In the Evolutionary Algorithm sense, it is done by

op erators that are closed on the feasible part of the search space. These metho ds assume

linear constraints only and a feasible starting p oint, or a feasible initial p opulation [32].

Michalewicz and Janikow develop ed a genetic algorithm called Genocop , named after

\GEnetic algorithm for Numerical Optimisation for COnstrained Problems" [31]. The ap-

proach, fo cusing on linear constrains, �rstly eliminates the equalities in the set of constraints,

and secondly uses carefully designed `genetic' op erators that guarantee to keep all `chromo-

somes' of the genetic algorithm within the constrained space.

Shi and Krohling develop ed a metho d using two co-evolving PSOs, and duality from

Section 4.1.5, to solve a constrained optimisation problem [49]. The min-max problem

(4.16) is solved by evolving two simultaneous PSOs. The �rst PSO freezes the Lagrange

multipliers � and �, and minimises the Lagrangian L(x;�;�) over x. The second PSO

freezes the variable vector x, and maximises L(x;�;�) over the Lagrange multipliers � and

�. However, if the optimisation problem is non-convex, the solution of the primal and dual

problems do not coincide. In this case a p enalty, determined by the inequality and equality

Chapter 4. Constrained Particle Swarm Optimisation 50

constraint functions, is added to the Lagrangian.

The LPSO falls in the constraint-preserving class of constraint handling algorithms.

Linear constraints are assumed, and if the initial swarm contains only feasible starting

p oints, transitions to new solutions through velo city up dates ensure feasible solutions to b e

generated.

4.3.2 PSO for equality-onstrained optimisation

Let the ob jective b e to �nd the minimum of some function f (x), where x 2 R

n

, sub ject to

a set of linear constraints,

a

11

x

1

+ a

12

x

2

+ : : : + a

1n

x

n

= b

1

a

21

x

1

+ a

22

x

2

+ : : : + a

2n

x

n

= b

2

: : :

a

m 1

x

1

+ a

m 2

x

2

+ : : : + a

mn

x

n

= b

m

or

2

6

6

6

6

6

4

a

11

a

12

: : : a

1n

a

21

a

22

: : : a

2n

.

.

.

.

.

.

.

.

.

.

.

.

a

m 1

a

m 2

: : : a

mn

3

7

7

7

7

7

5

2

6

6

6

6

6

4

x

1

x

2

.

.

.

x

n

3

7

7

7

7

7

5

=

2

6

6

6

6

6

4

b

1

b

2

.

.

.

b

m

3

7

7

7

7

7

5

It is assumed that the problem is feasible, or the solution set for the linear constraints is

non-empty. Then, in simple terms, the problem is de�ned as

Minimise f (x) ; x 2 R

n

Sub ject to Ax = b; A 2 R

m � n

and b 2 R

m

(4.26)

It can b e said that f needs to b e optimised in the hyp erplane C , the set of particular

solutions of the linear system Ax = b. That is,

C = f x j Ax = bg

de�nes the set of feasible solutions to (4.26), and each p oint in C will b e a feasible p oint. Fig-

ure 4.3 illustrates a one-dimensional hyp erplane (or line) C that constrains two-dimensional

solutions x = (x

1

; x

2

).

The approach presented b elow ies the swarm through the set of feasible solutions, in

this case hyp erplane C .

Chapter 4. Constrained Particle Swarm Optimisation 51

x1

f x x(,)1 2

x2

Figure 4.3: Minimising f under a linear equality constraint.

Feasible diretions

Given a feasible p oint x (a particle's p osition, for instance), it will b e necessary to y from

x to other feasible p oints. This can b e done with feasible directions. Let

H = f x j Ax = 0g

de�ne the set of solutions of the homogeneous system Ax = 0. H is a subspace of R

n

, and

since H is closed under vector addition and scalar multiplication, it is also a vector space.

If

0

is any element of C , then H is de�ned by C minus some o�set

0

, or the set of vectors

C �

0

= f �

0

j 2 C g .

If x is feasible and h 2 H , the p oint x + �h is also feasible for every value of �, since

A(x + ah) = Ax + �Ah = b + �0 = b. Any move from a feasible p oint along h will pro duce

another feasible p oint. Any nonzero direction h 2 H is called a feasible direction for the

constraints Ax = b in (4.26).

If the initial swarm is feasible, and the particles y with only feasible directions as their

velo city vectors, then the swarm will stay within the search space. This is summarized in

Theorem 4.2, which can b e proved by a simple inductive argument:

Theorem 4.2

If al l initial velocity vectors v

(0)

i

are solutions to the homogeneous system Ax = 0, and al l

initial particles p

(0)

i

lie in the hyperplane de�ned by Ax = b, then for any time t

Chapter 4. Constrained Particle Swarm Optimisation 52

I) Av

(t)

i

= 0

II) Ap

(t)

i

= b

III) Az

(t)

i

= b

IV) A
b
z

(t)

= b

i.e. the swarm wil l y through the hyperplane de�ned by the constraints.

Proof

Without losing generality, subscript i, denoting a sp eci�c particle in the swarm, is dropp ed.

Basis step:

I) v

(0)

= 0 (by initialisation) is the trivial solution to Ax = 0

I I) p

(0)

is initialised on the hyp erplane Ax = b

I I I) z

(0)

= p

(0)

) Az

(0)

= b

IV)
b
z

(0)

2 f z

(0)

1

; z

(0)

2

; : : : ; z

(0)

s

g

j f (
b
z

(0)

) = min f f (z

(0)

1

) ; f (z

(0)

2

) ; : : : ; f (z

(0)

s

) g

) A
b
z

(0)

= b

Inductive step:

Supp ose Av

(k)

= 0, Ap

(k)

= b, Az

(k)

= b and A
b
z

(k)

= b. Then

I) Av

(k +1)

= A

�

wv

(k)

+

1

r

(k)

1

[z

(k)

� p

(k)

] +

2

r

(k)

2

[
b
z

(k)

� p

(k)

]

�

= wAv

(k)

+

1

r

(k)

1

(Az

(k)

� Ap

(k)

) +

2

r

(k)

2

(A
b
z

(k)

� Ap

(k)

)

= wAv

(k)

+

1

r

(k)

1

(b � b) +

2

r

(k)

2

(b � b)

= w0 +

1

r

(k)

1

0 +

2

r

(k)

2

0

= 0

I I) Ap

(k +1)

= A(v

(k +1)

+ p

(k)

)

= Av

(k +1)

+ Ap

(k)

= 0 + b

= b

I I I) Az

(k +1)

=

8

<

:

Az

(k)

if f (p

(k +1)

) � f (z

(k)

)

Ap

(k +1)

if f (p

(k +1)

) < f (z

(k)

)

= b

IV)
b
z

(k +1)

2 f z

(k +1)

1

; z

(k +1)

2

; : : : ; z

(k +1)

s

g j f (
b
z

(k +1)

)

= min f f (z

(k +1)

1

) ; f (z

(k +1)

2

) ; : : : ; f (z

(k +1)

s

) g

) A
b
z

(k +1)

= b

�

Chapter 4. Constrained Particle Swarm Optimisation 53

This shows that the swarm will y through the solution hyp erplane C de�ned by the set

of feasible solutions.

Change of PSO for onstrained optimisation

It is clear from the ab ove that, if the swarm is initialised to a set of feasible solutions, all

solutions found will b e feasible. However, this do es not mean that the optimum solution

can b e found.

Theorem 4.1 provides a condition on the initial swarm that guarantees that any p oint

inside the search space can b e found. This search space was R

n

. With the given constraints,

the search space will b e some hyp erplane inside R

n

. The initial swarm can b e chosen such

that any p oint in this hyp erplane can b e found.

By de�nition, any direction h satisfying Ah = 0 lies in the null space of A. If the rank

of A is r , let

S

?

=

�

p

(0)

1

�
b
z

(0)

; p

(0)

2

�
b
z

(0)

; : : : ; p

(0)

n � r

�
b
z

(0)

	

denote a generic set of n � r linearly indep endent vectors, such that A(p

(0)

i

�
b
z

(0)

) =

Ap

(0)

i

� A
b
z

(0)

= b � b = 0. This implies that S

?

forms a basis for the n � r dimensional

null space of A. S

?

provides a convenient way to represent all feasible p oints. Given any

p oint p

(0)

such that Ap

(0)

= b, every feasible p oint can b e written as p

(0)

plus some linear

combination of S

?

.

For constrained optimisation, f is optimised in an n � r dimensional hyp erplane inside

R

n

, with r = rank (A). Thus a swarm of s particles S

(0)

= f p

(0)

1

; p

(0)

2

; : : : ; p

(0)

s

g will

b e able to �nd the optimal value if and only if there exists a subset S

?

� S

(0)

�
b
z

(0)

=

f p �
b
z

(0)

j p 2 S

(0)

g that forms a basis for R

n � r

. In this case the minimum swarm size will

b e

inf j S

(0)

j = n � r + 1 (4.27)

If the whole swarm is thus initialised to lie within the hyp erplane Ax = b, and S

?

�

S

(0)

�
b
z

(0)

de�nes a basis for R

n � r

, then f can b e optimised in the standard way. It is due

to this prop erty that Linear Particle Swarm Optimisation is ideally suited to solving these

kinds of optimisation problems.

Initialising partiles within the searh plane

The next task is to �nd a way to initialise such a swarm with s particles. Most imp ortantly,

all particles should lie within the search plane. This can b e done by reducing the augmented

matrix [Aj b] to row-echelon form [A

0

j b

0

] with Gauss-Jordan reduction, and cho osing vectors

in the hyp erplane by using this matrix, as summarized b elow:

Chapter 4. Constrained Particle Swarm Optimisation 54

Algorithm 4.2 - Initialising partiles within the searh plane

1. Reduce the augmented matrix [Aj b] to transform the co e�cient matrix A of the given

constraints to row-echelon form. The numb er of pivots in this form will b e equal to r ,

the rank of A.

[Aj b] � [A

0

j b

0

] =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 : : : 0 a

0

1r +1

: : : a

0

1n

b

0

1

0 1 : : : 0 a

0

2r +1

: : : a

0

2n

b

0

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : 1 a

0

r r +1

: : : a

0

r n

b

0

r

0 0 : : : 0 0 : : : 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : 0 0 : : : 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(No pivots app ear after column r)

2. Use [A

0

j b

0

] to generate a total of n � r linearly indep endent random vectors such that

Ap

(0)

i

= b for i = 1 : : : n � r .

A random vector p = (p

1

; p

2

; : : : ; p

n

)

T

satisfying Ap = b can b e constructed by

cho osing values for p

k

randomly, with k = r + 1 ; : : : ; n (k 2 non-pivot columns). Now

for each j = 1 ; : : : ; r (j 2 pivot columns), let

p

j

= b

0

j

�

n

X

k =r +1

a

0

j k

p

k

3. Generate one more vector p

(0)

n � r +1

=

P

n � r

i =1

1

n � r

p

(0)

i

. Now,

Ap

(0)

n � r +1

= A

n � r

X

i =1

1

n � r

p

(0)

i

=

n � r

X

i =1

1

n � r

Ap

(0)

i

=

n � r

X

i =1

1

n � r

b = b

This vector is a combination of all other vectors and is linearly dep endent on all vectors

1 ; : : : ; n � r . Any S

(0)

�
b
z

(0)

will form a basis for R

n � r

, since subtracting any choice

of
b
z

(0)

will give a linearly indep endent set.

4. Cho ose the initial p ositions of particles n � r + 2 to s at random by using the metho d

describ ed in Step 2 to create a swarm of size s.

4.3.3 Overoming premature onvergene

The LPSO algorithm (Algorithm 4.1) discussed ab ove has one prop erty that is very disad-

vantageous, and that is the p ossibility of premature convergence.

Chapter 4. Constrained Particle Swarm Optimisation 55

If v

(0)

is initialised to 0 and the p osition of the global b est particle do es not change,

searches will continue on lines connecting each particle with the global b est. So the whole

hyp erplane is not searched, but only lines.

In another scenario, consider p

i

= z

i

=
b
z, where velo city up dates will dep end only on

the value of wv

(t)

i

, as discussed in [53, 54]. If a particle's current p osition coincides with the

global b est p osition, the particle will only move away from this p oint if its previous velo city

and w are non-zero. Premature convergence will o ccur when previous velo cities are close to

zero, and particles stop moving once they catch up with the global b est particle.

To overcome this premature convergence, the Guaranteed Convergence Particle Swarm

Optimiser (GCPSO) was develop ed [53, 54]. In this algorithm, the velo city up date for the

global b est particle is changed to force it to search for a b etter solution in an area around the

p osition of that particle. A convergence pro of for the GCPSO, and results to substantiate

its success can b e found in [53, 54].

The GCPSO cannot b e used as given in [53, 54], since unconstrained random adjustments

may generate infeasible solutions. A variation is necessary b ecause particles cannot b e

altered with any random vector, but only with feasible directions. The new algorithm,

referred to as Converging LPSO (CLPSO), ensures that the constraints from equation (4.26)

are still met.

Let � b e the index of the global b est particle, then

z

�

=
b
z (4.28)

Change the velo city up date equation (4.20) for the global b est particle � , so that

v

(t +1)

�

= � p

(t)

�

+
b
z

(t)

+ �

(t)

�

(t)

(4.29)

where �

(t)

is a scaling factor and �

(t)

� UNIF (� 1 ; 1)

n

with the prop erty that A�

(t)

= 0,

or �

(t)

lies in the null space of A. The vector �

(t)

can b e constructed from the reduced

augmented matrix [A

0

j b

0

], with A in row-echelon form. Such a metho d is describ ed in Step

2 of Section 4.3.2. Now,

Av

(t +1)

�

= A

�

� p

(t)

�

+
b
z

(t)

+ �

(t)

�

(t)

�

= � Ap

(t)

�

+ A
b
z

(t)

+ �

(t)

A�

(t)

= � b + b + 0

= 0

and so the swarm will still y through the hyp erplane as describ ed in Theorem 4.2. Since

p

(t +1)

�

= v

(t +1)

�

+ p

(t)

�

=
b
z

(t)

+ �

(t)

�

(t)

Chapter 4. Constrained Particle Swarm Optimisation 56

the new p osition of the global b est particle will b e its p ersonal b est
b
z

(t)

, with a random

vector �

(t)

�

(t)

from the null space of A added. It is only the global b est particle that is

moved with the ab ove velo city up date (4.29), all other particles in the swarm are still moved

with the original equations (4.20) and (4.21).

Removal of initial onditions for CLPSO

Adding random vectors to the algorithm changes the initial conditions: Theorem 4.1 is based

on LPSO which do es not make any allowance for random changes to particle p ositions. Since

�

(t)

is random, the condition that some S

?

� S

(0)

�
b
z

(0)

that de�nes a basis for R

n � r

(with

rank (A) = r) should exist, can b e dropp ed for CLPSO.

4.3.4 Proof of onvergene for CLPSO

To prove the convergence of CLPSO to at least a lo cal minimum, a more general condition

for convergence of a random search algorithm is �rst discussed and proved. Consider the

following problem and conceptual algorithm:

P Given a measurable function f : R

n

! R and S � R

n

. We seek a point x 2 S which at

least �nds a local minimum of f on S or yields an approximation of a local minimum of f

on S .

Algorithm 4.3 - Coneptual algorithm

1. Find x

(0)

2 S and set k = 0

2. Generate �

(k)

from (R

n

; B ; �

k

)

3. x

(k +1)

= D (x

(k +1)

; �

(k)

), cho ose �

k +1

, k := k + 1, go to step 1

The probability space (R

n

; B ; �

k

) is such that B is the � -�eld of Borel subsets of R

n

, and �

k

is a probability measure on B such that �

k

(R

n

) = 1. The algorithm starts with an initial

solution x

(0)

, and at each iteration a p ossible new solution �

(k)

is generated from (R

n

; B ; �

k

).

The function D , explained b elow, maps S � R

n

to S .

It is su�cient to show that if the random search algorithm satis�es two conditions { the

algorithm condition and the convergence condition { then it will at least converge to a lo cal

minimum. Each of these condisions are presented b elow.

Algorithm ondition The mapping D : S � R

n

! S should satisfy f (D (x; �)) � f (x)

and if � 2 S , then f (D (x; �)) � f (�).

Chapter 4. Constrained Particle Swarm Optimisation 57

Let M

k

b e the supp ort of �

k

, the smallest closed subset of R

n

with measure of one. Al-

most all random search algorithms are adaptive, implying that �

k

dep ends on the solutions

x

(0)

; : : : ;x

(k � 1)

generated by the previous iterations of the algorithm. The �

k

are then

viewed as conditional probability measures. Let m b e the Leb esgue measure of a set. The

search metho d discussed here is a called a local search method , which means that the �

k

with

b ounded supp ort M

k

have, for all except a p ossibly �nite k , m(S \ M

k

) < m(S). Metho ds

called global search methods have m(S \ M

k

) = m(S) for all k .

To avoid having to search for an element in a set of null measure, the search will b e

for the essential in�mum of f . This assures that, for a pathological case like f (x) = x

2

for

x 6= 0, and f (x) = � 1 for x = 0, the true minimum at -1 need not b e found, but simply an x

for which f (x) is arbitrarily close to zero. Thus the search for the in�mum will b e replaced

by a search for the essential in�mum. De�ne the minimum of f on S as

� = ess inf f = sup f z : f (x) � z a.e. g

and assume that � is �nite.

1

Since the nature of the search is for the essential in�mum and therefore may preclude

the actual minimum, it is necessary to establish convergence to a small region of values

surrounding the minimum. Let the optimality region for the (global) minimum b e de�ned

as

R

�; 0

= f x 2 S : f (x) < � + �g

Function f has an essential lo cal minimum at

i

2 S if there exists an n-dimensional

interval I

i

� S around

i

, such that f (

i

) � f (x) a.e. for all x 2 I

i

. For each of the

(p ossibly in�nite) lo cal minima

i

with i � 1, de�ne the optimality region (that is su�cient

for the search algorithm to �nd) as

R

�;i

= f x 2 I

i

: f (x) < f (

i

) + �g

Now let R

�

=

S

i

R

�;i

b e the optimality region for problem P.

Convergene ondition Su�cient condition for convergence to at least a local minimum

(of a local search algorithm): For any x

(k)

2 S , there exists a > 0 and a 0 < � � 1 such

that

�

k

�

f (x

(k +1)

) � f (x

(k)

) � or x

(k)

2 R

�

�

� � (4.30)

1

Thus the minimum is de�ned as the supremum of all z values suh that f is greater than or equal to z

almost everywhere (a.e.), i.e. everywhere exept possibly on some null set. Letting � = �1 will not alter

the spirit of the algorithm, if a very large negative value is taken as a suÆient `approximation' of �1.

Chapter 4. Constrained Particle Swarm Optimisation 58

Proof Take the complement of (4.30) to get

�

k

�

f (x

(k +1)

) > f (x

(k)

) � and x

(k)

=2 R

�

�

� 1 � �

for all > 0.

From the de�nition of D , f (x

(k +1)

) > f (x

(k)

) � for all > 0 is not p ossible, and so

�

k

(x

(k)

=2 R

�

) � 1 � �

Let f x

(k)

g

k � 0

b e the sequence generated by D . Therefore it needs to b e shown that

lim

k !1

P (x

(k)

2 R

�

) = 1. De�ne A to b e the event that x

(k)

2 R

�

b efore iteration p. Then,

P (A) = 1 � P (

�

A)

= 1 �

p � 1

Y

i =0

�

i

(x

(i)

=2 R

�

)

� 1 � (1 � �)

p

and so P (A) ! 1 as p ! + 1 .

To complete the pro of, consider the case when x

(p)

2 R

�

, and �

p

(f (x

(p +1)

) � f (x

(p)

) �

) > 0. Then there is a p ositive probability that x

(p +1)

=2 R

�

, and if that is the case, the

ab ove argument assures us that x

(k)

will converge to R

�

once again. From the de�nition

of R

�

and D , this will b e to a lo cal or p ossibly global minimum less than x

(p)

. (When

�

p

(f (x

(p +1)

) � f (x

(p)

) �) = 0, the sequence will remain in R

�

at a lo cal or the global

minimum.)

�

To prove that CLPSO converges at least to a lo cal minimum, and do es not stagnate

and converge prematurely, it needs to b e shown that b oth the algorithm condition and the

convergence condition de�ned ab ove will hold. Let S = R

n

.

Algorithm ondition The global b est
b
z

(t)

is set to the p osition of the b est p erformance

in the swarm, i.e.

b
z

(t)

2 f z

(t)

1

; z

(t)

2

; : : : ; z

(t)

s

g

�

�

f (
b
z

(t)

)

= max f f (z

(t)

1

) ; f (z

(t)

2

) ; : : : ; f (z

(t)

s

) g

and

z

(t)

i

=

8

<

:

z

(t � 1)

i

if f (p

(t)

i

) � f (z

(t � 1)

i

)

p

(t)

i

if f (p

(t)

i

) < f (z

(t � 1)

i

)

The ab ove up date equations imply that the algorithm condition holds.

Chapter 4. Constrained Particle Swarm Optimisation 59

Convergene ondition Particle up date equations are

p

(t +1)

i

= p

(t)

i

+ wv

(t)

i

+

1

r

(t)

1

[z

(t)

i

� p

(t)

i

] +

2

r

(t)

2

[
b
z

(t)

� p

(t)

i

]

and for the global b est particle

p

(t +1)

�

=
b
z

(t)

+ �

(t)

�

(t)

Sampling a new p oint (that might b e b etter than
b
z

(t)

) will b e done for each of s particles,

and thus we will de�ne M

t

, the supp ort for �

t

at iteration t, as the set from which each

of these s values can b e picked. For each particle p

i

(except for the global b est particle �)

de�ne M

t;i

as the convex hull de�ned by

�

p

(t)

i

�

,

�

p

(t)

i

+ wv

(t)

i

�

,

�

p

(t)

i

+

1

[z

(t)

i

� p

(t)

i

]

�

, and

�

p

(t)

i

+

2

[
b
z

(t)

� p

(t)

i

]

�

.

Since r

(t)

1

; r

(t)

2

� UNIF (0 ; 1), the new particle p

(t +1)

i

will lie within M

t;i

. Also de�ne

M

t;�

as the n-dimensional hyp ercub e with sides of length �

(t)

, centered at
b
z

(t)

. Let

M

t

=

s

[

i =1

M

t;i

b e the supp ort of probability measure �

t

. Since M

t;�

� M

t

a p oint arbitrarily close to
b
z

(t)

can b e chosen, and hence there is always a > 0 and 0 < � � 1 such that

�

t

�

f (
b
z

(t +1)

) � f (
b
z

(t)

) � or
b
z

(t)

2 R

�

�

� �

�

4.4 Inequality-constrained optimisation

Inequality-constrained optimisation problems can b e reduced to problems involving only

non-negativity constraints on a set of variables. In Section 4.1.3 the notion of slack variables,

where a standard optimisation problem is converted to one where all inequalities involve

only a single variable, was intro duced. The LPSO, and consequently the CLPSO as well,

are expanded to handle non-negativity constraints on a set of variables. As the aim of the

CLPSO is (in the context of this thesis) to solve a SVM's constrained optimisation problem,

the metho d explained b elow fo cuses on b ox constraints of the form a � x

j

� b. These

constraints force the particles to only y inside a n-dimensional hyp ercub e, but the metho d

develop ed will work equally well if no upp er b ound on the variables existed.

Consider the way a particle p

i

is b eing up dated:

p

(t +1)

i

= v

(t +1)

i

+ p

(t)

i

(4.31)

Chapter 4. Constrained Particle Swarm Optimisation 60

In the ab ove equation, it is also assumed that p

(t)

i

lies inside the problem's feasible region

. That is, inside the n-dimensional hyp ercub e. For notational convenience, the subscript

i will b e dropp ed. That is,

p

(t)

= (p

(t)

1

; p

(t)

2

; : : : ; p

(t)

n

)

T

(4.32)

For the ab ove particle, for all values p

(t)

j

it will b e true that a � p

(t)

j

� b. However, when

the velo city vector v

(t +1)

is added, it may b ecome true that a value of p

(t +1)

j

may violate

these constraints.

In this case, the velo city vector needs to b e scaled so that all values p

(t +1)

j

will fall inside

the constraints. To scale the velo city vector, a scale factor is computed for each p

(t +1)

j

that

lies outside of the constraints. This factor will scale the vector element to lie exactly on the

b ound. Since the scale factor of one element may scale other elements to lie outside of the

b ounds, the minimum of all these scale factors are taken to scale the velo city vector. Using

this simple technique, the movement of the particles are restricted to the hyp ercub e.

As an example, let a = 0 and b = 2 such that 0 � p

(t)

j

� 2 in the following p osition

vector, and consider the addition of a velo city vector:

p

(t)

= (

1

8

1

8

6

8

0 0

7

8

1

8

)

T

v

(t +1)

= (0 0 �

8

8

0 0

10

8

18

8

)

T

p

(t +1)

= (

1

8

1

8

�

2

8

0 0

17

8

19

8

)

T

< 0 > 2 > 2

It is clear that the new particle lies outside the [0 ; 2]

7

hyp ercub e. For scaling, a value Æ

needs to b e found such that p

(t +1)

= Æv

(t +1)

+ p

(t)

will lie inside these constraints. This Æ

must b e chosen such that p

(t +1)

3

, which is smaller than a = 0, will now satisfy p

(t +1)

3

� 0.

The value of Æ must also enforce p

(t +1)

6

� 2 and p

(t +1)

7

� 2.

Continuing the example, Æ is computed for each violating dimension. The value of p

(t +1)

3

is �

2

8

, but it should ideally b e `cut' to lie within its closest b oundary, zero. Substituting

zero for p

(t +1)

3

gives the scaling factor Æ with which the velo city vector should b e scaled to

achieve this ideal value:

p

(t +1)

3

= Æ

3

v

(t +1)

3

+ p

(t)

3

Æ

3

=

�

p

(t +1)

3

� p

(t)

3

�

=v

(t +1)

3

=

�

0 �

6

8

�

=(�

8

8

) =

6

8

(4.33)

Similarly, the value for p

(t +1)

6

is

17

8

, but should ideally b e scaled down to two, to lie within

its closest b order:

Æ

6

=

�

p

(t +1)

6

� p

(t)

6

�

=v

(t +1)

6

=

�

2 �

7

8

�

=(

10

8

) =

9

10

(4.34)

Chapter 4. Constrained Particle Swarm Optimisation 61

The value for p

(t +1)

7

is

19

8

, but should also b e scaled down to two, to lie within its closest

b order:

Æ

7

=

�

p

(t +1)

7

� p

(t)

7

�

=v

(t +1)

7

Æ

7

=

�

2 �

1

8

�

(

18

8

) =

15

18

(4.35)

From these p ossible scale values that were computed in (4.33), (4.34), and (4.35), the smallest

Æ is chosen to scale the velo city vector with. Thus the value of Æ will b e

6

8

. Multiplying Æ

with v

(t +1)

and up dating the particle gives a new p osition p

(t +1)

that lies exactly within

the constraints.

p

(t)

= (

1

8

1

8

6

8

0 0

7

8

1

8

)

T

Æv

(t +1)

= (0 0 �

6

8

0 0

15

16

27

16

)

T

p

(t +1)

= (

1

8

1

8

0 0 0

29

16

29

16

)

T

From the ab ove example, an algorithm to keep a swarm of particles within an n-

dimensional hyp ercub e [a; b]

n

, can b e generalised.

Algorithm 4.4 - Satisfying inequality onstraints

1. Determine the new p osition that a particle will y to (but do not move it there)

p

(t +1)

= v

(t +1)

+ p

(t)

2. For each dimension j in the new p osition that lies outside [a; b]

n

, compute a scaling

factor Æ

j

Æ

j

=

�

a � p

(t)

j

�

=v

(t +1)

j

if p

(t +1)

j

< a

Æ

j

=

�

b � p

(t)

j

�

=v

(t +1)

j

if p

(t +1)

j

> b

Note that, since p

(t)

j

2 [a; b] and p

(t +1)

j

=2 [a; b], the value of Æ will always b e p ositive.

3. Set Æ = min f Æ

j

j p

(t +1)

j

=2 [a; b] g

4. Finally, move the particle to the new p osition with

p

(t +1)

= Æv

(t +1)

+ p

(t)

to lie within the constrained hyp ercub e [a; b]

n

.

The metho d describ ed ab ove in Algorithm 4.3 is used and exp erimentally veri�ed as part

of the CLPSO used for training Supp ort Vector Machines.

It is now p ossible to y the swarm such that b oth linear and b ounded constraints are

always met. However, the ab ove approach of `cutting against the b orders' induces a new

hurdle that the LPSO has to overcome.

Chapter 4. Constrained Particle Swarm Optimisation 62

x2

x1

b

a b

a

Figure 4.4: Particles b ecoming a linear combination of each other.

The LPSO requires that the set of vectors created by subtracting the particle's current

p osition from the global b est solution vector, together with the swarm's set of velo city

vectors, must span the entire search space. If all particles are `cut' against a single constraint

(say a in a � p

j

� b, as shown in Figure 4.4), the particle p ositions may all b ecome

linear combinations of each other, and if the global b est also lies on the sp eci�c constraint,

the prop erty of spanning the search space will b e lost. This problem can b e remedied by

randomly scattering the swarm, or adding a random vector to each particle to move its

current p osition to the inside of the b ox constraints, when no improvement is made in the

ob jective function for a �xed numb er of iterations.

Due to the way the global b est particle is moved in CLPSO, a random vector is always

added to a p osition in the swarm. The random vector ensures that, with a probability

greater than zero for each iteration, that the global b est particle will b e moved away from

the b ound to b e inside (a; b).

4.5 Concluding

In this chapter the original form of the PSO algorithm was extended to solving constrained

optimisation problems. Two new PSO algorithms were develop ed. The Linear PSO (LPSO)

makes it p ossible to traverse a search space as a hyp erplane, and conditions for LPSO to

reach any p oint within the search space were rigorously analysed. LPSO do es however make

allowance for premature convergence. To remedy the problem of premature convergence,

the Converging LPSO (CLPSO) was develop ed. A formal pro of of CLPSO convergence was

given. Finally, a metho d of handling inequality (b ox) constraints was presented.

Exp erimental results follow in the next chapter, and illustrate LPSO and CLPSO on a

numb er of problems, as well as their p erformance as an optimiser in Supp ort Vector Machine

training.

Chapter 5

Experimental results

The purpose of the fol lowing chapter, presenting experimental results, is twofold: The con-

vergence of Linear PSO (LPSO) and Converging LPSO (CLPSO) is tested, and the CLPSO

is implemented as the constrained optimisation algorithm that is used in training a Support

Vector Machine (SVM).

Experimental results are shown to il lustrate the di�erences between the LPSO and the

CLPSO in linearly minimising constrained functions. The minima found by these two PSOs

are compared for correctness against the minima found by a genetic algorithm implementa-

tion, cal led Genocop II.

As a conclusion, the CLPSO is used in the SVM training algorithm, de�ned in Section

2.4. The algorithm is empirical ly compared against two standard SVM training methods,

namely decomposition and sequential minimal optimisation.

5.1 Linear Particle Swarm Optimiser

5.1.1 Experimental results

In order to test the p erformance of LPSO and CLPSO to minimising problems constrained

by a set of linear constraints Ax = b, let

A =

2

6

6

6

6

6

6

6

6

4

0 � 3 � 1 0 0 2 � 6 0 � 4 � 2

� 1 � 3 � 1 0 0 0 � 5 � 1 � 7 � 2

0 0 1 0 0 1 3 0 � 2 2

2 6 2 2 0 0 4 6 16 4

� 1 � 6 � 1 � 2 � 2 3 � 6 � 5 � 13 � 4

3

7

7

7

7

7

7

7

7

5

; b =

2

6

6

6

6

6

6

6

6

4

3

0

9

� 16

30

3

7

7

7

7

7

7

7

7

5

(5.1)

De�ning matrix A and vector b in the ab ove way gives a set of constraints for testing

ten-dimensional functions.

63

Chapter 5. Experimental results 64

In all exp eriments the inertia weight w was set to 0.7, while the values of

1

and

2

were

set to 1.4. The choice is due to [17], where it is shown that parameter settings close to these

(w = 0 :7298 and

1

=

1

= 1 :49618) give acceptable results. The value of �

(t)

was kept

constant at 1.

The correctness of the results are tested against those found by Genocop II , a genetic

algorithm for optimising constrained problems [31]. Exp eriments on Genocop II are done

in a twofold manner:

1. A go o d minimum is needed against which comparisons can b e made. In each case

a go o d minimum for each constrained function was found by evolving the genetic

algorithm with a p opulation size of 100, for a total of 4000 generations.

2. For purp oses of comparison with LPSO and CLPSO, Genocop II was also evolved with

the same numb er of chromosomes (particles) and generations (iterations) as LPSO and

CLPSO.

In the following exp erimental results, the `go o d minimum' found by Genocop II (with a

p opulation size of 100 and after 4000 generations) is indicated �rst. After the go o d minimum

is shown, the simulations used for comparison with LPSO and CLPSO are discussed.

Test 1

The �rst function tested, f

1

, is a second order p olynomial (parab olic) function. For purp oses

of testing the free dimensions were randomly initialised in the interval [� 100 ; 100]. The

problem is de�ned as

Minimise f

1

(x) =

P

i

x

2

i

; x 2 R

10

Sub ject to Ax = b (5.2)

where A and b are de�ned in equation (5.1).

Genoop II The b est solution found by Genocop II , with a p opulation size of 100 and

4000 generations, was f

1

(x

?

) = 32 :137 with

x

?

= (0 :567 ; � 0 :487 ; 1 :736 ; � 1 :181 ; � 3 :404 ; 3 :357 ; 0 :9 ; � 1 :795 ; � 0 :528 ; 0 :075)

T

Genocop II was evolved for a total of 250 generations, for p opulation sizes of 5, 10, 15,

and 20 chromosomes. The average convergence over 100 simulations is shown in Figure

5.1(a). The average is determined over the b est �tness values at a sp eci�c generation, over

all simulations. The maximum and minimum values over all simulations are computed in

a similar fashion, and are shown in Figures 5.1(b) and 5.1(c) resp ectively. The decreasing

Chapter 5. Experimental results 65

10

100

1000

10000

100000

0 50 100 150 200 250

av
er

ag
e

gl
ob

al
 b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(a) Average

100

1000

10000

100000

0 50 100 150 200 250

m
ax

im
um

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(b) Maximum

10

100

1000

10000

100000

0 50 100 150 200 250

m
in

im
um

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

() Minimum

10

100

1000

10000

100000

0 50 100 150 200 250

st
an

da
rd

 d
ev

ia
tio

n
of

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(d) Standard Deviation

Figure 5.1: Results of 100 Genocop II simulations on the constrained parab ola f

1

de�ned in

equation (5.2).

Table 5.1: Results of 100 Genocop II simulations on the constrained parab ola f

1

de�ned in equation

(5.2), after 250 generations. (`chromosomes' is abbreviated as chrms.)

Genocop II 5 chrms. 10 chrms. 15 chrms. 20 chrms.

Average 739.438 304.884 69.154 54.846

Maximum 1 :626 � 10

3

1 :168 � 10

3

124.820 107.584

Minimum 38.322 37.612 33.837 32.544

Standard Deviation 840.279 387.746 26.749 16.939

Chapter 5. Experimental results 66

10

100

1000

10000

100000

0 50 100 150 200 250

av
er

ag
e

gl
ob

al
 b

es
t f

itn
es

s

iteration number

LPSO - 5 particles
LPSO - 10 particles
LPSO - 15 particles
LPSO - 20 particles

(a) Average

10

100

1000

10000

100000

1e+06

0 50 100 150 200 250

m
ax

im
um

 g
lo

ba
l b

es
t f

itn
es

s

iteration number

LPSO - 5 particles
LPSO - 10 particles
LPSO - 15 particles
LPSO - 20 particles

(b) Maximum

10

100

1000

10000

100000

0 50 100 150 200 250

m
in

im
um

 g
lo

ba
l b

es
t f

itn
es

s

iteration number

LPSO - 5 particles
LPSO - 10 particles
LPSO - 15 particles
LPSO - 20 particles

() Minimum

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

10000

1e+06

0 50 100 150 200 250

st
an

da
rd

 d
ev

ia
tio

n
of

 g
lo

ba
l b

es
t f

itn
es

s

iteration number

LPSO - 5 particles
LPSO - 10 particles
LPSO - 15 particles
LPSO - 20 particles

(d) Standard Deviation

Figure 5.2: Results of 100 simulations of LPSO on the constrained parab ola f

1

de�ned in equation

(5.2).

maximum (worst) p erformances give a clear indication that the genetic algorithm converges

for all simulations. The standard deviation of the b est �tness values over 100 simulations

is shown in Figure 5.1(d). These results are summarised in Table 5.1, and are compared to

the PSO under the CLPSO results.

LPSO Figure 5.2 shows the convergence of LPSO over 250 iterations, or time steps, of

the LPSO algorithm. The results are taken from a total of 100 simulations on swarm sizes

of 5, 10, 15, and 20. The average at a sp eci�c iteration is computed over the 100 gbest

values at that sp eci�c iteration numb er, and the averages over all iterations are illustrated

in Figure 5.2(a). The maximums and minimums are computed in a similar way, with the

maximum b eing the largest of the 100 gbest values at a sp eci�c iteration, and the minimum

b eing the smallest of the 100 gbest values at a sp eci�c iteration. This is shown in Figures

5.2(b) and 5.2(c). The standard deviation of all the LPSO's gbest values at a certain time

Chapter 5. Experimental results 67

(Figure 5.2(d)), shows the similarity in the convergence of the 100 swarms.

The average LPSO results for each set of simulations are completely di�erent, and illus-

trates how the swarms of particles catch up with the global b est particle, and converges to

a sub-optimal solution. Only a swarm of 20 particles were able to converge to the optimal

solution during each simulation. This is illustrated by comparing the standard deviations of

each set of simulations's gbest values. After 250 iterations (time steps), the standard devia-

tion the 20-particle LPSO's gbest is only 7 :176 � 10

� 12

, implying that all swarms converged

to the optimal solution. The standard deviations of swarms with 5, 10, and 15 particles

are substantially larger, implying that the swarms converged to di�erent solutions, with the

variance in convergence increasing as the swarm size decreases. This is the exp ected result,

due to particles catching up and converging to the global b est solution [53]. The results

after 250 iterations are shown in Table 5.2.

The large average gbest of 7 :034 � 10

3

for a swarm of 5 particles { compared to the averages

of 10, 15, and 20 particles { is also exp ected. The minimum numb er of particles needed to

ensure that the swarm spans the entire search space, is inf j S

(0)

j = n � r + 1 = 10 � 5 + 1 = 6

(refer to equation (4.27)). Consequently, a swarm with 5 particles cannot p ossibly span the

entire search space, which explains the large average gbest .

CLPSO The results of CLPSO over 250 time steps are shown in Figure 5.3, with the

averages, maximums, minimums, and standard deviations computed in the same way as was

done with the LPSO ab ove.

The CLPSO simulations (for 5, 10, 15, and 20 particles) all converged on average to the

minimum, or a value close to it. The minimum solution found was

x

?

= (0 :566 ; � 0 :485 ; 1 :738 ; � 1 :181 ; � 3 :402 ; 3 :357 ; 0 :9 ; � 1 :795 ; � 0 :528 ; 0 :074)

T

with

f

1

(x

?

) = 32 :137

The rate of convergence is higher for larger swarms. Figure 5.3(a) shows how the sp eed

of convergence increases as the swarm size grows from 5 to 10, 15, and 20 particles. The

standard deviations in Table 5.2 show that there is a very small variance in the gbest found

by each swarm in the di�erent sets of simulations, indicating that all swarms were close to

or at the minimum solution after 250 time steps.

Since the initial condition (refer to equation (4.27)) on a swarm is dropp ed for the

CLPSO, a swarm of 5 particles also searched the entire search space and found the minimum.

This can b e seen by comparing the average and minimum of a 5-particle swarm in Table

5.2. The di�erence b etween LPSO and CLPSO can b e clearly seen when Figures 5.2(a) and

Chapter 5. Experimental results 68

10

100

1000

10000

100000

0 50 100 150 200 250

av
er

ag
e

gl
ob

al
 b

es
t f

itn
es

s

iteration number

CLPSO - 5 particles
CLPSO - 10 particles
CLPSO - 15 particles
CLPSO - 20 particles

(a) Average

10

100

1000

10000

100000

1e+06

0 50 100 150 200 250

m
ax

im
um

 g
lo

ba
l b

es
t f

itn
es

s

iteration number

CLPSO - 5 particles
CLPSO - 10 particles
CLPSO - 15 particles
CLPSO - 20 particles

(b) Maximum

10

100

1000

10000

100000

0 50 100 150 200 250

m
in

im
um

 g
lo

ba
l b

es
t f

itn
es

s

iteration number

CLPSO - 5 particles
CLPSO - 10 particles
CLPSO - 15 particles
CLPSO - 20 particles

() Minimum

1e-06

0.0001

0.01

1

100

10000

1e+06

0 50 100 150 200 250

st
an

da
rd

 d
ev

ia
tio

n
of

 g
lo

ba
l b

es
t f

itn
es

s

iteration number

CLPSO - 5 particles
CLPSO - 10 particles
CLPSO - 15 particles
CLPSO - 20 particles

(d) Standard Deviation

Figure 5.3: Results of 100 simulations of CLPSO on the constrained parab ola f

1

de�ned in equation

(5.2).

Chapter 5. Experimental results 69

Table 5.2: Results of 100 LPSO and CLPSO simulations on the constrained parab ola f

1

de�ned

in equation (5.2), after 250 iterations.

LPSO 5 particles 10 particles 15 particles 20 particles

Average 7 :034 � 10

3

445.316 35.071 32.137

Maximum 4 :630 � 10

4

4 :505 � 10

3

244.077 32.137

Minimum 37.420 32.137 32.137 32.137

Standard Deviation 8 :007 � 10

3

803.006 21.500 7 :176 � 10

� 12

CLPSO 5 particles 10 particles 15 particles 20 particles

Average 35.197 32.139 32.137 32.137

Maximum 252.826 32.183 32.138 32.137

Minimum 32.138 32.137 32.137 32.137

Standard Deviation 22.132 6 :689 � 10

� 3

1 :832 � 10

� 4

3 :016 � 10

� 6

5.3(a) are compared. The CLPSO converges on average to the minimum; the LPSO shows

premature convergence for smaller swarm sizes, since when the global b est do es not improve

over a large numb er of iterations, the swarm catches up with it. Note that the probability

of �nding b etter solutions increase with LPSO swarm size, and thus the probability of

convergence also increases.

In comparison to Genocop II , the CLPSO has a substantially smaller standard deviation

of gbest values at iteration 250. This is due to the fact that CLSPO has already converged,

while Genocop II has, for the larger part of simulations, not yet converged to the minimum.

Test 2

Function f

2

is a quadratic function similar to those commonly found in quadratic program-

ming problems. This function was chosen b ecause it is also similar to the dual Lagrangian

optimised in SVM training. Again, the free dimensions were randomly initialised in the

interval [� 100 ; 100]. The problem is de�ned as

Minimise f

2

(x) =

P

i

P

j

e

� (x

i

� x

j

)

2

x

i

x

j

+

P

i

x

i

; x 2 R

10

Sub ject to Ax = b (5.3)

where A and b are de�ned in equation (5.1).

Chapter 5. Experimental results 70

10

100

1000

10000

100000

0 200 400 600 800 1000

av
er

ag
e

gl
ob

al
 b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(a) Average

10

100

1000

10000

100000

0 200 400 600 800 1000

m
ax

im
um

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(b) Maximum

10

100

1000

10000

0 200 400 600 800 1000

m
in

im
um

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

() Minimum

1

10

100

1000

10000

100000

0 200 400 600 800 1000

st
an

da
rd

 d
ev

ia
tio

n
of

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(d) Standard Deviation

Figure 5.4: Results of 100 Genocop II simulations on the constrained quadratic function f

2

de�ned

in equation (5.3).

Chapter 5. Experimental results 71

Table 5.3: Results of 100 Genocop II simulations on the constrained quadratic function f

2

de�ned

in equation (5.3), after 1000 generations. (`chromosomes' is abbreviated as chrms.)

Genocop II 5 chrms. 10 chrms. 15 chrms. 20 chrms.

Average 104.192 49.945 42.393 39.500

Maximum 262.656 82.221 60.110 56.613

Minimum 37.939 35.393 35.772 35.410

Standard Deviation 59.873 10.996 6.861 6.785

Genoop II The b est solution found by Genocop II , with a p opulation size of 100 and

4000 generations, was f

2

(x

?

) = 35 :377 with

x

?

= (0 :076 ; � 0 :28 ; 0 :446 ; � 0 :373 ; � 3 :956 ; 3 :762 ; 1 :119 ; � 1 :865 ; � 0 :539 ; 0 :178)

T

Genocop II was evolved for a total of 1000 generations, for p opulation sizes of 5, 10, 15, and

20 chromosomes. The averages, maximums, minimums and standard deviations over 100

simulations are shown in Figure 5.4, and are computed in the same way as Test 1. Again,

these results are summarised in Table 5.3, and are compared to the PSO under the CLPSO

results.

LPSO The results of LPSO over 1000 time steps are shown in Figure 5.5, with the averages,

maximums, minimums, and standard deviations computed in the same way as explained in

Test 1 ab ove.

The averages, maximums and standard deviations illustrate the same b ehaviour as the

results in Test 1 (optimising the constrained f

1

with LPSO). It is worthwhile to note that the

minimum found by the LPSO, as seen in Figure 5.5(c) and Table 5.4, is the true minimum,

except for the 5-particle case. This again illustrates that the LPSO's 5 particles do not span

the entire search space, which is 6-dimensional.

CLPSO The results of CLPSO over 1000 time steps are shown in Figure 5.6, with the

averages, maximums, minimums, and standard deviations computed in the same way as

explained in Test 1 ab ove.

It is clear from Figure 5.6(a) that, after 1000 iterations, the CLSPO is still converging.

After 2000 iterations (not shown in the �gures), the average gbest values were 76.677 for 5

particles, 66.084 for 10 particles, 56.731 for 15 particles, and 39.537 for 20 particles. The

averages after 2000 iterations are all smaller than the averages at 1000 generations, shown

in Table 5.4.

Chapter 5. Experimental results 72

10

100

1000

10000

100000

0 200 400 600 800 1000

av
er

ag
e

gl
ob

al
 b

es
t f

itn
es

s

iteration number

LPSO - 5 particles
LPSO - 10 particles
LPSO - 15 particles
LPSO - 20 particles

(a) Average

100

1000

10000

100000

1e+06

0 200 400 600 800 1000

m
ax

im
um

 g
lo

ba
l b

es
t f

itn
es

s

iteration number

LPSO - 5 particles
LPSO - 10 particles
LPSO - 15 particles
LPSO - 20 particles

(b) Maximum

10

100

1000

10000

100000

0 200 400 600 800 1000

m
in

im
um

 g
lo

ba
l b

es
t f

itn
es

s

iteration number

LPSO - 5 particles
LPSO - 10 particles
LPSO - 15 particles
LPSO - 20 particles

() Minimum

10

100

1000

10000

100000

0 200 400 600 800 1000

st
an

da
rd

 d
ev

ia
tio

n
of

 g
lo

ba
l b

es
t f

itn
es

s

iteration number

LPSO - 5 particles
LPSO - 10 particles
LPSO - 15 particles
LPSO - 20 particles

(d) Standard Deviation

Figure 5.5: Results of 100 simulations of LPSO on the constrained quadratic function f

2

de�ned

in equation (5.3).

Chapter 5. Experimental results 73

10

100

1000

10000

100000

0 200 400 600 800 1000

av
er

ag
e

gl
ob

al
 b

es
t f

itn
es

s

iteration number

CLPSO - 5 particles
CLPSO - 10 particles
CLPSO - 15 particles
CLPSO - 20 particles

(a) Average

10

100

1000

10000

100000

1e+06

0 200 400 600 800 1000

m
ax

im
um

 g
lo

ba
l b

es
t f

itn
es

s

iteration number

CLPSO - 5 particles
CLPSO - 10 particles
CLPSO - 15 particles
CLPSO - 20 particles

(b) Maximum

10

100

1000

10000

100000

0 200 400 600 800 1000

m
in

im
um

 g
lo

ba
l b

es
t f

itn
es

s

iteration number

CLPSO - 5 particles
CLPSO - 10 particles
CLPSO - 15 particles
CLPSO - 20 particles

() Minimum

10

100

1000

10000

100000

0 200 400 600 800 1000

st
an

da
rd

 d
ev

ia
tio

n
of

 g
lo

ba
l b

es
t f

itn
es

s

iteration number

CLPSO - 5 particles
CLPSO - 10 particles
CLPSO - 15 particles
CLPSO - 20 particles

(d) Standard Deviation

Figure 5.6: Results of 100 simulations of CLPSO on the constrained quadratic function f

2

de�ned

in equation (5.3).

Chapter 5. Experimental results 74

Table 5.4: Results of 100 LPSO and CLPSO simulations on the constrained quadratic function f

2

de�ned in equation (5.3), after 1000 iterations.

LPSO 5 particles 10 particles 15 particles 20 particles

Average 8 :463 � 10

3

758.525 125.727 59.762

Maximum 7 :793 � 10

4

1 :123 � 10

4

1 :719 � 10

3

246.905

Minimum 240.101 35.400 35.377 35.377

Standard Deviation 1 :051 � 10

4

1 :496 � 10

3

231.095 39.831

CLPSO 5 particles 10 particles 15 particles 20 particles

Average 82.077 68.570 59.001 39.832

Maximum 197.389 196.067 196.065 71.380

Minimum 35.377 35.377 35.377 35.377

Standard Deviation 60.959 53.865 49.957 10.887

Table 5.4 illustrates the average, maximum, minimum, and standard deviation of the

gbest convergence of 100 simulations of swarms with 5, 10, 15, and 20 particles, after 1000

time steps. The minimum gbest was

f

2

(x

?

) = 35 :377

at

x

?

= (0 :076 ; � 0 :281 ; 0 :445 ; � 0 :373 ; � 3 :956 ; 3 :762 ; 1 :12 ; � 1 :865 ; � 0 :538 ; 0 :178)

T

If the average minimum values found in Figures 5.4(a) and 5.6(a) are compared, CLPSO

shows a faster rate of convergence than Genocop II . The standard deviation after 1000

iterations or generations is smaller for Genocop II (compare Tables 5.3 and 5.4), indicating

greater consistency in convergence b etween the di�erent simulations.

Test 3

The third function tested, f

3

, is a Rosenbro ck function in ten dimensions. The constrained

f

3

di�ers from b oth f

1

and f

2

b ecause it is not a convex function. The free dimensions were

randomly initialised in the interval [� 100 ; 100]. The problem is de�ned as

Minimise f

3

(x) =

P

n � 1

i =1

(100(x

i +1

� x

2

i

)

2

+ (1 � x

i

)

2

) ; x 2 R

10

Sub ject to Ax = b (5.4)

Chapter 5. Experimental results 75

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0 500 1000 1500 2000

av
er

ag
e

gl
ob

al
 b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(a) Average

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

0 500 1000 1500 2000

m
ax

im
um

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(b) Maximum

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0 500 1000 1500 2000

m
in

im
um

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

() Minimum

0.01

1

100

10000

1e+06

1e+08

1e+10

0 500 1000 1500 2000

st
an

da
rd

 d
ev

ia
tio

n
of

 g
lo

ba
l b

es
t f

itn
es

s

generation number

Genocop II - 5 chromosomes
Genocop II - 10 chromosomes
Genocop II - 15 chromosomes
Genocop II - 20 chromosomes

(d) Standard Deviation

Figure 5.7: Results of 100 Genocop II simulations on the constrained Rosenbro ck function f

3

de�ned in equation (5.4).

where A and b are de�ned in equation (5.1).

Genoop II The b est solution found by Genocop II , with a p opulation size of 100 and

4000 generations, was f

3

(x

?

) = 21485 :361 with

x

?

= (0 :84 ; � 1 :516 ; 2 :359 ; � 0 :669 ; � 3 :352 ; 2 :991 ; 1 :053 ; � 1 :949 ; � 0 :273 ; � 0 :028)

T

Genocop II was evolved for a total of 2000 generations, for p opulation sizes of 5, 10, 15, and

20 chromosomes. The averages, maximums, minimums and standard deviations over 100

simulations are shown in Figure 5.7, and are computed in the same way as Test 1. Again,

these results are summarised in Table 5.5, and are compared to the PSO under the CLPSO

results.

LPSO The results of LPSO over 2000 time steps are shown in Figure 5.8, with the averages,

maximums, minimums, and standard deviations computed in the same way as explained in

Chapter 5. Experimental results 76

Table 5.5: Results of 100 Genocop II simulations on the constrained Rosenbro ck function f

3

de�ned

in equation (5.4), after 2000 generations. (`chromosomes' is abbreviated as chrms.)

Genocop II 5 chrms. 10 chrms. 15 chrms. 20 chrms.

Average 58249.328 21630.020 21546.332 21485.714

Maximum 2 :005 � 10

5

22030.988 21836.797 21486.646

Minimum 22334.971 21490.840 21487.098 21485.363

Standard Deviation 62513.767 154.443 85.311 0.400

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

1e+12

0 500 1000 1500 2000

av
er

ag
e

gl
ob

al
 b

es
t f

itn
es

s

iteration number

LPSO - 5 particles
LPSO - 10 particles
LPSO - 15 particles
LPSO - 20 particles

(a) Average

1e+07

1e+08

1e+09

1e+10

1e+11

1e+12

1e+13

0 500 1000 1500 2000

m
ax

im
um

 g
lo

ba
l b

es
t f

itn
es

s

iteration number

LPSO - 5 particles
LPSO - 10 particles
LPSO - 15 particles
LPSO - 20 particles

(b) Maximum

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0 500 1000 1500 2000

m
in

im
um

 g
lo

ba
l b

es
t f

itn
es

s

iteration number

LPSO - 5 particles
LPSO - 10 particles
LPSO - 15 particles
LPSO - 20 particles

() Minimum

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

1e+12

0 500 1000 1500 2000

st
an

da
rd

 d
ev

ia
tio

n
of

 g
lo

ba
l b

es
t f

itn
es

s

iteration number

LPSO - 5 particles
LPSO - 10 particles
LPSO - 15 particles
LPSO - 20 particles

(d) Standard Deviation

Figure 5.8: Results of 100 simulations of LPSO on the constrained Rosenbro ck function f

3

de�ned

in equation (5.4).

Chapter 5. Experimental results 77

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

1e+12

0 500 1000 1500 2000

av
er

ag
e

gl
ob

al
 b

es
t f

itn
es

s

iteration number

CLPSO - 5 particles
CLPSO - 10 particles
CLPSO - 15 particles
CLPSO - 20 particles

(a) Average

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

1e+12

1e+13

0 500 1000 1500 2000

m
ax

im
um

 g
lo

ba
l b

es
t f

itn
es

s

iteration number

CLPSO - 5 particles
CLPSO - 10 particles
CLPSO - 15 particles
CLPSO - 20 particles

(b) Maximum

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0 500 1000 1500 2000

m
in

im
um

 g
lo

ba
l b

es
t f

itn
es

s

iteration number

CLPSO - 5 particles
CLPSO - 10 particles
CLPSO - 15 particles
CLPSO - 20 particles

() Minimum

1e-10

1e-05

1

100000

1e+10

1e+15

0 500 1000 1500 2000

st
an

da
rd

 d
ev

ia
tio

n
of

 g
lo

ba
l b

es
t f

itn
es

s

iteration number

CLPSO - 5 particles
CLPSO - 10 particles
CLPSO - 15 particles
CLPSO - 20 particles

(d) Standard Deviation

Figure 5.9: Results of 100 simulations of CLPSO on the constrained Rosenbro ck function f

3

de�ned

in equation (5.4).

Test 1 ab ove.

The LPSO swarms of 10, 15, and 20 particles managed to �nd the minimum value of

the function, or came close to it at iteration numb er 2000. After 2000 iterations, the LPSO

swarms were still �nding b etter solutions, as is illustrated in Figure 5.8(a).

CLPSO The results of CLPSO over 2000 time steps are shown in Figure 5.9, with the

averages, maximums, minimums, and standard deviations computed in the same way as

explained in Test 1 ab ove.

The 20-particle CLSPO consistently converged to the minimum, as can b e seen from

Figure 5.9 and Table 5.6. Figure 5.9(a) also shows that the average �tness decreases dra-

matically to the minimum after the swarm has converged b elow a certain �tness level. It

also shows that the swarms of 5 and 10 particles did not stagnate, but are still converging

at the 2000

th

iteration. The sudden and complete convergence when the swarm decreases

Chapter 5. Experimental results 78

Table 5.6: Results of 100 LPSO and CLPSO simulations on the constrained Rosenbro ck function

f

3

de�ned in equation (5.4), after 2000 iterations.

LPSO 5 particles 10 particles 15 particles 20 particles

Average 1 :375 � 10

9

4 :444 � 10

6

3 :710 � 10

5

1 :260 � 10

5

Maximum 3 :556 � 10

10

2 :177 � 10

8

2 :054 � 10

7

1 :045 � 10

7

Minimum 1 :955 � 10

5

21554.158 21483.373 21485.925

Standard Deviation 4 :485 � 10

9

2 :278 � 10

7

2 :407 � 10

6

1 :043 � 10

6

CLPSO 5 particles 10 particles 15 particles 20 particles

Average 6 :522 � 10

8

7 :446 � 10

5

21485.305 21485.305

Maximum 2 :233 � 10

10

7 :112 � 10

7

21485.305 21485.305

Minimum 21485.306 21485.305 21485.305 21485.305

Standard Deviation 2 :395 � 10

9

7 :120 � 10

6

9 :834 � 10

� 8

9 :401 � 10

� 8

b elow a sp eci�c �tness value is con�rmed by the standard deviations of Figure 5.9(d), where

the variance in gb est for swarms of 20 particles b ecomes close to zero.

The raise in variance after a go o d minimum was found (see Figure 5.9(d)), can b e

attributed to the random search p erformed by CLPSO. As minutely b etter minimums are

found, the gbest values will start to di�er slightly, causing a rise in standard deviation in

the order of 10

� 7

.

The CLPSO found

x

?

= (0 :84 ; � 1 :514 ; 2 :359 ; � 0 :67 ; � 3 :352 ; 2 :991 ; 1 :053 ; � 1 :949 ; � 0 :274 ; � 0 :028)

T

after 2000 time steps. The value of f

3

at x

?

was

f

3

(x

?

) = 21485 :305

The average b est �tness of Genocop II is substantially b etter than that of b oth LPSO

and CLPSO for small p opulation or swarm sizes (see Figures 5.7(a) and 5.9(a)). This can

b e ascrib ed to a greater amount of mutation on the chromosomes (particles), and therefore

a greater diversity in the solutions tested. The b etter convergence for small p opulation or

swarm sizes is supp orted by the di�erence in the standard deviations over the simulations,

shown in Tables 5.5 and 5.6. For larger p opulations or greater swarm sizes, Genocop II and

CLPSO have very similar p erformance.

Chapter 5. Experimental results 79

5.1.2 LPSO and CLPSO Convergene harateristis

Some remarks, all con�rming the theoretical prop erties needed for LPSO and CLPSO to

successfully converge to a minimum, can b e made from the ab ove exp erimental results.

1. A swarm of 5 particles is smaller than the minimum swarm size, as derived in equation

(4.27), of

inf j S

(0)

j = n � r + 1 = 10 � 5 + 1 = 6

Thus LPSO will not cover all search dimensions, and results can b e exp ected to b e

sub optimal. Indeed, the average gbest (minimum) of the constrained f

1

in equation

(5.2) was at 7 :034 � 10

3

after 250 time steps, while CLPSO managed to �nd an average

gbest of 35.197 with �ve particles. The comparison is shown in Table 5.2. With �ve

particles and t = 1000, LPSO's average b est for f

2

de�ned in (5.3) was 8 :463 � 10

3

,

while CLPSO's b est f

2

was 82.007 (see Table 5.4).

2. As can b e clearly seen in Figures 5.2, 5.5, and 5.8, the swarm catches up with the

global b est particle b efore reaching a minimum to cause premature convergence. This

problem is overcome by CLPSO, as the empirical results in Figures 5.3, 5.6, and 5.9

illustrate.

5.2 Supp ort Vector Machine Training

After showing the convergence and prop erties of the newly develop ed LPSO and CLPSO,

the CLPSO algorithm will b e implemented in training SVMs. This section illustrates the

success and simplicity of the metho d, and also discusses some b ottlenecks that have to b e

overcome to make the algorithm practically comp etitive.

5.2.1 Implementing the SVM training algorithm

Two issues remain to b e resolved in implementing the SVM training algorithm describ ed

in Section 2.4. Both issues consist of �nding feasible vectors: The �rst is to �nd an initial

feasible solution � for the algorithm to start with. The second is, given a working set B , to

initialise the swarm of particles that is going to optimise B , such that the swarm is feasible.

Finding an initial feasible solution �

To resolve the �rst issue, a feasible solution that satis�es the linear constraint �

T

y = 0,

with constraints 0 � �

i

� C also met, is needed at the start of the decomp osition algorithm.

The initial solution is constructed in the following way:

Chapter 5. Experimental results 80

Let b e some real numb er b etween 0 and C , and some p ositive integer less than b oth

the numb er of p ositive examples (y

i

= +1) and negative examples (y

i

= � 1) in the training

set. Randomly pick a total of p ositive examples, and negative examples, and initialise

their corresp onding �

i

to . By setting all other �

i

to zero, the initial solution will b e

feasible.

The value 2 gives the total numb er of initial supp ort vectors, and since these initial

supp ort vectors are a randomly chosen guess, it is suggested that the value of b e kept

small.

1

Initialising a feasible swarm of partiles

To resolve the second issue, consider the constrained optimisation problem solved by the

CLPSO, rep eated here for convenience:

max

�

B

W (�

B

) = �

T

B

1 �

1

2

�

T

B

Q

B B

�

B

� �

T

B

Q

B N

�

N

(5.5)

sub ject to

�

T

B

y

B

+ �

T

N

y

N

= 0

�

B

� 0

C1 � �

B

� 0 (5.6)

In optimising the q -dimensional subproblem, CLPSO requires that all particles b e ini-

tialised such that �

T

B

y

B

+ �

T

N

y

N

= 0 is met. This is done as follows:

1. Set each particle in the swarm to the q -dimensional vector �

B

.

2. Add a random q -dimensional vector Æ satisfying y

T

B

Æ = 0 to each particle, under the

condition that the particle will still lie in the hyp ercub e [0 ; C]

q

.

Initialising the swarm in this way ensures that the initial swarm lies in the set of feasible

solutions P = f p j Ap = � �

T

N

y

N

g , allowing the ight of the swarm to b e de�ned by feasible

directions.

5.2.2 Pratial onerns and improvements

A numb er of practical issues need to b e addressed to implement the algorithm numerically.

One issue is on deciding when a solution is `optimal enough,' and the Karush-Kuhn-Tucker

1

In reality, any non-zero feasible vetor an be used as an initial solution; hoosing positive and negative

examples only gives a simple way of onstruting suh a vetor. Larger values of imply a larger set of

initial support vetors, and the training algorithm simply spends extra time in removing the non-support

vetors from this set.

Chapter 5. Experimental results 81

conditions are adapted to b e correct within an error threshold from the true conditions.

The SVM training algorithm presented in Chapter 2 assumes in�nite precision arithmetic.

Since machine numb ers allow only �nite accuracy, the problem of error accumulation and

round-o� errors is addressed. A strategy is also given to optimise the dot pro duct b etween

two sparse vectors.

An approximation to the optimality onditions

The Karush-Kuhn-Tucker conditions (2.33) that de�ne the stopping criteria for the training

algorithm, sp ecify that an �

(t)

i

b etween zero and C must imply that y

i

(s

(t)

i

+ b

(t)

) should

b e exactly equal to one. In practice this is not always p ossible, and a small p ositive error

� on the KKT conditions will b e tolerated to allow the algorithm to terminate. The value

of � close to 0.01 or 0.02 will typically give a very accurate optimisation [24]. The practical

KKT conditions are therefore

�

(t)

i

= 0) y

i

(s

(t)

i

+ b

(t)

) > 1 � �

0 < �

(t)

i

< C) 1 � � < y

i

(s

(t)

i

+ b

(t)

) < 1 + �

�

(t)

i

= C) y

i

(s

(t)

i

+ b

(t)

) < 1 + � (5.7)

Error aumulation and round-o� errors

The nature of the constrained LPSO algorithm allows for division and multiplication by

very large and very small real numb ers. This can give rise to numerical precision problems.

One of the constraints on the SVM optimisation problem is that the sum of all y

i

�

i

must

b e equal to zero. It may b e true that, due to rounding errors, this sum can shift from zero.

To solve this problem, a check is done to determine

error =

l

X

i =1

y

i

�

i

To reset the sum to zero, one of the zero Lagrange multipliers �

i

is set to the absolute

value of error . If error is p ositive, an �

i

corresp onding to a negative example y

i

is randomly

chosen. If the opp osite is true and error is negative, an �

i

corresp onding to a p ositive

example y

i

is randomly chosen. As optimisation continues, this adjusted Lagrange multiplier

will b e picked for reoptimisation, with the equality constraint holding.

The up date is done when error rises ab ove a certain threshold; in the exp eriments

presented here, error was in the order of 10

� 6

. In practice this up date rarely happ ens, but

can o ccur.

Chapter 5. Experimental results 82

Optimising the dot produt between two sparse vetors

The time taken to compute the dot pro duct b etween two sparse vectors can b e greatly

optimised if all multiplications with zero are simply ignored. The dot pro duct b etween two

n-dimensional vectors x

i

and x

j

is de�ned as

x

i

� x

j

= x

i 1

x

j 1

+ x

i 2

x

j 2

+ : : : + x

in

x

j n

Since a sparse vector contains many zero elements, many multiplications will b e with zero

and therefore unnecessary. The following algorithm is adapted from [41], and scans through

b oth vectors to compute the dot pro duct:

/* Array x1, with length n1, is an array that stores only

xi's nonzero components. The original positions of these

components in vector xi is stored in array id1. Arrays

x2 and id2 with size n2 is used to store sparse vector xj.

*/

p1 = 0, p2 = 0, dot = 0

while (p1 < n1 && p2 < n2)

{

a1 = id1[p1], a2 = id2[p2]

if (a1 == a2)

{

dot += x1[p1]*x2[p2]

p1++, p2++

}

else if (a1 > a2)

p2++

else

p1++

}

5.2.3 Experimental results

The SVM training algorithm presented in Section 2.4 was tested on the MNIST dataset [33].

The inuence of di�erent working set sizes, as well as the scalability of the approach, is ex-

amined. Finally, the training results are compared to two other algorithms, a decomp osition

metho d and the metho d of sequential minimal optimisation.

Chapter 5. Experimental results 83

7420 7421 7422 7423 7424

7426

7425

7427 7428 7429 7430 7431

7432 7433 7434 7435 7436 7437

7438 7439 7440 7441 7442 7443

7444 7445 7446 7447 7448 7449

7450 7451 7452 7453 7454 7455

Figure 5.10: A few examples from the MNIST dataset.

The MNIST dataset

The MNIST database is an optical character dataset, and consists of a training set of 60,000

handwritten digits [33]. This database is a subset of a larger set available from the National

Institute of Standards Bureau (NIST). As shown in Figure 5.10, the examples are 28 by 28

pixel grey-level images. This is equivalent to each example b eing a 784-dimensional vector.

Each pixel value corresp onds to an integer in the range 0 (white) to 255 (black). It is a

common database for b enchmarking learning techniques and pattern recognition metho ds.

Training the SVM

For training a SVM on the MNIST dataset, the character `8' was chosen to represent the

set of p ositive examples, while the remaining digits de�ned the negative examples. Training

was done with a p olynomial kernel of degree �ve:

k (x

i

;x

j

) = (x

i

� x

j

+ 1)

5

(5.8)

Due to the size of the dot pro duct b etween two images, raised to the �fth p ower, the pixel

Chapter 5. Experimental results 84

Table 5.7: Inuence of di�erent working set sizes on the �rst 20,000 elements of the MNIST dataset

Working Working Time SVs

set size set selections

4 8,782 02:17:43 1,631

6 8,213 03:11:40 1,637

8 7,502 03:51:24 1,639

10 10,023 06:27:06 1,648

12 9,667 07:26:23 1,652

values were scaled to the range [0 ; 0 :1]. This gives Lagrange multipliers �

i

that are easier

for the CLPSO to handle. (The kernel function of two unscaled black images would b e

(784 � 255

2

+ 1)

5

, while the kernel function of the scaled versions gives a more practical

(784 � 0 :01 + 1)

5

� 835).

For an optimal solution to b e found in the following PSO exp eriments, the KKT condi-

tions in equation (5.7) needed to b e satis�ed within an error threshold of � = 0 :02. Opti-

misation of the working set terminated when the KKT conditions on the working set were

met with an error of 0.001, or when the swarm has optimised for a hundred iterations.

The following parameters de�ned the exp erimental CLPSO: By letting = 10, a total of

20 initial supp ort vectors were chosen to start the algorithm. The swarm size s used in each

exp eriment was 10, while the inertia weight w was set to 0.7. The acceleration co e�cients

1

and

2

were b oth set to 1.4 [53]. Since the ob jective function is constrainted by a set

of b ox constraints, the velo city vectors were not clamp ed. For each exp eriment the upp er

b ound C was kept at 100.0 (a commonly used upp er b ound in SVM training).

The PSO training algorithm was written in Java, and do es not make use of caching and

shrinking metho ds to optimize its sp eed. The sparsity of input data is used to sp eed up the

evaluation of kernel functions. All exp eriments were preformed on a 1.00 GHz AMD Duron

pro cessor.

Exp erimental results show successful and accurate training on the MNIST database. The

inuence of di�erent working set sizes on the CLPSO training algorithm, its scalability, as

well as its relation to other SVM training algorithms, were examined.

Chapter 5. Experimental results 85

Table 5.8: Scalability: training on the MNIST dataset

MNIST PSO Working PSO PSO SMO SMO SVM

lig ht

SVM

lig ht

elements set selections time SVs time SVs time SVs

10,000 3,898 00:29:49 1,022 00:01:29 1,032 00:02:02 1,034

20,000 8,782 02:17:43 1,631 00:06:14 1,647 00:10:43 1,641

30,000 12,428 04:50:11 1,988 00:13:22 2,012 00:23:04 2,001

40,000 15,725 08:14:26 2,353 00:22:46 2,355 00:41:09 2,367

50,000 22,727 15:05:09 2,728 01:46:38 2,740 01:31:48 2,726

60,000 25,914 20:54:15 3,025 04:38:11 3,043 08:01:05 3,026

Inuene of working set sizes

Exp eriments on di�erent working set sizes were done on the �rst 20,000 elements of the

MNIST database. Results are shown in Table 5.7, and indicate that a working set of size

q = 4 gives the fastest convergence time and fewest supp ort vectors. A working set of size 2

can b e solved analytically, as is true in the case of Sequential Minimal Optimisation (SMO).

The results in Table 5.7 are not necessarily an indication of the sp eed of the PSO on the

working set, as selection of the working set also burdens the sp eed of the algorithm (the

q

2

greatest and least values of y

i

r W (�)

i

need to b e selected from a list of thousands).

Salability of the PSO approah

Scalability of the PSO algorithm was tested by training on the �rst 10,000, 20,000, etc.

examples from the MNIST dataset, as shown in Table 5.8. In each case a working set of

size 4 was used. The exp erimental results indicate that the PSO training algorithm shows

quadratic scalability, and scales as � l

2: 1

(with l b eing the training set size).

Comparison to other algorithms

In Table 5.8, the PSO approach is compared to SMO and a decomp osition metho d, SVM

lig ht

[24]. WinSVM was develop ed by C. Longbin [29] from the SVM

lig ht

source co de, and was

used as an implementation of SMO. Unlike these metho ds, the current PSO algorithm do es

not make use of caching and shrinking to optimise its sp eed.

Results similar to Table 5.7 indicate that SVM

lig ht

gives the fastest rate of convergence

with a working set size q = 8, which is used in Table 5.8's comparison.

Chapter 5. Experimental results 86

Exp erimental results show SMO scaling as � l

2: 8

, and SVM

lig ht

scaling as � l

3: 0

. Both

these algorithms are substantially faster than training a SVM with PSO on the MNIST

dataset, but the PSO approach shows b etter scaling abilities (� l

2: 1

). Due to the fact that

the PSO training algorithm starts with a very small set of p ossible supp ort vectors, with all

other �

i

set to zero, the PSO metho d consistently �nds a few supp ort vectors less than the

other approaches.

The main drawback from the current PSO approach is its slow p erformance times, but

from this initial study many optimisations can b e implemented on b oth decomp osition and

PSO metho ds.

5.3 Concluding

The success of the CLPSO in optimising linearly constrained functions was exp erimentally

illustrated in this chapter. The necessity to change the LPSO to a lo cally converging algo-

rithm was also shown.

It was shown that a PSO can b e used to train a SVM. Some prop erties of LPSO make it

particularly useful to solve the SVM constrained QP problem. The PSO algorithm is simple

to implement, and do es not require any background of numerical metho ds. Accurate and

scalable training results were shown on the MNIST dataset, with the PSO algorithm �nding

fewer supp ort vectors and b etter scalability than other approaches. Although the algorithm

is simple, its sp eed p oses a practical b ottleneck, which can b e improved from this initial

study.

Chapter 6

Conlusion and Future Work

This thesis aimed to answer the question - \can a Particle Swarm Optimiser b e used to train

a Supp ort Vector Machine, and to what extent will it b e successful?"

The research conducted for this thesis sto o d on two pillars. The �rst pillar was Supp ort

Vector Machines (SVMs) and algorithms to train them, and a decomp osition-training al-

gorithm was develop ed based on similar algorithms. The second pillar was Particle Swarm

Optimisation (PSO), which is implemented as the optimisation metho d in the SVM training

algorithm.

Concluding on the second pillar, it was shown that particle swarms can easily b e used

to optimise a function with equality constraints of the form Ax = b. A variation of PSO,

the \Linear Particle Swarm Optimiser" (LPSO), was intro duced to optimise these typ es of

problems, and conditions for the LPSO to b e able to �nd any p oint in the feasible search

space, was develop ed. There is a p ositive probability that LPSO can converge prematurely.

The problem of LPSO's premature convergence was overcome by creating a \Converging

LPSO" (CLSPO). A pro of was given to show that CLPSO will at least converge to a lo cal

minimum. An imp ortant prop erty of the two new PSO algorithms is that, if the whole

swarm is initialised to lie within the hyp erplane Ax = b, then the swarm can optimise the

ob jective function without having to worry ab out the set of constraints. This prop erty was

formally proved, and shows that LPSO and CLPSO are ideally suited to solving equality-

constrained optimisation problems. The success of CLPSO (and premature convergence

of LPSO) in optimising linearly constrained functions was exp erimentally illustrated. The

exp erimental results were compared to results achieved with Genocop II , a genetic algorithm

for constrained optimisation. Exp erimental results show a general similarity in convergence

b etween Genocop II and CLPSO.

To conclude on the �rst pillar, it was shown that a PSO could b e used to train a

SVM. Some prop erties of CLPSO make it particularly useful to solve the SVM constrained

87

Chapter 6. Conclusion and Future Work 88

quadratic programming problem, and it was used in the decomp osition algorithm to solve

the SVM's constrained subproblems. The CLPSO algorithm is simple to implement, and

do es not require any background of numerical metho ds. Accurate and scalable training

results were shown on the MNIST dataset.

Although the CLPSO algorithm is simple, its sp eed in SVM training p oses a practical

b ottleneck. Future research may include improvement to the sp eed of the algorithm by

improving the CLPSO, and the cashing of kernel evaluations can b e implemented.

Further research can also explore the p ossibility of parallel training of SVMs. Instead of

selecting a single working set for optimisation, a numb er of working sets can b e selected and

optimised in parallel. If the working sets are distinct, the subproblems will b e indep endent

of each other, making this metho d a strong candidate for further investigation.

The standard metho ds of improving the original PSO can also b e implemented on b oth

LPSO and CLPSO. There is also scop e for a prop er analysis of CLPSO in the context of

random search algorithms.

Finally, many interesting constrained problems are waiting to b e solved!

Publiations derived from this

thesis

U. Paquet and A.P. Engelbrecht. \Training supp ort vector machines with particle swarms,"

in Proceedings of the International Joint Conference on Neural Networks , Portland, Oregon,

2003.

U. Paquet and A.P. Engelbrecht. \Particle swarms for equality-constrained optimization,"

submitted to IEEE Transactions on Evolutionary Computation .

U. Paquet and A.P. Engelbrecht. \A new particle swarm optimizer for linearly constrained

optimization," submitted to The Congress on Evolutionary Computation , Canb erra, Aus-

tralia, 2003.

89

Bibliography

[1] M. Aizerman, E. Braverman, and L. Rozoner. \Theoretical foundations of the p otential

function metho d in pattern recognition learning," in Automation and Remote Control ,

volume 25, pages 821-837, 1964.

[2] P.J. Angeline. \Evolutionary optimization versus particle swarm optimization: philoso-

phy and p erformance di�erences," in Evolutionary Programming VII: Proceedings of the

Seventh Annual Conference on Evolutionary Programming . 1998

[3] T. B•ack, D.B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Computation . Oxford

University Press, New York NY, 1997.

[4] V. Blanz, B. Sch•olkopf, H. B •ultho�, C. Burges, V. Vapnik, and T. Vetter. \Comparison

of view-based ob ject recognition algorithms using realistic 3d mo dels," in C. von der

Malsburg, W. von Seelen, J.C. Vorbr •uggen, and B. Sendho�, editors, Arti�cial Neural

Networks { ICANN '96 , pages 47-52, Berlin, 1996. Springer Lecture Notes in Computer

Science, Volume 1112.

[5] E. Bonab eau, M. Dorigo, and G. Theraulaz. Swarm Intel ligence: From natural to arti-

�cial systems . Oxford University Press, 1999.

[6] B.E. Boser, I.M. Guyon, and V.N. Vapnik. \A training algorithm for optimal margin

classi�ers," in D. Haussler, editor, Proceedings of the Fifth Annual ACM Workshop on

Computational Learning Theory , pages 144-152, Pittsburgh, PA, 1992. ACM Press.

[7] R. Brits. Niching particle swarm optimizers . PhD Thesis, Department of Computer Sci-

ence, University of Pretoria, 2003.

[8] C.J.C. Burges and B. Sch•olkopf. \Improving the accuracy and sp eed of supp ort vector

learning machines," in M. Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural

Information Processing Systems 9 , pages 375-381, Cambridge, MA, 1997. MIT Press.

[9] C. Burges and D. Crisp. \Uniqueness of the SVM solution," in NIPS, 12, 2000.

90

BIBLIOGRAPHY 91

[10] C. Campb ell. \Algorithmic approaches to training supp ort vector machines: a survey,"

in Proceedings of the Eigth European Symposium On Arti�cial Neural Networks , pages

27-36, Bruges, Belgium, 2000.

[11] M. Clerc and J. Kennedy. \The particle swarm { explosion, stability, and convergence in

a multidimensional complex space," in IEEE Transactions on Evolutionary Computation ,

volume 6, numb er 1, pages 58-73, 2002.

[12] D. Corne, M. Dorigo, and F. Glover (editors). New Ideas in Optimization . McGraw-Hill,

1999.

[13] C. Cortes and V. Vapnik. \Supp ort vector networks," in Machine Learning , volume 20,

pages 273-297, 1995.

[14] R. Courant and D. Hilb ert. Methods of Mathematical Physics . Interscience, New York,

1953.

[15] L. Davis. Genetic Algorithms and Simulated Annealing . Pitman, London, 1987.

[16] R.C. Eb erhart, R.W. Dobbins, and P. Simpson. Computational Intel ligence PC Tools .

Academic Press, 1996.

[17] R.C. Eb erhart and Y. Shi. \Comparing inertia weights and constriction factors in par-

ticle swarm optimization," in Proceedings of the Congress on Evolutionary Computation ,

pages 84-88. 2000.

[18] R. Fletcher. Practical Methods of Optimization, Volume 1 . John Wiley and Sons, Inc.,

1980.

[19] R. Fletcher. Practical Methods of Optimization . John Wiley and Sons, Inc., 2nd edition,

1987.

[20] D.E. Goldb erg. Genetic Algorithms in Search Optimization and Machine Learning .

Addison-Wesley, 1989.

[21] I. Guyon, B. Boser, and V. Vapnik. \Automatic capacity tuning of very large VC-

dimension classi�ers," in S.J. Hanson, J.D. Cowan, and C.L. Giles, editors, Advances in

Neural Information Processing Systems , volume 5, pages 147-155. Morgan Kaufmann,

San Mateo, CA, 1993.

[22] S.B. Hamida and M. Scho enauer. \ASHEA: New results using adaptive segregational

handling," in IEEE World Congress on Computational Intel ligence, Proceedings of the

Congress on Evolutionary Computing . Honolulu, Hawaii, 2002.

BIBLIOGRAPHY 92

[23] T. Joachims. \Text categorization with supp ort vector machines,"Technical rep ort, LS

VI I I Numb er 23, University of Dortmund, 1997.

[24] T. Joachims, \Making large-scale SVM learning practical," in Advances in Kernel Meth-

ods { Support Vector Learning , B. Sch•olkopf, C.J.C Burges, and A.J. Smola, editors,

pages 169-184. MIT Press, Cambridge, MA, 1999.

[25] J. Kennedy and R.C. Eb erhart. \Particle swarm optimization," in Proceedings of the

IEEE International Conference on Neural Networks, IV , pages 1942-1948. 1995.

[26] J. Kennedy. \Small worlds and mega minds: e�ects of neighb orho o d top ology on par-

ticle swarm p erformance," in Proceedings of the Congress of Evolutionary Computation,

Washington DC, USA , pages 1931-1938. 1999.

[27] J. Kennedy, R.C. Eb erhart, and Y. Shi. Swarm Intel ligence . Morgan Kaufmann Pub-

lishers, 2001.

[28] J. Kennedy and R. Mendes. \Population structure and particle swarm p erformance,"

in IEEE World Congress on Computational Intel ligence, Proceedings of the Congress on

Evolutionary Computing . Honolulu, Hawaii, 2002.

[29] C. Longbin. http://liama.ia.ac.cn/PersonalPage/lbchen/ , Institute of Automa-

tion, Chinese Academy of Sciences (CASIA).

[30] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs . Springer

Verlag, 1996.

[31] Z. Michalewicz and C.Z. Janikow. \GENOCOP: a genetic algorithm for numerical op-

timization problems with linear constraints," in Communications of the ACM , volume

39, article no. 175. 1996.

[32] Z. Michalewicz and M. Scho enauer. \Evolutionary algorithms for constrained parameter

optimization Problems," in Evolutionary Computation , volume 4, pages 1-32. 1996.

[33] MNIST Optical Character Database at AT&T Research,

http://yann.lecun.com/exdb/mnist/ .

[34] S. Mukherjee, E. Osuna, and F. Girosi. \Nonlinear prediction of chaotic time series using

a supp ort vector machine," in Neural Networks for Signal Processing VII { Proceedings

of the 1997 IEEE Workshop , J. Princip e, L. Gile, N. Morgan, and E. Wilson, editors,

pages 511-520, New York, 1997. IEEE Press.

[35] K.-R. M •uller, S. Mika, G. R•atsch, K. Tsuda, and B. Sch•olkopf. \An intro duction to

kernel-based learning algorithms," in IEEE Transactions on Neural Networks , volume

12, numb er 2, pages 181-202, 2001.

BIBLIOGRAPHY 93

[36] K.-R. M •uller, A. Smola, G. R•atsch, B. Sch•olkopf, J. Kohlmorgen, and V.N. Vapnik.

\Predicting time series with supp ort vector machines," in Arti�cial Neural Networks {

ICANN '97 , W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud, editors, pages

999-1004, Berlin, 1997. Springer Lecture Notes in Computer Science, Volume 1327.

[37] J. No cedal and S.J. Wright. Numerical Optimization . Springer Verlag, 1999.

[38] P. Laskov, \Feasible direction decomp osition algorithms for training supp ort vector

machines," in Machine Learning, Volume 46 , N. Cristianini, C. Campb ell, and Chris

Burges, editors, pages 315-349, 2002.

[39] E. Osuna, R. Freund, and F. Girosi. \Training supp ort vector machines: an application

to face detection," in IEEE Conference on Computer Vision and Pattern Recognition ,

pages 130-136, 1997.

[40] E. Osuna, R. Freund, and F. Girosi, \An improved training algorithm for supp ort vector

machines," in Neural Networks for Signal Processing VII { Proceedings of the 1997 IEEE

Workshop , J. Princip e, L. Gile, N. Morgan, and E. Wilson, editors, pages 276-285. IEEE,

New York, 1997.

[41] J. Platt, \Fast training of supp ort vector machines using sequential minimal optimiza-

tion," in Advances in Kernel Methods { Support Vector Learning , B. Sch•olkopf, C.J.C

Burges, and A.J. Smola, editors, pages 185-208. MIT Press, Cambridge, MA, 1999.

[42] M. Schmidt. \Identifying sp eaker with supp ort vector networks," in Interface '96 Pro-

ceedings , Sydney, 1996.

[43] B. Sch•olkopf, Support vector learning . Oldenb ourg Verlag, Munich, 1997.

[44] B. Sch•olkopf, C. Burges, and V. Vapnik. \Extracting supp ort data for a given task," in

U.M. Fayyad and R. Uthurusamy, editors, Proceedings of the First International Con-

ference on Know ledge Discovery and Data Mining . AAAI Press, Menlo Park, CA, 1995.

[45] B. Sch•olkopf, C. Burges, and V. Vapnik. \Incorp orating invariances in supp ort vector

learning machines," in C. von der Malsburg, W. von Seelen, J.C. Vorbr •uggen, and B.

Sendho�, editors, Arti�cial Neural Networks { ICANN '96 , pages 47-52, Berlin, 1996.

Springer Lecture Notes in Computer Science, Volume 1112.

[46] Y. Shi and R.C. Eb erhart. \Parameter selection in particle swarm optimization," in

Proceedings of the Seventh Annual Conference on Evolutionary Programming , pages 591-

600. New York, 1998.

[47] Y. Shi and R.C. Eb erhart. \A mo di�ed particle swarm optimizer," in Proceedings of

the IEEE Congress on Evolutionary Computation , pages 69-73. Piscataway, NJ, 1998.

BIBLIOGRAPHY 94

[48] Y. Shi and R.C. Eb erhart. \Empirical study of particle swarm optimization," in Pro-

ceedings of the IEEE Congress on Evolutionary Computation , volume 3, pages 1945-1950.

1999.

[49] Y. Shi and R.A. Krohling. \Co-evolutionary particle swarm optimization to solve min-

max problems," in IEEE World Congress on Computational Intel ligence, Proceedings of

the Congress on Evolutionary Computing . Honolulu, Hawaii, 2002.

[50] A.J. Smola, Learning with kernels . Ph.D. thesis, Technische Universit•at Berlin, 1998.

[51] M.O. Stitson, A. Gammerman, V. Vapnik, V. Vovk, C. Watkins, and J. Weston. \Sup-

p ort vector ANOVA decomp osition," Technical rep ort, Royal Holloway College, Rep ort

numb er CSD-TR-97-22, 1997.

[52] P.N. Suganthan. \Particle swarm optimiser with neighb ourho o d op erator." in Proceed-

ings of the IEEE Congress on Evolutionary Computation , pages 1958-1962. Piscataway,

NJ, 1999.

[53] F. van den Bergh. An analysis of particle swarm optimizers . PhD Thesis, Department

of Computer Science, University of Pretoria, 2002.

[54] F. van den Bergh and A.P. Engelbrecht. \A lo cally convergent particle swarm opti-

miser," accepted for IEEE conference on Systems, Man, and Cybernetics . Tunisia, 2002.

[55] V. Vapnik. Estimation of Dependences Based on Empirical Data [in Russian] , Nauka,

Moscow, 1979. (English translation: Springer Verlag, New York, 1982).

[56] V. Vapnik. The Nature of Statistical Learning Theory . Springer Verlag, New York, 1995.

[57] V. Vapnik. Statistical Learning Theory . Wiley, New York, 1998.

[58] V. Vapnik and A. Chervonenkis. Theory of Pattern Recognition [in Russian] , Nauka,

Moscow, 1974. (German Translation: W. Wapnik & A Tscherwonenkis, Theorie der

Zeichenerkennung . Akademie-Verlag, Berlin, 1979).

[59] J. Weston, A. Gammerman, M.O. Stitson, V. Vapnik, V. Vovk, and C. Watkins. \Den-

sity estimation using supp ort vector machines," Technical rep ort, Royal Holloway Col-

lege, Rep ort numb er CSD-TR-97-23, 1997.

[60] D. Whitley, V.S. Gordon, and K. Mathias. \Lamarcian evolution, the baldwin e�ect and

function optimization," in Y. Davidor, H-P Schwefel, and R. M•anner, editors, Proceedings

of the Third Conference on Paral lel Problem Solving from Nature . Springer, 1996.

[61] G. Zoutendijk. Methods of Feasible Directions . Elsevier, Amsterdam, 1970

