Training Support Vector Machines with Particle Swarms

U Paquet AP Engelbrecht
Department of Computer Science Department of Computer Science
University of Pretoria University of Pretoria
South Africa South Africa
Email: upaquet@cs.up.ac.za Email: engel@driesie.cs.up.ac.za

Abstract— Training a Support Vector Machine requires solving between a patter, and a patterrx; from the training set.

a constrained quadratic programming problem. Linear Particle The decision boundary that needs to be constructed is of the
Swarm Optimization is intuitive and simple to implement, and 5,

is presented as an alternative to current numeric SVM training 1
methods. Performance of the new algorithm is demonstrated on x) = ik(x.x:) +b 2
the MNIST character recognition dataset. F(x) ;yl ik, xi) 2)

I. INTRODUCTION where the class ok is determined from the sign of (x).

Support Vector Machines (SVMs) are a young and impo]r-he a; are Lagrange multipliers from a primal quadratic
tant addition to the machine learing toolbox. Having bedifogramming (QP) problem, and there is an for each
formally introduced by Boser et al. [1], SVMs have proveéfeCtor in the_ training set_. The valuleis a threshold. “Support
their worth — in the last decade there has been a remarka$f&tors” define the decision surface, and correspond to the

growth in both the theory and practice of these Iezalrnin,'%j‘bset O,f ”,,O”Z,ef_@i- These vectors can be seen as the “most
machines. informative” training vectors.

Training a SVM requires solving a linearly constrained Training the SVM consists of finding the values @f. By

quadratic optimization problem. This problem often involves $€fining @ Hessian matri@) such that(@)i; = yiy;k(xi. x;),

matrix with an extremely large number of entries, which mak&2ining can be expressed as a dual QP problem of solving

off-the-shelf optimization packages unsuitable. Several meth- 1 7 3

ods have been used to decompose the problem, of which many 2% Qo (3)

require numeric packages for solving the smaller subproblendgpiect to one equality constraint
Particle Swarm Optimization (PSO) is an intuitive and easy-

to-implement algorithm from the swarm intelligence commu- a’y=0 (4)

nity, and is introduced as a new way of training a SVM. Usinsg d a set of box constraints

PSO replaces the need for numeric solvers. A Linear P 8

(LPSO) is adapted and shown to be ideal in optimizing the a >0

SVM problem. Cl-a > 0 (5)
This paper gives an overview of the SVM algorithm, and

exp|ains the main methodok)gies for training SVMs. ps@jraining a SVM thus involves SOlVing a "nearly constrained

is discussed as an alternative method for solving a Svirsladratic optimization problem.

guadratic programming problem. Experimental results on char-

e ; [1l. SVM T RAINING METHODS
acter recognition illustrate the convergence properties of the)) o)
algorithms. The QP problem is equivalent to finding the maximum

of a constrained bowl-shaped objective function. Due to the
Il. SUPPORTVECTORMACHINES definition of the kernel function, the matrig always gives a

Traditionally, a SVM is a learning machine for two-CONVex QP problem, where every local solution is also a global
class classification problems, and learns from a set - solution [2]. Certain optimality conditions — the Karush-Kuhn-

dimensional example vectoss, and their associated classed Ycker (KKT) conditions [2] — give conditions determining
i, i.e. whether the constrained maximum has been found.

(x5 h . {xnm) € RY x {1} 1) Solving thg QP problem for real-world .proble'ms can prove
to be very difficult: The matrixQ) has a dimension equal to

The algorithm aims to learn a separation between the twlee number of training examples. A training set of 60,000
classes by creating a linear decision surface between thesmctors gives rise to a matrig with 3.6 billion elements,
This surface is, however, not created in input space, buhich does not fit into the memory of a standard computer.
rather in a very high-dimensional feature space. The resultirgr large learning tasks, off-the-shelf optimization packages
model is nonlinear, and is accomplished by the use of kerraeid techniques for general quadratic programming quickly
functions. The kernel functioh gives a measure of similarity become intractable in their memory and time requirements. A

max W(a) =a’l -
(a4

number of other approaches, which allow for fast convergenttee QP subproblem. As in Osuna’s method, the size of the

and small memory requirements, even on large problems, haubproblem remains fixed.

been invented: Solving each subproblem requires a numeric quadratic op-
timizer.

Chunking

The chunking algorithm is based on the fact that the no§_equential Minimal Optimization

support vectors play no role in the SVM decision boundary. If The most extreme case of decomposition is Sequential
they are removed from the training set of examples, the SVMinimal Optimization (SMO) — where the smallest possible
solution will be exactly the same. optimization problem is solved at each step [11]. Because
Chunking has been suggested by V. Vapnik in [14], artie «; must obey the linear equality constraint, twg is
breaks the large QP problem down into a number of smallgnosen to be jointly optimized. No numerical QP optimization
problems. is necessary, and after an analytic solution, the SVM is updated
A QP routine is used to optimize the Lagrangian on a reflect the new optimal values.
arbitrary subset of data. After this optimization, the set of With the exception of SMO, a numeric QP library is needed
nonzeroc; (the current support vectors) are retained, and dtir training a SVM. An intuitive and alternative approach is to
other data pointsc; = 0) are discarded. At every subsequentise PSO to optimize each decomposed subproblem. The PSO
step, chunking solves the QP problem that consists of algorithm is easy to implement, and certain properties of the
nonzero «;, plus some of thew; that violates the KKT LPSO make it ideal for the type of problem posed by SVM
conditions. After optimizing the subproblem, data points wittraining.
«a; = 0 are again discarded. This procedure is iterated until
the KKT conditions are met, and the margin is maximized. IV. PARTICLE SWARM OPTIMIZATION

The size of the subproblem varies, but tends to grow with pg [4] is similar in spirit to birds migrating in a flock

time. Atthe last step, chunking has identified and optimized gll,,,514 some destination, where the intelligence and efficiency
the nonzeray;, which correspond to the set of all the suppoiifeg in the cooperation of an entire flock.

vectors. Thus the overall QP problem is solved. PSO differs from traditional optimization methods in that
_Although this technique of reducing thg matrix's dimen- 5 o5 1ation of potential solutions is used in the search.
sion from the number of training examples to approximatelyhe girect fitness information instead of function derivatives
the number of support vectors makes it suitable t0 largg rejated knowledge is used to guide the search. Particles
problems, even the reduced matrix may not fit into memory.qjaporate as a population, or swarm, to reach a collective

goal, for example maximizing am-dimensional objective
function f. Each particle has memory of the best solution that
Decomposition methods are similar to chunking, and weitehas found, called itpersonal bestA particle’s traversal of
introduced by E. Osuna in [8], [9]. The large QP problerthe search space is influenced by its personal best and the best
is broken down into a series of smaller subproblems, andsalution found by a neighborhood of particles.
numeric QP optimizer solves each of these problems. It wasThere is thus a sharing of information that takes place.
suggested that one vector be added and one removed fi@articles profit from the discoveries and previous experience
the subproblem at each iteration, and that the size of tb&other particles during the exploration and search for higher
subproblems should be kept fixed. The motivation behind thebjective function values. There exists a great number of
method is based on the observation that as long as at lestemes in which this information sharing can take place. One
one q; violating the KKT conditions is added to the previousf two sociometric principles is usually implemented. The first,
subproblem, each step reduces the objective function acalled gbest(global best) PSO, conceptually connects all the
maintains all of the constraints. In this fashion the sequenparticles in the population to one another, so that the very
of QP subproblems will asymptotically converge. For fastdrest performance of the entire population — giebal best—
practical convergence, researchers add and delete multipifuences each particle. The second, callsskt (local best),
examples. creates a neighborhood for each individual comprising of itself
While the strategy used in chunking takes advantage afid some fixed number of its nearest neighbors. Since SVM
the fact that the expected number of support vectors is smiadlining requires solving a convex problem, thigestversion
(< 3,000), decomposition allows for training arbitrarily largeis implemented in this paper.
data sets. Lets indicate a particle’s index in the swarm. IghestPSO
Another decomposition method was introduced by TEach of thes particlesp; fly through thern-dimensional search
Joachims [3]. Joachim’s method is based on the gradiggaceR” with a velocity v;, which is dynamically adjusted
of the objective function. The idea is to pick; for the according to its own previous best solutisnand the previous
QP subproblem such that the form the steepest possiblebest solutiorz of the entire swarm.
direction of ascent on the objective function, where the numberln the original PSO [4], each particle’s velocity adjustments
of nonzero elements in the direction is equal to the size afe calculated separately for each component in its position

Decomposition

vector. By calculating velocity adjustments as linear combina-5) Change the velocity vector for each particle according
tions of position vectors, equality constraints on the objective to equation (6).
function can easily be met. 6) Move each particle to its new position, according to

Equality Constraints and the Linear PSO equation (7).

. . . 7) Lett:=t+1.
The Linear PSO (LPSO) was mtrqduced by [10] to corjstraln 8) Go to step 2, and repeat until convergence.
the movement of a swarm to a linear hyperplaneRn.

LPSO differs from the original PSO, since velocity updates The_ LPSO "?"go“th”.‘ IS sufﬁuen_t 0 optlmlz_e the SVM
jective function subject to the linear equality constraint

are calculated as a linear combination of position and veIocE The b traints (5 iiv handled by initializi
vectors. The particles of a LPSO interact and move accordihg" € DOx constraints () are easily handle oy Intializing
all particlesp; to lie inside the hypercube defined by the

to the following equations

(t41) ® constraints, and restricting their movement to this hypercube.
AL

=wvi? e[z — plV] + corP 2~ p{Y] (6) When a particle is moving outside the boundary of the hyper-
p(_t+1) =yt 4 p(_t) @ cube, its velocity vector is scaled with some factor such that

© () ' all components of its position lie either inside the hypercube,
wherer;”, ry* ~ UNIF(0,1) are random numbers betweery, o, jts boundary.

zero and one. These numbers are scaled by acceleratiofthe practical side of using LPSO, as well as the training
coefficientsc; and c, where0 < ci,c; < 2, andw is an g|gorithm, is discussed in the following section.
inertia weight [12]. It is possible to clamp the velocity vectors
by specifying upper and lower bounds en, to avoid too V. TRAINING THE SVM
rapid movement of particles in the search space. Using LPSO to solve the SVM QP problem requires criteria
When the objective functiorf needs to be maximized sub-for optimality, a way to decompose the QP, and a way to
ject to constraintsdp = b, the swarm should be constrainedextend LPSO to optimize the SVM subproblem.
to fly through hyperplane®. With A being am x n matrix Since @ is a positive semi-definite matrix (the kernel
and b a m-dimensional vectorP = {p | Ap = b} defines function used is positive semi-definite), and the constraints
the set of feasible solutions to the constrained problem, aack linear, the Karush-Kuhn-Tucker (KKT) conditions are
each point inP will be a feasible point. necessary and sufficient for optimality [2]. A solutien of
It was shown in [10] that if the initial swarm lies iR, LPSO the QP problem, as stated in equalities (3) — (5), is an optimal
will force the particles to fly only in feasible directions, andolution if the following relations hold for eaafy;:
the swarm will optimize within the search spafe
Premature convergence is overcome by using a version @=0 = yif(x)=1
of van den Bergh's Guaranteed Convergence Particle Swarm 0<a; <C = yif(x)=1
Optimizer [13]. In this algorithm, the velocity updates for the a;=C = yf(x) <1 (11)
global best particle is changed to force it to search for a better . _ .
solution in an area around the position of that particle. et Where: is the index of an example vector from the training

be the index of the global best particle, such that= z. The S€t: _ _ _
velocity update equation for particteis changed to Decomposing the QP problem involves choosing a subset,
or “working set,” of variables for optimization. The working

Vit = —pl) 4+ 4 wvl) 4 plo) (8) set, called seB, is created by picking sub-optimal variables
wherep(*) is some scaling factor, and® ~ UNIF(—1,1)* fromalll «;. The working set of variables is optimized while
is a randomn-dimensional vector with the property thateeping the remaining variables (called g€} constant. The

Av® =0, or v® lies in the null space ofl. general decomposition algorithm works as follows:
The LPSO algorithm [10] is summarized below: 1) While the KKT conditions for optimality are violated:
1) Set the iteration numberto zero. Initialize the swarn§ a) Selectq variables for the working seB3. The
of s particles such that the positiqs”’ of each particle remainingl — ¢ variables (setV) are fixed at their
meetsApl(.O) =b. current value.
2) Evaluate the performancg(p!”) of each particle. b) Use LPSO to optimizéV («) on B.
3) Compare the personal best of each particle to its current ¢) Return the optimized; from B to the original set
performance, and sef" to the better performance, i.e. of variables.
(t—1) - (t) (t—1) 2) Terminate and returo.
z§” = { Zi(t) !f f(pft)) = f(z’('t_l)) 9) A concern in the above algorithm is to select the optimal
p; it f(p; ") > f(z;) working set. The decomposition method presented here is due
4) Set the global best*) to the position of the particle to [3], and works on the method of feasible directions. The
with the best performance within the swarm, i.e. idea is to find the steepest feasible directibrof ascent on
50 ¢ {zgt),zét)7...,zgt)} | f(ﬁ(t)) the objective functioniV as defined in equation (3), under

the requirement that only components be nonzero. The
= max{f(zgt)),f(zét)), . .,f(zgt))} (10) corresponding to thesg components will be included in the

TABLE |

working set. Finding an approximation t is equivalent to INFLUENCE OF DIFFERENT WORKING SET SIZES ON THE FIRS20,000

SO|VIng ELEMENTS OF THEMNIST DATASET
Maximise VW (a)Td
subject to de =0 Working Working Time SVs
. set size | set selections|
d; >0 if a; =0
. 4 8,782 02:17:43| 1,631
d; <0 if a; =C 6 8,213 03:11:40 | 1,637
d; € {-1,0,1} 8 7,502 03:51:24 | 1,639
{d; - d; # 0} =q 10 10,023 06:27:06 | 1,648
12 9,667 07:26:23 | 1,652

For y”d to be equal to zero, the number of elements with
sign matches betweet) andy; must be equal to the number

of elements with sign mismatches betwe&nand y;. Also, o . . :
d should be chosen to maximize the direction of ascent'M OPtimizing theg-dimensional subproblem, LPSO requires

. g o St
VW (a)Td. This is achieved by first sorting the trainingat all particles be initialized such thatzy s + ayyn =0

vectors in increasing order accordingiia/ W (at);. Assuming 'S Met. This is done as follows: o
q to be even, a “forward pass” selecfsexamples from the 1) Set each particle in the swarm to thedimensional

front of the sorted list, and a “backward pass” selefts vectorap.
examples from the back. A full explanation of this method 2) Add a randomy-dimensional vectod satisfyingy ;. =
is given by P. Laskov in [5]. 0 to each particle, under the condition that the particle
It is necessary to rewrite the objective function (3) as a Will still lie in the hypercube(0, C]7.
function that is only dependent on the working set. bebe Initializing the swarm in this way ensures that the initial
split into two setsxp andayy. If o, y andQ are appropriately swarm lies in the set of feasible solutiofs= {p | Ap =
rearranged, we have —alyn}, allowing the flight of the swarm to be defined by
feasible directions.
o= [B } .y = { YB } ., Q= { Qpp (pN] For faster convergence, the vectof”) used to adjust the
N yN Qvs QNN global best particle, can be chosen as an approximation to the

Since onlya is going to be optimizedV is rewritten in partial derivativeVW (o), subject toy L") = 0.
terms of ag. If terms that do not contailxg are dropped,
the optimization problem remains essentially the same. Also,
sinceQ is symmetric, withQzy = Q% 5, the problem is to ~ The SVM training algorithm presented in this paper was
find: tested on the MNIST dataset [7]. The MNIST dataset is a
1 database of optical characters, and consists of a training set
max W(ag) = ahl — ~aLQppap — aL5Qpnvan (12) of 60,000 handwritten digits. Each digit is a 28 by 28 pixel
or 2 gray-level image, equivalent to a 784-dimensional input vector.
subject to Each pixel corresponds to an integer value in the range of 0

(white) to 255 (black)

VI. EXPERIMENTAL RESULTS

T T —
apyp tayyn = 0 For training a SVM on the MNIST dataset, the character
agp > 0 ‘8" was used to represent the positive examples, while the
Cl-ag > 0 (13) remaining digits defined the negative examples. Training was

done with a polynomial kernel of degree five:
Implementing Particle Swarm Optimization 5
» . . . k(x;,x;) = (x; x; +1 14
When the decomposition algorithm starts, a feasible solution (xis x5) = (i - x5+ 1) (14)

that satisfies the linear constrainfy = 0, with constraints Due to the size of the dot product between two images, raised
0 < a; < C also met, is needed. The initial solution igo the fifth power, the pixel values were scaled to the range
constructed in the following way: [0,0.1]. This gives Lagrange multiplies; that are easier for
Let ¢ be some real number betweérand C', and~ some the LPSO to handle. (The kernel function of two unscaled
positive integer less than both the number of positive examplalack images would bé784 x 2552 + 1)°, while the kernel
(y; = +1) and negative exampleg;(= —1) in the training set. function of the scaled versions gives a more pract{¢alt x
Randomly pick a total ofy positive examples, angl negative 0.01 + 1)° ~ 835).
examples, and initialize their correspondingto c. By setting For an optimal solution to be found in the following PSO
all othera; to zero, the initial solution will be feasible. experiments, the KKT conditions needed to be satisfied within
The value 2y gives the total number of initial supportan error threshold of 0.02 from the right hand side of equations
vectors, and since these initial support vectors are a randor(ilyt). Optimization of the working set terminated when the
chosen guess, it is suggested that the value loé kept small. KKT conditions on the working set were met within an error

TABLE Il
SCALABILITY : TRAINING ON THE MNIST DATASET

MNIST || PSO Working| PSO PSO SMO | SMO || SVMlight | SyMlight
elements|| set selections| time SVs time SVs time SVs
10,000 3,898 00:29:49| 1,022 || 00:01:29| 1,032 | 00:02:02 1,034
20,000 8,782 02:17:43| 1,631 | 00:06:14| 1,647 || 00:10:43 1,641
30,000 12,428 04:50:11| 1,988 00:13:22| 2,012 | 00:23:04 2,001
40,000 15,725 08:14:26| 2,353 || 00:22:46| 2,355| 00:41:09 2,367
50,000 22,727 15:05:09| 2,728 || 01:46:38| 2,740 | 01:31:48 2,726
60,000 25,914 20:54:15| 3,025 04:38:11| 3,043 || 08:01:05 3,026

of 0.001, or when the swarm has optimized for a hundre&iomparison to other algorithms

iterations. _ _ In Table Il, the PSO approach is compared to SMO and
The following parameters defined the experimental PSQ:decomposition method, SVM"* [3]. WinSVM was devel-

By letting v = 10, a totall of 20 initial support vectors weregped py C. Longbin [6] from the SVK#"* source code, and

chosen to start the algorithm. The swarm sizesed in each 55 ysed as an implementation of SMO. Unlike these methods,

experiment was 10, while the inertia weightwas set t0 0.7. the current PSO algorithm does not make use of caching and

The acceleration coefficients and c, were both set to 1.4 shrinking to optimize its speed.

[13]. Since the objective function is constrainted by a set of Ragyits similar to Table | indicate that SVigit gives the

box constraints, the velocity vectors were not clamped. Ffstest rate of convergence with a working set size- 8
each experiment the upper bou@dwas kept at 100.0. which is used in Table II's comparison.

The PSO training algorithm was written in Java, and doeSExperimental results show SMO scaling as {28, and
not make use of caching and shrinking methods to optimize #g/plight scaling as~ /3. Both these algorithms are sub-

speed. The sparsity of input data is used to speed up the ex@dntially faster than training a SVM with PSO on the MNIST
uation of kernel functions. All experiments were preformegataset' but the PSO approach shows better scaling abilities
on a 1.00 GHz AMD Duron processor. (~ 1?'1). Due to the fact that the PSO training algorithm starts
Experimental results show successful and accurate trainiggp g very small set of possible support vectors, with all other
on the MNIST database. The influence of different workingi set to zero, the PSO method consistently finds a few support
set sizes on the LPSO training algorithm, its scalability, &gctors less than the other approaches.
well as its relation to other SVM training algorithms, were The main drawback from the current PSO approach is its
examined. slow performance times, but from this initial study many
optimizations can be implemented on both decomposition and

PSO methods.
Experiments on different working set sizes were done on

the first 20,000 elements of the MNIST database. Results are VII. CONCLUSION

shown in Table I, and indicate that a working set of sjze 4 |t was shown that a PSO can be used to train a SVM. Some
gives the fastest convergence time and fewest support vectpisperties of LPSO make it particularly useful to solve the
A working set of size2 can be solved analytically, as is trueSVM constrained QP problem. The PSO algorithm is simple to
in the case of SMO. The results in Table | are not necessarifiiplement, and does not require any background of numerical
an indication of the speed of the PSO on the working sehethods. Accurate and scalable training results were shown
as selection of the working set also burdens the speed of #iethe MNIST dataset, with the PSO algorithm finding fewer
algorithm (theZ greatest and least values @fV1V («); need support vectors and better scalability than other approaches.
to be selected from a list of thousands). Although the algorithm is simple, its speed poses a practical
bottleneck, which can be improved from this initial study.

Influence of working set sizes

Scalability of the PSO approach

Scalability of the PSO algorithm was tested by training ACKNOWLEDGMENT
on the first 10,000, 20,000, etc. examples from the MNIST The financial assistance of the National Research Founda-
dataset, as shown in Table Il. In each case a working settimin towards this research is hereby acknowledged. Opinions
size 4 was used. The experimental results indicate that #gressed in this paper and conclusions arrived at, are those of
PSO training algorithm shows quadratic scalability, and scaltee authors and not necessarily to be attributed to the National
as~ %1, Research Foundation.

(1]

(2]

(3]

(4]

(5]

(6]
(71

REFERENCES [8] E. Osuna, R. Freund, and F. Girosi, “Support vector machines: Training
and applications,” A.l. Memo AIM-1602, MIT A.l. Lab, 1996.

E. Osuna, R. Freund, and F. Girosi, “An improved training algorithm for
support vector machines,” Meural Networks for Signal Processing VII —

B.E. Boser, I.M. Guyon, and V.N. Vapnik, “A training algorithm for 9]
optimal margin classifiers,” in D. Haussler, editéttoceedings of the

Fifth Annual ACM Workshop on Computational Learning Theqyges Proceedings of the 1997 IEEE WorkshdpPrincipe, L. Gile, N. Morgan,
144-152, Pittsburgh, PA, 1992. ACM Press. i and E. Wilson, editors, pages 276-285. IEEE, New York, 1997.

R. Fletcher, I_D_ractlcal Methods of OptimizationJohn Wiley and Sons, [10] U. Paquet and A.P. Engelbrecht, “Particle swarms for equality-
Inc., 2nd edition, 1987. constrained optimization,” submitted tBEE Transactions on Evolution-

T. Joachims, “Making large-scale SVM learning practical Advances in
Kernel Methods — Support Vector Learnjrig;. Sclolkopf, C.J.C Burges, 11]
and A.J. Smola, editors, pages 169-184. MIT Press, Cambridge, MEA,

ary Computation
J. Platt, “Fast training of support vector machines using sequential
minimal optimization,” inAdvances in Kernel Methods — Support Vector

1999. . N . Learning B. Sclolkopf, C.J.C Burges, and A.J. Smola, editors, pages
J. Kennedy and R.C. Eberhart, “Particle swarm optimization,Pio- 185-208. MIT Press, Cambridge, MA, 1999.
ceedings of the IEEE International Conference on Neural Networks, 'Y_LZ] Y.H. Shi and R.C. Eberhart, “A modified particle swarm optimizer,” in

pages 1942-1948, 1995. .) . IEEE International Conference on Evolutionary Computatiémchor-

P. Laskov, “Feasible direction decomposition algorithms for training sup- age, Alaska, 1998.

port vector machines,” iMachine Learning, Volume 4&. Cristianini, (13} F. van den BerghAn analysis of particle swarm optimizehD Thesis,
C. Campbell, and Chris Burges, editors, pages 315-349, 2002. Department of Computer Science, University of Pretoria, 2002.

C. Longbin, http://liama.ia.ac.cn/PersonalPage/lbchen/, Institute of A[,m] V. Vapnik, Estimation of Dependences Based on Empirical Data [in

tomation, Chinese Academy of Sciences (CASIA). Russian] Nauka, Moscow, 1979. (English translation: Springer Verlag,
MNIST Optical Character Database at AT&T Research, pnew York 1982.)

http://yann.lecun.com/exdb/mnist/.

