
Training Support Vector Machines with Particle Swarms

U Paquet
Department of Computer Science

University of Pretoria
South Africa

Email: upaquet@cs.up.ac.za

AP Engelbrecht
Department of Computer Science

University of Pretoria
South Africa

Email: engel@driesie.cs.up.ac.za

Abstract— Training a Support Vector Machine requires solving
a constrained quadratic programming problem. Linear Particle
Swarm Optimization is intuitive and simple to implement, and
is presented as an alternative to current numeric SVM training
methods. Performance of the new algorithm is demonstrated on
the MNIST character recognition dataset.

I. I NTRODUCTION

Support Vector Machines (SVMs) are a young and impor-
tant addition to the machine learning toolbox. Having been
formally introduced by Boser et al. [1], SVMs have proved
their worth – in the last decade there has been a remarkable
growth in both the theory and practice of these learning
machines.

Training a SVM requires solving a linearly constrained
quadratic optimization problem. This problem often involves a
matrix with an extremely large number of entries, which make
off-the-shelf optimization packages unsuitable. Several meth-
ods have been used to decompose the problem, of which many
require numeric packages for solving the smaller subproblems.

Particle Swarm Optimization (PSO) is an intuitive and easy-
to-implement algorithm from the swarm intelligence commu-
nity, and is introduced as a new way of training a SVM. Using
PSO replaces the need for numeric solvers. A Linear PSO
(LPSO) is adapted and shown to be ideal in optimizing the
SVM problem.

This paper gives an overview of the SVM algorithm, and
explains the main methodologies for training SVMs. PSO
is discussed as an alternative method for solving a SVM’s
quadratic programming problem. Experimental results on char-
acter recognition illustrate the convergence properties of the
algorithms.

II. SUPPORTVECTORMACHINES

Traditionally, a SVM is a learning machine for two-
class classification problems, and learns from a set ofl N -
dimensional example vectorsxi, and their associated classes
yi, i.e.

{x1, y1}, . . . , {xl, yl} ∈ RN × {±1} (1)

The algorithm aims to learn a separation between the two
classes by creating a linear decision surface between them.
This surface is, however, not created in input space, but
rather in a very high-dimensional feature space. The resulting
model is nonlinear, and is accomplished by the use of kernel
functions. The kernel functionk gives a measure of similarity

between a patternx, and a patternxi from the training set.
The decision boundary that needs to be constructed is of the
form

f(x) =
l∑

i=1

yiαik(x,xi) + b (2)

where the class ofx is determined from the sign off(x).
The αi are Lagrange multipliers from a primal quadratic
programming (QP) problem, and there is anαi for each
vector in the training set. The valueb is a threshold. “Support
vectors” define the decision surface, and correspond to the
subset of nonzeroαi. These vectors can be seen as the “most
informative” training vectors.

Training the SVM consists of finding the values ofαi. By
defining a Hessian matrixQ such that(Q)ij = yiyjk(xi,xj),
training can be expressed as a dual QP problem of solving

max
α

W (α) = αT 1− 1
2
αT Qα (3)

subject to one equality constraint

αT y = 0 (4)

and a set of box constraints

α ≥ 0

C1−α ≥ 0 (5)

Training a SVM thus involves solving a linearly constrained
quadratic optimization problem.

III. SVM T RAINING METHODS

The QP problem is equivalent to finding the maximum
of a constrained bowl-shaped objective function. Due to the
definition of the kernel function, the matrixQ always gives a
convex QP problem, where every local solution is also a global
solution [2]. Certain optimality conditions – the Karush-Kuhn-
Tucker (KKT) conditions [2] – give conditions determining
whether the constrained maximum has been found.

Solving the QP problem for real-world problems can prove
to be very difficult: The matrixQ has a dimension equal to
the number of training examples. A training set of 60,000
vectors gives rise to a matrixQ with 3.6 billion elements,
which does not fit into the memory of a standard computer.
For large learning tasks, off-the-shelf optimization packages
and techniques for general quadratic programming quickly
become intractable in their memory and time requirements. A

number of other approaches, which allow for fast convergence
and small memory requirements, even on large problems, have
been invented:

Chunking

The chunking algorithm is based on the fact that the non-
support vectors play no role in the SVM decision boundary. If
they are removed from the training set of examples, the SVM
solution will be exactly the same.

Chunking has been suggested by V. Vapnik in [14], and
breaks the large QP problem down into a number of smaller
problems.

A QP routine is used to optimize the Lagrangian on an
arbitrary subset of data. After this optimization, the set of
nonzeroαi (the current support vectors) are retained, and all
other data points (αi = 0) are discarded. At every subsequent
step, chunking solves the QP problem that consists of all
nonzero αi, plus some of theαi that violates the KKT
conditions. After optimizing the subproblem, data points with
αi = 0 are again discarded. This procedure is iterated until
the KKT conditions are met, and the margin is maximized.

The size of the subproblem varies, but tends to grow with
time. At the last step, chunking has identified and optimized all
the nonzeroαi, which correspond to the set of all the support
vectors. Thus the overall QP problem is solved.

Although this technique of reducing theQ matrix’s dimen-
sion from the number of training examples to approximately
the number of support vectors makes it suitable to large
problems, even the reduced matrix may not fit into memory.

Decomposition

Decomposition methods are similar to chunking, and were
introduced by E. Osuna in [8], [9]. The large QP problem
is broken down into a series of smaller subproblems, and a
numeric QP optimizer solves each of these problems. It was
suggested that one vector be added and one removed from
the subproblem at each iteration, and that the size of the
subproblems should be kept fixed. The motivation behind this
method is based on the observation that as long as at least
oneαi violating the KKT conditions is added to the previous
subproblem, each step reduces the objective function and
maintains all of the constraints. In this fashion the sequence
of QP subproblems will asymptotically converge. For faster
practical convergence, researchers add and delete multiple
examples.

While the strategy used in chunking takes advantage of
the fact that the expected number of support vectors is small
(< 3, 000), decomposition allows for training arbitrarily large
data sets.

Another decomposition method was introduced by T.
Joachims [3]. Joachim’s method is based on the gradient
of the objective function. The idea is to pickαi for the
QP subproblem such that theαi form the steepest possible
direction of ascent on the objective function, where the number
of nonzero elements in the direction is equal to the size of

the QP subproblem. As in Osuna’s method, the size of the
subproblem remains fixed.

Solving each subproblem requires a numeric quadratic op-
timizer.

Sequential Minimal Optimization

The most extreme case of decomposition is Sequential
Minimal Optimization (SMO) – where the smallest possible
optimization problem is solved at each step [11]. Because
the αi must obey the linear equality constraint, twoαi is
chosen to be jointly optimized. No numerical QP optimization
is necessary, and after an analytic solution, the SVM is updated
to reflect the new optimal values.

With the exception of SMO, a numeric QP library is needed
for training a SVM. An intuitive and alternative approach is to
use PSO to optimize each decomposed subproblem. The PSO
algorithm is easy to implement, and certain properties of the
LPSO make it ideal for the type of problem posed by SVM
training.

IV. PARTICLE SWARM OPTIMIZATION

PSO [4] is similar in spirit to birds migrating in a flock
toward some destination, where the intelligence and efficiency
lies in the cooperation of an entire flock.

PSO differs from traditional optimization methods in that
a population of potential solutions is used in the search.
The direct fitness information instead of function derivatives
or related knowledge is used to guide the search. Particles
collaborate as a population, or swarm, to reach a collective
goal, for example maximizing ann-dimensional objective
functionf . Each particle has memory of the best solution that
it has found, called itspersonal best. A particle’s traversal of
the search space is influenced by its personal best and the best
solution found by a neighborhood of particles.

There is thus a sharing of information that takes place.
Particles profit from the discoveries and previous experience
of other particles during the exploration and search for higher
objective function values. There exists a great number of
schemes in which this information sharing can take place. One
of two sociometric principles is usually implemented. The first,
called gbest(global best) PSO, conceptually connects all the
particles in the population to one another, so that the very
best performance of the entire population – theglobal best–
influences each particle. The second, calledlbest (local best),
creates a neighborhood for each individual comprising of itself
and some fixed number of its nearest neighbors. Since SVM
training requires solving a convex problem, thegbestversion
is implemented in this paper.

Let i indicate a particle’s index in the swarm. In agbestPSO
each of thes particlespi fly through then-dimensional search
spaceRn with a velocity vi, which is dynamically adjusted
according to its own previous best solutionzi and the previous
best solution̂z of the entire swarm.

In the original PSO [4], each particle’s velocity adjustments
are calculated separately for each component in its position

vector. By calculating velocity adjustments as linear combina-
tions of position vectors, equality constraints on the objective
function can easily be met.

Equality Constraints and the Linear PSO

The Linear PSO (LPSO) was introduced by [10] to constrain
the movement of a swarm to a linear hyperplane inRn.
LPSO differs from the original PSO, since velocity updates
are calculated as a linear combination of position and velocity
vectors. The particles of a LPSO interact and move according
to the following equations

v(t+1)
i = wv(t)

i + c1r
(t)
1 [z(t)

i − p(t)
i] + c2r

(t)
2 [ẑ(t)− p(t)

i] (6)

p(t+1)
i = v(t+1)

i + p(t)
i (7)

wherer
(t)
1 , r

(t)
2 ∼ UNIF (0, 1) are random numbers between

zero and one. These numbers are scaled by acceleration
coefficientsc1 and c2, where0 ≤ c1, c2 ≤ 2, and w is an
inertia weight [12]. It is possible to clamp the velocity vectors
by specifying upper and lower bounds onvi, to avoid too
rapid movement of particles in the search space.

When the objective functionf needs to be maximized sub-
ject to constraintsAp = b, the swarm should be constrained
to fly through hyperplaneP . With A being am × n matrix
and b a m-dimensional vector,P = {p | Ap = b} defines
the set of feasible solutions to the constrained problem, and
each point inP will be a feasible point.

It was shown in [10] that if the initial swarm lies inP , LPSO
will force the particles to fly only in feasible directions, and
the swarm will optimize within the search spaceP .

Premature convergence is overcome by using a version
of van den Bergh’s Guaranteed Convergence Particle Swarm
Optimizer [13]. In this algorithm, the velocity updates for the
global best particle is changed to force it to search for a better
solution in an area around the position of that particle. Letτ
be the index of the global best particle, such thatzτ = ẑ. The
velocity update equation for particleτ is changed to

v(t+1)
τ = −p(t)

τ + ẑ(t) + wv(t)
τ + ρ(t)υ(t) (8)

whereρ(t) is some scaling factor, andυ(t) ∼ UNIF (−1, 1)n

is a randomn-dimensional vector with the property that
Aυ(t) = 0, or υ(t) lies in the null space ofA.

The LPSO algorithm [10] is summarized below:
1) Set the iteration numbert to zero. Initialize the swarmS

of s particles such that the positionp(0)
i of each particle

meetsAp(0)
i = b.

2) Evaluate the performancef(p(t)
i) of each particle.

3) Compare the personal best of each particle to its current
performance, and setz(t)

i to the better performance, i.e.

z(t)
i =

{
z(t−1)

i if f(p(t)
i) ≤ f(z(t−1)

i)
p(t)

i if f(p(t)
i) > f(z(t−1)

i)
(9)

4) Set the global best̂z(t) to the position of the particle
with the best performance within the swarm, i.e.

ẑ(t) ∈ {z(t)
1 , z(t)

2 , . . . , z(t)
s }

∣∣ f(ẑ(t))

= max{f(z(t)
1), f(z(t)

2), . . . , f(z(t)
s)} (10)

5) Change the velocity vector for each particle according
to equation (6).

6) Move each particle to its new position, according to
equation (7).

7) Let t := t + 1.
8) Go to step 2, and repeat until convergence.
The LPSO algorithm is sufficient to optimize the SVM

objective function subject to the linear equality constraint
(4). The box constraints (5) are easily handled by initializing
all particles pi to lie inside the hypercube defined by the
constraints, and restricting their movement to this hypercube.
When a particle is moving outside the boundary of the hyper-
cube, its velocity vector is scaled with some factor such that
all components of its position lie either inside the hypercube,
or on its boundary.

The practical side of using LPSO, as well as the training
algorithm, is discussed in the following section.

V. TRAINING THE SVM

Using LPSO to solve the SVM QP problem requires criteria
for optimality, a way to decompose the QP, and a way to
extend LPSO to optimize the SVM subproblem.

Since Q is a positive semi-definite matrix (the kernel
function used is positive semi-definite), and the constraints
are linear, the Karush-Kuhn-Tucker (KKT) conditions are
necessary and sufficient for optimality [2]. A solutionα of
the QP problem, as stated in equalities (3) – (5), is an optimal
solution if the following relations hold for eachαi:

αi = 0 ⇒ yif(xi) ≥ 1
0 < αi < C ⇒ yif(xi) = 1

αi = C ⇒ yif(xi) ≤ 1 (11)

where i is the index of an example vector from the training
set.

Decomposing the QP problem involves choosing a subset,
or “working set,” of variables for optimization. The working
set, called setB, is created by pickingq sub-optimal variables
from all l αi. The working set of variables is optimized while
keeping the remaining variables (called setN) constant. The
general decomposition algorithm works as follows:

1) While the KKT conditions for optimality are violated:
a) Selectq variables for the working setB. The

remainingl− q variables (setN) are fixed at their
current value.

b) Use LPSO to optimizeW (α) on B.
c) Return the optimizedαi from B to the original set

of variables.
2) Terminate and returnα.
A concern in the above algorithm is to select the optimal

working set. The decomposition method presented here is due
to [3], and works on the method of feasible directions. The
idea is to find the steepest feasible directiond of ascent on
the objective functionW as defined in equation (3), under
the requirement that onlyq components be nonzero. Theαi

corresponding to theseq components will be included in the

working set. Finding an approximation tod is equivalent to
solving

Maximise ∇W (α)T d

subject to yT d = 0
di ≥ 0 if αi = 0
di ≤ 0 if αi = C

di ∈ {−1, 0, 1}
|{di : di 6= 0}| = q

For yT d to be equal to zero, the number of elements with
sign matches betweendi andyi must be equal to the number
of elements with sign mismatches betweendi and yi. Also,
d should be chosen to maximize the direction of ascent
∇W (α)T d. This is achieved by first sorting the training
vectors in increasing order according toyi∇W (α)i. Assuming
q to be even, a “forward pass” selectsq

2 examples from the
front of the sorted list, and a “backward pass” selectsq

2
examples from the back. A full explanation of this method
is given by P. Laskov in [5].

It is necessary to rewrite the objective function (3) as a
function that is only dependent on the working set. Letα be
split into two setsαB andαN . If α, y andQ are appropriately
rearranged, we have

α =
[

αB

αN

]
, y =

[
yB

yN

]
, Q =

[
QBB QBN

QNB QNN

]
Since onlyαB is going to be optimized,W is rewritten in
terms ofαB . If terms that do not containαB are dropped,
the optimization problem remains essentially the same. Also,
sinceQ is symmetric, withQBN = QT

NB , the problem is to
find:

max
αB

W (αB) = αT
B1− 1

2
αT

BQBBαB −αT
BQBNαN (12)

subject to

αT
ByB + αT

NyN = 0
αB ≥ 0

C1−αB ≥ 0 (13)

Implementing Particle Swarm Optimization

When the decomposition algorithm starts, a feasible solution
that satisfies the linear constraintαT y = 0, with constraints
0 ≤ αi ≤ C also met, is needed. The initial solution is
constructed in the following way:

Let c be some real number between0 andC, andγ some
positive integer less than both the number of positive examples
(yi = +1) and negative examples (yi = −1) in the training set.
Randomly pick a total ofγ positive examples, andγ negative
examples, and initialize their correspondingαi to c. By setting
all otherαi to zero, the initial solution will be feasible.

The value 2γ gives the total number of initial support
vectors, and since these initial support vectors are a randomly
chosen guess, it is suggested that the value ofγ be kept small.

TABLE I

INFLUENCE OF DIFFERENT WORKING SET SIZES ON THE FIRST20,000

ELEMENTS OF THEMNIST DATASET

Working Working Time SVs

set size set selections

4 8,782 02:17:43 1,631

6 8,213 03:11:40 1,637

8 7,502 03:51:24 1,639

10 10,023 06:27:06 1,648

12 9,667 07:26:23 1,652

In optimizing theq-dimensional subproblem, LPSO requires
that all particles be initialized such thatαT

ByB + αT
NyN = 0

is met. This is done as follows:

1) Set each particle in the swarm to theq-dimensional
vectorαB .

2) Add a randomq-dimensional vectorδ satisfyingyT
Bδ =

0 to each particle, under the condition that the particle
will still lie in the hypercube[0, C]q.

Initializing the swarm in this way ensures that the initial
swarm lies in the set of feasible solutionsP = {p | Ap =
−αT

NyN}, allowing the flight of the swarm to be defined by
feasible directions.

For faster convergence, the vectorυ(t) used to adjust the
global best particle, can be chosen as an approximation to the
partial derivative∇W (αB), subject toyT

Bυ(t) = 0.

VI. EXPERIMENTAL RESULTS

The SVM training algorithm presented in this paper was
tested on the MNIST dataset [7]. The MNIST dataset is a
database of optical characters, and consists of a training set
of 60,000 handwritten digits. Each digit is a 28 by 28 pixel
gray-level image, equivalent to a 784-dimensional input vector.
Each pixel corresponds to an integer value in the range of 0
(white) to 255 (black)

For training a SVM on the MNIST dataset, the character
‘8’ was used to represent the positive examples, while the
remaining digits defined the negative examples. Training was
done with a polynomial kernel of degree five:

k(xi,xj) = (xi · xj + 1)5 (14)

Due to the size of the dot product between two images, raised
to the fifth power, the pixel values were scaled to the range
[0, 0.1]. This gives Lagrange multipliesαi that are easier for
the LPSO to handle. (The kernel function of two unscaled
black images would be(784 × 2552 + 1)5, while the kernel
function of the scaled versions gives a more practical(784×
0.01 + 1)5 ≈ 835).

For an optimal solution to be found in the following PSO
experiments, the KKT conditions needed to be satisfied within
an error threshold of 0.02 from the right hand side of equations
(11). Optimization of the working set terminated when the
KKT conditions on the working set were met within an error

TABLE II

SCALABILITY : TRAINING ON THE MNIST DATASET

MNIST PSO Working PSO PSO SMO SMO SVMlight SVMlight

elements set selections time SVs time SVs time SVs

10,000 3,898 00:29:49 1,022 00:01:29 1,032 00:02:02 1,034

20,000 8,782 02:17:43 1,631 00:06:14 1,647 00:10:43 1,641

30,000 12,428 04:50:11 1,988 00:13:22 2,012 00:23:04 2,001

40,000 15,725 08:14:26 2,353 00:22:46 2,355 00:41:09 2,367

50,000 22,727 15:05:09 2,728 01:46:38 2,740 01:31:48 2,726

60,000 25,914 20:54:15 3,025 04:38:11 3,043 08:01:05 3,026

of 0.001, or when the swarm has optimized for a hundred
iterations.

The following parameters defined the experimental PSO:
By letting γ = 10, a total of 20 initial support vectors were
chosen to start the algorithm. The swarm sizes used in each
experiment was 10, while the inertia weightw was set to 0.7.
The acceleration coefficientsc1 and c2 were both set to 1.4
[13]. Since the objective function is constrainted by a set of
box constraints, the velocity vectors were not clamped. For
each experiment the upper boundC was kept at 100.0.

The PSO training algorithm was written in Java, and does
not make use of caching and shrinking methods to optimize its
speed. The sparsity of input data is used to speed up the eval-
uation of kernel functions. All experiments were preformed
on a 1.00 GHz AMD Duron processor.

Experimental results show successful and accurate training
on the MNIST database. The influence of different working
set sizes on the LPSO training algorithm, its scalability, as
well as its relation to other SVM training algorithms, were
examined.

Influence of working set sizes

Experiments on different working set sizes were done on
the first 20,000 elements of the MNIST database. Results are
shown in Table I, and indicate that a working set of sizeq = 4
gives the fastest convergence time and fewest support vectors.
A working set of size2 can be solved analytically, as is true
in the case of SMO. The results in Table I are not necessarily
an indication of the speed of the PSO on the working set,
as selection of the working set also burdens the speed of the
algorithm (theq

2 greatest and least values ofyi∇W (α)i need
to be selected from a list of thousands).

Scalability of the PSO approach

Scalability of the PSO algorithm was tested by training
on the first 10,000, 20,000, etc. examples from the MNIST
dataset, as shown in Table II. In each case a working set of
size 4 was used. The experimental results indicate that the
PSO training algorithm shows quadratic scalability, and scales
as∼ l2.1.

Comparison to other algorithms

In Table II, the PSO approach is compared to SMO and
a decomposition method, SVMlight [3]. WinSVM was devel-
oped by C. Longbin [6] from the SVMlight source code, and
was used as an implementation of SMO. Unlike these methods,
the current PSO algorithm does not make use of caching and
shrinking to optimize its speed.

Results similar to Table I indicate that SVMlight gives the
fastest rate of convergence with a working set sizeq = 8,
which is used in Table II’s comparison.

Experimental results show SMO scaling as∼ l2.8, and
SVMlight scaling as∼ l3.0. Both these algorithms are sub-
stantially faster than training a SVM with PSO on the MNIST
dataset, but the PSO approach shows better scaling abilities
(∼ l2.1). Due to the fact that the PSO training algorithm starts
with a very small set of possible support vectors, with all other
αi set to zero, the PSO method consistently finds a few support
vectors less than the other approaches.

The main drawback from the current PSO approach is its
slow performance times, but from this initial study many
optimizations can be implemented on both decomposition and
PSO methods.

VII. C ONCLUSION

It was shown that a PSO can be used to train a SVM. Some
properties of LPSO make it particularly useful to solve the
SVM constrained QP problem. The PSO algorithm is simple to
implement, and does not require any background of numerical
methods. Accurate and scalable training results were shown
on the MNIST dataset, with the PSO algorithm finding fewer
support vectors and better scalability than other approaches.
Although the algorithm is simple, its speed poses a practical
bottleneck, which can be improved from this initial study.

ACKNOWLEDGMENT

The financial assistance of the National Research Founda-
tion towards this research is hereby acknowledged. Opinions
expressed in this paper and conclusions arrived at, are those of
the authors and not necessarily to be attributed to the National
Research Foundation.

REFERENCES

[1] B.E. Boser, I.M. Guyon, and V.N. Vapnik, “A training algorithm for
optimal margin classifiers,” in D. Haussler, editor,Proceedings of the
Fifth Annual ACM Workshop on Computational Learning Theory, pages
144-152, Pittsburgh, PA, 1992. ACM Press.

[2] R. Fletcher,Practical Methods of Optimization. John Wiley and Sons,
Inc., 2nd edition, 1987.

[3] T. Joachims, “Making large-scale SVM learning practical,” inAdvances in
Kernel Methods – Support Vector Learning, B. Scḧolkopf, C.J.C Burges,
and A.J. Smola, editors, pages 169-184. MIT Press, Cambridge, MA,
1999.

[4] J. Kennedy and R.C. Eberhart, “Particle swarm optimization,” inPro-
ceedings of the IEEE International Conference on Neural Networks, IV,
pages 1942-1948, 1995.

[5] P. Laskov, “Feasible direction decomposition algorithms for training sup-
port vector machines,” inMachine Learning, Volume 46, N. Cristianini,
C. Campbell, and Chris Burges, editors, pages 315-349, 2002.

[6] C. Longbin, http://liama.ia.ac.cn/PersonalPage/lbchen/, Institute of Au-
tomation, Chinese Academy of Sciences (CASIA).

[7] MNIST Optical Character Database at AT&T Research,
http://yann.lecun.com/exdb/mnist/.

[8] E. Osuna, R. Freund, and F. Girosi, “Support vector machines: Training
and applications,” A.I. Memo AIM-1602, MIT A.I. Lab, 1996.

[9] E. Osuna, R. Freund, and F. Girosi, “An improved training algorithm for
support vector machines,” inNeural Networks for Signal Processing VII –
Proceedings of the 1997 IEEE Workshop, J. Principe, L. Gile, N. Morgan,
and E. Wilson, editors, pages 276-285. IEEE, New York, 1997.

[10] U. Paquet and A.P. Engelbrecht, “Particle swarms for equality-
constrained optimization,” submitted toIEEE Transactions on Evolution-
ary Computation.

[11] J. Platt, “Fast training of support vector machines using sequential
minimal optimization,” inAdvances in Kernel Methods – Support Vector
Learning, B. Scḧolkopf, C.J.C Burges, and A.J. Smola, editors, pages
185-208. MIT Press, Cambridge, MA, 1999.

[12] Y.H. Shi and R.C. Eberhart, “A modified particle swarm optimizer,” in
IEEE International Conference on Evolutionary Computation, Anchor-
age, Alaska, 1998.

[13] F. van den Bergh,An analysis of particle swarm optimizers, PhD Thesis,
Department of Computer Science, University of Pretoria, 2002.

[14] V. Vapnik, Estimation of Dependences Based on Empirical Data [in
Russian], Nauka, Moscow, 1979. (English translation: Springer Verlag,
New York, 1982.)

